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Abstract. Necessary and sufficient conditions for the existence of dissipative electron-acoustic 
solitons in a cold electron beam plasma with superthermal trapped electrons described by the 
Schamel equation are derived in this paper. Soliton solutions to the Schamel equation are 
constructed using formal analytical techniques which yield counter-intuitive conditions for the 
existence of these solutions. The existence conditions are derived in terms of system parameters 
and initial conditions. Computational experiments are used to validate the obtained results. 
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1. Introduction 

Dissipative electron-acoustic solitary waves (EASWs) in a cold electron beam plasma with 
superthermal trapped electrons are investigated in [1]. It is shown in [1] that EASWs can be 
described by the Shamel equation [2]: Φଵ𝜏 ൅ 𝜈௖బ2 Φଵ ൅ 𝐴ඥΦଵΦଵ𝜉 ൅ 𝐵ሾ3ሿΦଵ𝜉 ൌ 0, (1)

where Φଵ is the linearized electrostatic potential; 𝜈௖బ is the cold electron-neutral collision 
frequency; 𝜏 and 𝜉 are time and spatial coordinates; 𝐴 and 𝐵 are system parameters representing 
properties of the normalized electron plasma. Eq. (1) shows stronger nonlinearity (due to the ඥΦଵ 
term) as compared to the paradigmatic KdV equation. 

Eq. (1) is reduced to: Φଵ𝜏 ൅ 𝐴ඥΦଵΦଵ𝜉 ൅ 𝐵ሾ3ሿΦଵ𝜉 ൌ 0. (2)

In [1] by assuming the absence of the collision term ሺ𝜈௖బ ൌ 0ሻ. It is shown in [1] that using the 
boundary conditions Φଵ → 0 and Φଵ𝜉 → 0 at 𝜉 → േ∞, Eq. (2) produces EASWs through the 
following solution: 

Φଵ ൌ Φ௠sechସ ൬𝜉 − 𝑢଴𝜏Δ ൰, (3)

where 𝑢଴ is the propagation speed of the EASW; Φ௠ ൌ ሺ15𝑢଴/8𝐴ሻଶ is the maximum amplitude 
and Δ ൌ ඥ16𝐵/𝑢଴ is the width of the EASW. 

The main objective of this paper is to demonstrate that the solitary wave described by Eq. (3) 
does not satisfy Eq. (2) for all values of parameters 𝐴 and 𝐵, and for all initial (and boundary) 
conditions. 

https://crossmark.crossref.org/dialog/?doi=10.21595/mme.2022.23115&domain=pdf&date_stamp=2022-12-27
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2. Preliminaries 

2.1. Transformation of the Schamel equation 

Eq. (2) can be transformed into an ordinary differential equation (ODE) by the wave variable 
substitution 𝑥 = 𝜉 − 𝑐𝜏: −𝑦′𝑐 + 𝐴ඥ𝑦𝑦′ + 𝐵𝑦′′′ = 0, (4)

where 𝑦(𝑥) = 𝑦(𝜉 − 𝑐𝜏) = Φଵ(𝜉, 𝜏). Integrating Eq. (4) and renaming the parameters yields: 𝑦ᇱᇱ = 𝑏ଷ𝑦ඥ𝑦 + 𝑏ଶ𝑦 + 𝑏଴,    𝑦(𝑥଴) = 𝑢,𝑦′௫ୀ௫బ = 𝑣. (5)

2.2. Extended and narrowed differential equations 

The concept of extended and narrowed differential equations is utilized to construct soliton 
solutions to Eq. (5) in this paper (this concept is discussed in detail in [3]). A short synopsis is 
presented below. Let us consider the following first-order ODE: 𝑧ᇱ = 𝑓(𝑥, 𝑧),    𝑧 = 𝑧(𝑥),    𝑧(𝑐) = 𝑠. (6)

Differentiation of Eq. (7) with respect to 𝑥 yields: 𝑧′′ = 𝑓𝑥 + 𝑓𝑧𝑧′ = 𝑓𝑥 + 𝑓𝑧𝑓(𝑥, 𝑧) = 𝐹(𝑥, 𝑧). (7)

Renaming the function 𝑧 to 𝑦 in Eq. (7) yields a second order ODE: 𝑦ᇱᇱ = 𝐹(𝑥,𝑦),    𝑦 = 𝑦(𝑥),    𝑦(𝑐) = 𝑢,   𝑦(𝑥)௫ୀ௖ = 𝑣. (8)

It is proven in [3] that the solution to Eq. (8) coincides with the solution of Eq. (6) if and only 
if the initial condition satisfies the following constraint: 𝑣 = 𝑓(𝑐, 𝑠). (9)

Eq. (6) and (8) are referred to as the narrowed and extended equations respectively. 
In this paper, an extension of this technique is applied: the soliton solution of the narrowed 

equation is squared and differentiated – what yields the Schamel equation discussed in [1]. Then 
the condition analogous to Eq. (9) represents the existence condition for soliton solutions. 

3. Soliton solution to the Schamel equation 

Consider the following differential equation: (𝑧ᇱ)మ = 𝛼ଶ(𝑧 − 𝑧ଵ)(𝑧 − 𝑧ଶ)(𝑧 − 𝑧ଷ),    𝛼 ∈ ℝ,    𝑧ଵ, 𝑧ଶ, 𝑧ଷ ∈ ℂ. (10)

Denoting 𝑦 = 𝜎ଶ𝑧ଶ and differentiating Eq. (10) yields: 𝑦ᇱᇱ = 𝑏ଷ𝑦ඥ𝑦 + 𝑏ଶ𝑦 + 𝑏ଵඥ𝑦 + 𝑏଴,    𝑦(𝑥଴) = 𝑢,𝑦′௫ୀ௫బ = 𝑣. (11)

Eq. (11) can be rewritten in respect to 𝑧 in the following form: (𝜎ଶ𝑧ଶ)′′ = 𝑏ଷ𝜎ଷ𝑧ଷ + 𝑏ଶ𝜎ଶ𝑧ଶ + 𝑏ଵ𝜎𝑧 + 𝑏଴. (12)
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Combining Eqs. (10) and (12) results in the following polynomial: 

2𝜎ଶ𝛼ଶ ቆ(𝑧 − 𝑧ଵ)(𝑧 − 𝑧ଶ)(𝑧 − 𝑧ଷ)+ 12 𝑧൫(𝑧 − 𝑧ଶ)(𝑧 − 𝑧ଷ) +(𝑧 − 𝑧ଵ)(𝑧 − 𝑧ଷ) + (𝑧 − 𝑧ଵ)(𝑧 − 𝑧ଶ)൯ቁ       = 𝑏ଷ𝜎ଷ𝑧ଷ + 𝑏ଶ𝜎ଶ𝑧ଶ + 𝑏ଵ𝜎𝑧 + 𝑏଴. (13)

The values of 𝑏଴, … , 𝑏ଷ for which Eq. (11) is the extension of Eq. (10) are determined from 
Eq. (13): 𝑏଴ = −2𝛼ଶ𝜎ଶ𝑧ଵ𝑧ଶ𝑧ଷ, (14)𝑏ଵ = 3𝛼ଶ𝜎(𝑧ଵ𝑧ଶ + 𝑧ଵ𝑧ଷ + 𝑧ଶ𝑧ଷ), (15)𝑏ଶ = −4𝛼ଶ(𝑧ଵ + 𝑧ଶ + 𝑧ଷ), (16)𝑏ଷ = 5𝛼ଶ 1𝜎. (17)

As observed in [4], the solution to Eq. (10) satisfies Eq. (11) if and only if the initial conditions 
satisfy the following constraint: 

𝑣 = ± 2√𝜎 𝛼√𝑢ට൫±√𝑢 − 𝜎𝑧ଵ൯൫±√𝑢 − 𝜎𝑧ଶ൯൫±√𝑢 − 𝜎𝑧ଷ൯. (18)

Note that 𝑏ଵ = 0 for the Schamel equation. Then special cases of Eq. (11) must be considered, 
because it follows from Eq. (15) that the parameters of Eq. (10) must satisfy the following relation: 𝑧ଵ𝑧ଶ + 𝑧ଵ𝑧ଷ + 𝑧ଶ𝑧ଷ = 0. (19)

3.1. Existence conditions for soliton solution to the Schamel equation 

Following the assumptions in [1] we set 𝑧ଵ = 𝑧ଶ = 0. Without loss of generality let us assume 
that 𝑧ଷ = −𝛽, 𝛽 > 0. Then, Eq. (19) is satisfied and the equation with respect to 𝑧 reads: 𝑧ᇱ = ±𝛼𝑧ඥ𝑧 + 𝛽,    𝑧 = 𝑧(𝑥),    𝛼,𝛽 > 0, (20)

with the initial condition 𝑧(𝑥଴) = 𝑠. Also, note that in this case 𝑏଴ = 0 and 𝑏ଶ,𝑏ଷ read: 

𝑏ଶ = 4𝛽𝛼ଶ,    𝑏ଷ = 5𝛼ଶ𝜎 . (21)

As shown in [4] (Eqs. (49) and (61) in [4]) equation Eq. (20) admits the following soliton 
solution: 

𝑧 = 4𝑠𝛽exp൫±𝛼ඥ𝛽(𝑥 − 𝑥଴)൯ቀ൫ඥ𝑠 + 𝛽 + ඥ𝛽൯ − ൫ඥ𝑠 + 𝛽 − ඥ𝛽൯exp൫±𝛼ඥ𝛽(𝑥 − 𝑥଴)൯ቁଶ. (22)

Note that Eq. (22) is equivalent to: 

𝑧 = 𝛽sechଶ ቆarctanhቆඥ𝑠 + 𝛽ඥ𝛽 ቇ ± 12 (𝑥଴ − 𝑥)𝛼ඥ𝛽ቇ. (23)
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The function: 

𝑦 = 𝜎ଶ𝑧ଶ = 𝜎ଶ𝛽ଶsechସ ⎝⎛arctanh⎝⎛
ට√𝑢𝜎 + 𝛽ඥ𝛽 ⎠⎞ ± 12 (𝑥଴ − 𝑥)𝛼ඥ𝛽⎠⎞, (24)

is a solution to Eq. (5) if its initial conditions do satisfy 𝑣 = ±2𝛼𝑢ට𝛽 + √௨ఙ . Note that Eq. (24) is 
a soliton solution and takes the same form as Eq. (3). 

4. Computational experiments 

It can be seen from Eq. (22) that soliton solution Eq. (24) to Eq. (5) has a singularity if 𝑏ଷ > 0. 
Further, only the soliton solution without singularity is considered. 

Let us consider the following partial differential equation, as described in [1]: Φଵ𝜏 − 32ඥΦଵΦଵ𝜉 − [3]Φଵ𝜉 = 0. (25)

Selecting the substitution 𝑥 = 𝜉 + 2𝜏 and denoting 𝑦(𝑥) = 𝑦(𝜉 + 2𝜏) = Φଵ(𝜉, 𝜏) results in 
the following third-order ODE: 2𝑦′ − 32ඥ𝑦𝑦′ − 𝑦′′′ = 0. (26)

Integrating Eq. (26) with respect to 𝑥 yields: 𝑦ᇱᇱ = −𝑦ඥ𝑦 + 2𝑦,    𝑦(𝑥଴) = 𝑢,    𝑦′௫ୀ௫బ = 𝑣. (27)

Note that if 𝐴 = −ଷଶ, 𝐵 = −1, 𝑐 = −2 then Eq. (27) coincides with Eq. (4). 
As follows from the previous subsection 3.1 (Eqs. (24)), (27) admits the following soliton 

solution: 

𝑦 = 𝑦(𝑥, 𝑥଴,𝑢,𝑣) = 254 sechସ ⎝⎛arctanh⎝⎛
ට−√𝑢5 + 12ට12 ⎠⎞ ± 12 (𝑥଴ − 𝑥)ඨ12⎠⎞, (28)

if and only if initial conditions 𝑢, 𝑣 of Eq. (27) do satisfy the following constraint: 

𝑣 = ±2𝑢ඨ12 − √𝑢5 . (29)

Soliton solution Eq. (28) is depicted in Fig. 1. 
Returning to the original PDE (25), the soliton solution reads: 

Φଵ = Φଵ(𝜉, 𝜏, 𝑥଴,𝑢) = 254 sechସ ⎝⎛arctanh⎝⎛
ට−√𝑢5 + 12ට12 ⎠⎞ ± 12 (𝑥଴ − 𝑥𝑖 − 2𝜏)ඨ12⎠⎞. (30)
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Fig. 1. Soliton solution Eqs. (28) to (27) for 𝑢 = ଵଵ଴, 𝑣 = ට ଵହ଴ − √ଵ଴ଵଶହ଴ 

This solution is depicted in Fig. 2. 

 

Fig. 2. Soliton solution Eqs. (30) to (25) for 𝑢 = ଵଵ଴, 𝑣 = ට ଵହ଴ − √ଵ଴ଵଶହ଴ 

Constraint Eq. (29), ensuring that the solution to Eq. (27) has soliton form Eq. (28), can be 
illustrated via numerical integration. The error between analytical soliton solution Eq. (28) and 
the approximate solution to Eq. (27) (denoted as 𝑦ො(𝑥, 𝑥଴,𝑢, 𝑣)) is estimated using a constant-step, 
time-forward integrator as follows: 

Δ(𝑥଴,𝑢, 𝑣) = ඩ෍ே௞ୀଵ (𝑦ො(𝑥଴ + 𝑘ℎ, 𝑥଴,𝑢, 𝑣) − 𝑦(𝑥଴ + 𝑘ℎ, 𝑥଴,𝑢, 𝑣))ଶ, (31)

where ℎ denotes the integration step-size; 𝑁 is the number of integration steps. If soliton solution 
Eq. (28) to Eq. (27) would hold for all initial conditions (𝑥଴,𝑢, 𝑣), then the error Δ(𝑥଴,𝑢, 𝑣) would 
be zero for any (𝑥଴,𝑢, 𝑣). However, Figs. 3, 4 demonstrate that this is not the case since the errors 
are close to zero only on the curve defined by Eq. (29). 
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Fig. 3. The surface plot of the error Δ = Δ(𝑥଴,𝑢, 𝑣) between Eq. (28) and the numerical solution  
to Eq. (27) for 0 ൑ 𝑢 ൑ 6.5, −10 ൑ 𝑣 ൑ 10. The error is evaluated using the step-size ℎ = 0.01  

and 𝑁 = 100 time-forward steps. Errors higher than 5 are truncated to 5 for clarity.  
Note that the error is close to zero only on the curve defined by Eq. (29) 

 
a) 

 
b) 

 
c) 

Fig. 4. Black line in part (a) depicts the constraint Eq. (29), gray circle and gray diamond correspond  
to initial conditions (𝑢, 𝑣) used in parts (b) and (c) respectively. Gray line in parts (b) and (c) displays  

an approximate solution to Eq. (27) (𝑦ො = 𝑦ො(𝑥, 𝑥଴,𝑢, 𝑣)), black line - analytical soliton solution Eq. (28) 
(𝑦 = 𝑦(𝑥, 𝑥଴,𝑢,𝑣)). It can be seen (part (b)) that approximate solution 𝑦ො and 𝑦 coincide if initial  
condition (𝑢, 𝑣) lies on the curve defined by Eq. (29). Otherwise, 𝑦ො and 𝑦 are different (part (c)) 

5. Conclusions 

Soliton solutions to Schamel equation considered in [1] are constructed using the concept of 
narrowed and extended differential equations. Necessary and sufficient conditions for the 
existence of these solutions have been derived in the space of equation parameters and initial 
conditions. 
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