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Abstract. The article analyzes the movement of a wheelset along a path that is unequal in length 
with wave wear of the rails. The authors studied the influence of a force external disturbance on 
the parametric system “wheel-rail”. The problem under consideration is solved on the basis of a 
mathematical model of the interaction of a wheel pair and an unequal track, taking into account 
the additive effect of unequal stiffness on a railway vehicle. It is shown that taking into account 
the longitudinal uneven elasticity of the railway track makes it possible to more accurately 
determine the resonant regions and evaluate the decrease or increase in the acceleration level and 
the amplitudes of bouncing of the unsprung mass of the rolling stock. 
Keywords: wheelset, vibrations, track roughness, multiplicative perturbation, uneven track 
elasticity, analysis. 

1. Introduction 

The analysis of problems associated with the vibrations of mechanical systems is a very 
voluminous branch of applied mechanics. This section is based on fundamental foreign and 
domestic research in the field of nonlinear oscillation theory. This branch of mechanics has 
effective methods and a wide range of solved problems. At the same time, the development of 
modern transport technology constantly puts forward new and urgent problematic issues. To 
ensure the possibility of designing rolling stock in the field of optimizing various parameters that 
provide the required level of safety, driving performance and comfort, various methods are used. 

Analysis of publications on the topics covered showed that V. A. Nekhaev [1] indicated the 
possibility of interaction between forced and parametrically excited oscillations. This problem 
was most fully studied by the German scientist T. Schmidt [2] and reduced to solving 
integro-differential equations. However, before starting to study the movement of a wheelset along 
a path that is unequal in length with wave wear of the rails, let us dwell on a simpler problem. Let 
us study the influence of external force perturbation on the parametric system, assuming that there 
is no physical connection between them. In other words, the excitation sources are independent of 
each other [3]. This will allow us to obtain an analytical solution to the problem and establish 
some preliminary information, for example, regarding the phase shift angle between force and 
parametric effects. As a design scheme for oscillations of the unsprung mass of the vehicle, we 
will accept the scheme shown in Fig. 1. 

The design scheme of a conventional uniaxial vehicle is shown in Fig. 2. Let us agree that the 
vehicle can only perform vertical movements, in other words, it can only bounce. Therefore, the 𝑧 axis is directed vertically upwards, and it is also indicated 𝑍 – is the bouncing of the sprung 
mass of the vehicle, 𝑍 – is the bouncing of its wheelset, 𝑍 – is the bouncing of the “reduced” 
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mass of the railway track, 𝐶 – is the pressure of the wheelset on the rails, 𝐾 and 𝐶 –is the 
stiffness and coefficient viscous friction of the axle box suspension of the vehicle, 𝐾 and 𝐶 – is 
the stiffness and coefficient of viscous friction in the way, 𝑃 – is the pressure of wheelset on rails. 

 
Fig. 1. Calculation scheme of oscillations of the 

unsprung mass of the crew 

 
Fig. 2. Calculation scheme of a conditional  

single-axle vehicle 

For the convenience of solving the problem, we divide the mechanical system “crew-railway 
track” into two subsystems: the carriage and the track, shown below in Fig. 3. 

 
a) Wagon 

 
b) Way 

Fig. 3. Calculation schemes of a conditional single-axle car and railway track 

So, the mathematical model of the system, which was mentioned above, we have the following 
form: 𝑞ሷ  2𝑛𝑞ሶ  𝑘ଶሺ1 − 2𝜇cos2Ω𝑡ሻ𝑞 ൌ 𝑘ଶ𝑞௦௧cosሺΩ𝑡  𝜑ሻ, (1)

where 𝑞௦௧ ൌ 𝑃 𝐾⁄  is the static deflection of the spring on which the load is suspended at its 
average value, 𝑃 is the amplitude of the force perturbation. Here we believe that the frequency of 
the parametric action is twice the frequency of the external force perturbation (this circumstance 
will simplify the solution of the problem). Although in principle, it is possible to introduce a small 
detuning of the system in frequency. 

We will look for the solution of the differential Eq. (1) according to the general theory of such 
systems in the following form: 𝑞 ൌ 𝑎sinΩ𝑡  𝑏cosΩ𝑡. (2)

That, after simple transformations, will lead us to the system of linear algebraic equations 
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(SLAE): 

൜ሺ𝑘ଶ + 𝜇𝑘ଶ − Ωଶሻ𝑎 − 2𝑛Ω𝑏 = −𝑘ଶ𝑞௦௧sin𝜑,2𝑛Ω𝑎 + ሺ𝑘ଶ − 𝜇𝑘ଶ − Ωଶሻ𝑏 = 𝑘ଶ𝑞௦௧cos𝜑,  (3)൜ሺ1 + 𝜇 − 𝜆ଶሻ𝑎 − 2𝛿𝜆𝑏 = −𝑞௦௧sin𝜑,2𝛿𝜆𝑎 + ሺ1 − 𝜇 − 𝜆ଶሻ𝑏 = 𝑞௦௧cos𝜑,  (4)

where 𝜆 = Ω 𝑘⁄  – is the frequency detuning of the system, 𝛿 = 𝑛 𝑘⁄  – is the a dimensionless 
coefficient characterizing viscous friction in the system (usually it is in the range from 0 to 0.7). 
Solving SLAE Eq. (4) and calculating the amplitude of oscillations according to the formula, we 
get the transfer function of the system in the form: 

ቌ 𝐴𝑞௦௧ ඨሺ1 − 𝜆ଶሻଶ + 4𝛿ଶ𝜆ଶ + 𝜇4𝛿𝜆sin2𝜑 + 2𝜇ሺ1 − 𝜆ଶሻcos2𝜑 + 𝜇ଶሾሺ1 − 𝜆ଶሻଶ + 4𝛿ଶ𝜆ଶ − 𝜇ଶሿଶ ቍ. (5)

Graphic changes of this ratio are shown in Fig. 4. 

 
Fig. 4. Graphs of the change in the ratio of the steady-state amplitude to the static deflection  

of the elastic element of suspension of the load with a parametric excitation coefficient  
equal to 0; 0.2; 0.4 and three phase shift angles between perturbations 0, 45° and –45° 

From the presented figure, it is easy to establish that if the phase shift 𝜑 between the power 
and parametric excitations is equal to 𝜋/4, then the parametric perturbation enhances the amplitude 
of forced oscillations by 20,9 %, if the angle is 𝜑 = −𝜋/4, then the amplitude of forced oscillations 
decreases by 52,5 %. However, the indicated percentages were obtained in the resonance zone, 
when the natural frequency coincides with the frequency of the external force. Therefore, by 
creating parametric actions in a mechanical system subject to external force or kinematic 
disturbances, providing the necessary phase shift between disturbances, we can increase the 
efficiency of the crew vibration protection system [4]. 

The example of a parametric system considered above, which is affected by an external force 
perturbation, allowed us to establish some of their characteristic properties. Next, we turn to a 
special case when the length of the geometrical irregularity is twice as large or close to the distance 
between sleepers, which is an average of 0,54 m (depending on the diagram of the sleepers, in this 
case 1840 sleepers/km). This range of waves includes medium-wave undulating wear of rails; 
therefore, the case under consideration is not so far from reality. In addition, on the right side of 
the mathematical model of the interaction of a wheel set and a track that is unequal in length, there 
will be additional terms characterizing the additive effect of uneven stiffness on the vehicle. This 
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circumstance, of course, complicates our task [5]. 
Taking into account the external perturbation from the path, we write: 𝑚𝑞ሷ + 𝑏𝑞ሶ + 𝐾ሺ1 − 2𝜀sin2Ω𝑡ሻ𝑞= 𝑚8𝑓𝜀Ωଶsin2Ω𝑡 − 𝑏4𝑓𝜀Ωcos2Ω𝑡 + 𝑚𝜂ΩଶsinሺΩ𝑡 + 𝜑ሻ − 𝑏𝜂ΩcosሺΩ𝑡 + 𝜑ሻ− 𝐾𝜂ሼsinሺΩ𝑡 + 𝜑ሻ−𝜀ሾcosሺΩ𝑡 − 𝜑ሻ − cosሺ3Ω𝑡 + 𝜑ሻሿሽ, (6)

here 𝜑 – is the phase shift angle between the parametric and external disturbances,  𝑓 = 𝑃 𝐾 + 𝐾⁄  – is the average static deflection of the railway track under the static pressure of 
the wheelset on the rails, 𝜂 – is the amplitude of the geometric unevenness on the rails. The first 
two terms on the right side of Eq. (6) are the additive component of the perturbation from the 
longitudinal, uneven elasticity of the track, and the following terms characterize the effect of a 
wave-like perturbation on the wheel pair of the vehicle. According to the methods of mathematics, 
the steady-state solution, if we further neglect the fourth and fifth harmonics, must be sought in 
the form: 𝑞 = 12𝑎 + 𝑎ଵsinΩ𝑡 + 𝑏ଵcosΩ𝑡 + 𝑎ଶsin2Ω𝑡 + 𝑏ଶcos2Ω𝑡 + 𝑎ଷsin3Ω𝑡 + 𝑏ଷcos3Ω𝑡. (7)

Note that here we somewhat simplified the solution of the problem by assuming the exact 
fulfillment of the frequency relation between the driving force and the parametric perturbation 𝜔 = Ω. In reality, this relation is fulfilled approximately, but they differ little from each other, 
which, generally speaking, have little effect on the oscillation amplitudes. Let us differentiate this 
relation twice with respect to time, i.e. find the speed and acceleration of the generalized 
coordinate 𝑞: 

ቐ𝑞ሶ = Ωሺ𝑎ଵcosΩ𝑡 − 𝑏ଵsinΩ𝑡ሻ + 2Ωሺ𝑎ଶcos2Ω𝑡 − 𝑏ଶsin2Ω𝑡ሻ + 3Ωሺ𝑎ଷcos3Ω − 𝑏ଷsin3Ω𝑡ሻ,𝑞ሷ = −Ωଶሺ𝑎ଵsinΩ𝑡 + 𝑏ଵcosΩ𝑡ሻ − 4Ωଶሺ𝑎ଶsin2Ω𝑡 + 𝑏ଶcos2Ω𝑡ሻ      −9Ωଶሺ𝑎ଷsin3Ω + 𝑏ଷcos3Ω𝑡ሻ.  (8)

The standard operations associated with the substitution Eq. (7), Eq. (8) and trigonometric 
transformations lead us to the following system of equations for the oscillation amplitudes: 𝐷�⃗� = 𝐹, (9)

where 𝐷 is a matrix of coefficients that stand at unknown oscillation amplitudes to be determined, 𝐹 is the a vector of free terms. Their expressions are given below, since they are rather 
cumbersome. In addition, from the equation: 12𝐾𝑎 − 𝜀𝐾𝑎ଶ = 0, 
the constant 𝑎 was previously found, which is equal to: 𝑎 = 2𝜀𝑎ଶ. 

It was substituted into the system, which made it possible to reduce its order to 6. We will take 
the phase shift angle φ equal to either 0, or 𝜋/4, or –𝜋/4, which will make it possible to reveal the 
relationship between parametrically excited and forced vibrations of the mechanical system: 

𝐷ሺ𝜀ሻ =
⎝⎜
⎜⎛
𝐾ሺ1 − 𝜀ሻ − 𝑚Ωଶ −𝑏Ω 0 0 0 𝜀𝐾𝑏Ω 𝐾ሺ1 − 𝜀ሻ − 𝑚Ωଶ 0 0 −𝜀𝐾 00 0 𝐾ሺ1 − 2𝜀ଶሻ − 𝑚4Ωଶ −𝑏2Ω 0 00 0 𝑏2Ω 𝐾 −𝑚4Ωଶ 0 0−𝜀𝐾 0 0 0 𝐾 −𝑚9Ωଶ −𝑏3Ω0 𝜀𝐾 0 0 𝑏3Ω 𝐾 −𝑚9Ωଶ⎠⎟

⎟⎞. (10) 
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𝐹ሺ𝜀ሻ =
⎝⎜
⎜⎜⎛
ሾሺ𝑚Ωଶ − 𝐾ሻcos𝜑 − ሺ𝑏Ω − 𝜀𝐾ሻsin𝜑ሿ𝜂ሾሺ𝑚Ωଶ − 𝐾ሻsin𝜑 − ሺ𝑏Ω − 𝜀𝐾ሻcos𝜑ሿ𝜂8𝜀𝑓𝑚Ωଶ−4𝜀𝑓𝑏Ω𝜀𝐾𝜂sin𝜑−𝜀𝐾𝜂cos𝜑 ⎠⎟

⎟⎟⎞. (11)

A careful analysis of Eq. (10) indicates that the even and odd harmonics of solution Eq. (7) are 
not related to each other and, therefore, two problems can be considered separately, one of which 
is described by the following system of equations (this is possible because the considered 
mechanical system is linear): 

൜ሾ𝐾ሺ1 − 2𝜀ଶሻ − 4𝑚Ωଶሿ𝑎ଶ − 2𝑏Ω𝑏ଶ = 8𝜀𝑓𝑚Ωଶ,2𝑏Ω𝑎ଶ + ሺ𝐾 − 4𝑚Ωଶሻ𝑏ଶ = −4𝜀𝑓𝑏Ω,  (12)

and the other one looks like this: 

⎩⎪⎨
⎪⎧ሾ𝐾ሺ1 − 𝜀ሻ − 𝑚Ωଶሿ𝑎ଵ − 𝑏Ω𝑏ଵ + 𝜀𝐾𝑏ଷ = 𝑓ଵ,𝑏Ω𝑎ଵ + ሾ𝐾ሺ1 − 𝜀ሻ − 𝑚Ωଶሿ𝑏ଵ − 𝜀𝐾𝑎ଷ = 𝑓ଶ,−𝜀𝐾𝑎ଵ + ሺ𝐾 − 9𝑚Ωଶሻ𝑎ଷ − 3𝑏Ω𝑏ଷ = 𝑓ଷ,𝜀𝐾𝑏ଵ + ሺ𝐾 − 9𝑚Ωଶሻ𝑏ଷ + 3𝑏Ω𝑎ଷ = 𝑓ସ,  (13)

where we have: 

𝑓 = 𝜂 ⎩⎨
⎧ሺ𝑚Ωଶ − 𝐾ሻcos𝜑 − ሺ𝑏Ω − 𝜀𝐾ሻsin𝜑ଵ,ሺ𝑚Ωଶ − 𝐾ሻsin𝜑 − ሺ𝑏Ω − 𝜀𝐾ሻcos𝜑,𝜀𝐾sin𝜑,−𝜀𝐾cos𝜑.  (14)

 
Fig. 5. Influence of uneven elasticity of the track and locomotive speed  

on the amplitude of the vertical vibrations of the wheelset in mm 

Taking into account the given initial data of the mechanical part of the locomotive and track: 𝑚 = 0,25 ts∙s2/m, 𝑚 = 0,056 ts∙s2/m, 𝑃௦௧ = 23 ts, 𝐾 = 304 ts/m, 𝐾 = 7800 ts/m,  𝐶 = 1 ts∙s/m, 𝐶 = 27,3 ts∙s/m, 𝑓 = 0,00284 m, 𝜂 = 0,0002 m, were the following results are 
obtained, shown in the graphs below. 

Fig. 5 shows a graph of the change in the amplitude of oscillations of the wheelset from the 
uneven elasticity of the track along the length. 
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Fig. 6. Acceleration of the wheelset in fractions of 𝑔 from  

the longitudinal uneven elasticity of the railway track 

The first and third harmonics of the wheelset bouncing due to the action of geometric 
irregularities on the rail tread surface are shown below in Figs. 7 and 8. 

If the parametric perturbation coefficient is equal to 0.4, then the resonant amplitude of the 
wheelset bouncing does not exceed 4 mm, and the resonance develops at a speed close to 15 m/s 
(54 km/h). In the future, the amplitude decreases, but not very significantly [5-6]. 

 
Fig. 7. Amplitude of the first harmonic of the wheelset bouncing due to the effect  

of geometric unevenness on the rail tread surface for three phase shift angles  
between parametric and kinematic disturbances 𝜑 = 0, 𝜑 = 𝜋/4 and 𝜑 = −𝜋/4 in mm 

The acceleration component of the vehicle's wheelset due to the longitudinal unevenness of 
the track is shown in Fig. 3, from which it is quite easy to see that the maximum acceleration can 
reach about 8 g at a vehicle speed of about 100 km/h and 𝜇 = 0.4. Moreover, the acceleration 
increases both with an increase in the speed of the wheelset and with an increase in the coefficient 
of parametric excitation. 

From the analysis of Figs. 7 and 8, it follows, first of all, to draw such an important conclusion 
that the amplitude of the third harmonic oscillations is about 50 % of the first. Since the system 
under consideration is linear, and the perturbation is represented by only one harmonic, the 
appearance of the third harmonic must be attributed to the action of a parametric perturbation [7]. 
The accelerations of the wheelset due to the action of harmonic geometric roughness are given in 
Fig. 9. It increases with increasing vehicle speed, although it is easy to detect resonance, which is 
blurred and develops in the speed range from 20 to 30 m/s and then decreases with increasing 
speed. 
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Fig. 8. Amplitude of the third harmonic of wheelset bouncing due to the effect  
of geometric unevenness on the rail tread surface for three phase shift angles  

between parametric and kinematic disturbances 𝜑 = 0, 𝜑 = 𝜋/4 and 𝜑 = −𝜋/4 in mm 

 
Fig. 9. Acceleration of the wheelset of the vehicle 
from the action of harmonic geometric unevenness  

on the surface of the rails 

 
Fig. 10. Acceleration of the wheelset of the vehicle 
on the third harmonic from the action of geometric 

irregularities on the surface of the rails 

Note that the figure shows only the first harmonic of solution Eq. (7). The results of 
calculations for the third harmonic are given in Fig. 7. The maximum acceleration of the wheelset 
along the third harmonic does not exceed 1.2 g at a speed of 12 m/s. It is also easy to detect 
resonance peaks in this figure [8]. 

Figs. 10-12 show integral graphs of bouncing accelerations of the wheel set of the vehicle from 
the action of all disturbances for three speeds of 10, 20 and 30 m/s, two multiplicative effect 
coefficients 0.2 and 0.4 and two phase shifts between disturbances 45° and –45°. 

Thus, taking into account the longitudinal uneven elasticity of the railway track (at least under 
the sleeper and in the inter sleeper box) allows you to more accurately determine the resonance 
areas, evaluate the decrease or increase in the acceleration level and the amplitudes of bouncing 
of the unsprung mass of the rolling stock, which ultimately affects the forces of influence on the 
track in the vertical plane with all the ensuing consequences [9-10]. 
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Fig. 11. Graph of the bouncing acceleration of the wheelset of the vehicle at a speed of 10 m/s  

for two parametric disturbance coefficients 0.2 and 0.4 and two phase shift angles between  
the effects of 45° and –45° (the abscissa is the movement of the crew along the track in m) 

 
Fig. 12. Graph of the bouncing acceleration of the wheelset of the vehicle at a speed of 20 m/s  
for two coefficients of parametric perturbation 0.2 and 0.4 and two phase shift angles between  
the effects of 45° and –45° (the abscissa is the movement of the vehicle along the path in m) 

 
Fig. 13. Graph of the bouncing acceleration of the wheelset of the vehicle at a speed of 30 m/s  
for two coefficients of parametric perturbation 0.2 and 0.4 and two phase shift angles between  
the effects of 45° and –45° (the abscissa is the movement of the vehicle along the path in m) 

Finally, we present the main and second parametric resonance zones as a function of speed 
(km/h) of the parametric disturbance coefficient 𝜇, which are shown in Fig. 14. They are both in 
the operating speed range of modern trains [11]. 
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Fig. 14. The main and second areas of dynamic instability of the wheel set of the vehicle 

2. Conclusions 

From the foregoing, the following conclusions can be drawn: 
First, the parametric system in some sense resembles in its behavior a nonlinear system. 
Secondly, the phase shift angle between the disturbances plays a significant role, because it 

either increases or decreases the amplitude of the wheelset bouncing oscillations. 
Thirdly, the fundamental harmonic resonates at speeds from 10 to 27 m/s (from 36 km/h to 

97.2 km/h), and the third harmonic resonates around 10 m/s (36 km/h). 
Fourthly, the maximum amplitude of the bouncing of the wheelset from the longitudinal non-

uniformity of the track is an order of magnitude higher than the same indicator from the 
geometrical roughness on the rail tread surface. Therefore, the uneven elasticity of the track must 
be taken into account in the calculation schemes of the rolling stock and their mathematical 
models. To combat resonant phenomena, the following methods can be applied: changing the 
parameters of the oscillatory system in order to divert the resonant frequency to the zone of non-
operational modes and damping oscillations, which makes it possible to reduce the amplitude of 
oscillations of the resonant peak. 
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