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Abstract. The dynamics of a model of neural networks is studied. It is shown that the dynamical 
model of a three-dimensional neural network can have several attractors. These attractors can be 
in the form of stable equilibria and stable limit cycles. In particular, the model in question can 
have two three-dimensional limit cycles. 
Keywords: neural networks, mathematical modeling, attractors. 

1. Introduction 

The theory of neural networks appeared as an attempt to understand the structure and principles 
of the functioning of the human brain. Now it is rich in results and practically significant field of 
research in natural sciences. Artificial neural networks (ANN) can be understood as computing 
systems inspired by biological neural networks. Their mathematical models can be formulated in 
terms of systems of quasi-linear differential equations of the form Eq. (1). Each dependent variable 𝑥௜ is associated with a neuron. It accepts signals from other neurons (this is called input) and 
elaborates its own signal (it is called output) which is sent to a network. The nonlinearity is called 
the response function, or activation function. Usually, a sigmoidal function like  𝑓ሺ𝑧ሻ ൌ 1/ሺ1 ൅ expሺ−𝑧ሻሻ or tanhሺ𝑧ሻ is used. Recent attempts to introduce other response 
functions may be found in [6]-[9]. The system: 

⎩⎪⎪⎨
⎪⎪⎧ 𝑑𝑥ଵ𝑑𝑡 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅⋯൅ 𝑎ଵ௡𝑥௡ሻ − 𝑏ଵ𝑥ଵ,𝑑𝑥ଶ𝑑𝑡 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅⋯൅ 𝑎ଶ௡𝑥௡ሻ − 𝑏ଶ𝑥ଶ,…                                                                         𝑑𝑥௡𝑑𝑡 ൌ tanhሺ𝑎௡ଵ𝑥ଵ ൅⋯൅ 𝑎௡௡𝑥௡ሻ − 𝑏௡𝑥௡.

 (1)

Appears in neurodynamics [1], [2]. It is of general nature, and for appropriate choice of 
parameters 𝑎௜ and 𝑏௝ it may have rich dynamics. Moreover, for sufficiently large 𝑛 it can 
approximate (on a finite interval) any dynamical system [3]. The dynamics of solutions is a 
valuable object of investigation. Especially future states of a modeled neural networks are 
important to know. For this, the analysis of the phase space is needed. Future states are heavily 
dependent on attractors of the system, [4], [5]. In this note we will show that the three-dimensional 
system of the form Eq. (1) can have stable equilibria in the form of stable focuses. For the 
appropriate choice of parameters, it can have limit cycles attracting other solutions.  

2. Two-dimensional system 

Consider the system: 
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൞𝑑𝑥ଵ𝑑𝑡 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅ 𝑎ଵଶ𝑥ଶሻ − 𝑏ଵ𝑥ଵ,𝑑𝑥ଶ𝑑𝑡 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅ 𝑎ଶଶ𝑥ଶሻ − 𝑏ଶ𝑥ଶ. (2)

Proposition 1. System Eq. (2) can have stable critical points of the type stable focus. 
Proof by construction the example. Set 𝑎ଵଵ ൌ 𝑘, 𝑎ଵଶ ൌ 1.5, 𝑎ଶଵ ൌ –1.5, 𝑎ଶଶ ൌ 𝑘, 𝑘 ൌ 0.2, 𝑏ଵ ൌ 𝑏ଶ ൌ 1, see Fig. 1. 
Proposition 2. System Eq. (2) can have a limit cycle.  
Proof by constructing the example. Set 𝑎ଵଵ ൌ 𝑘, 𝑎ଵଶ ൌ 1.5, 𝑎ଶଵ ൌ –1.5, 𝑎ଶଶ ൌ 𝑘, 𝑘 ൌ 1.2, 𝑏ଵ ൌ 𝑏ଶ ൌ 1, see Fig. 2. 

 
Fig. 1. Stable focus as in Proposition 1 

 
Fig. 2. Limit cycle as in Proposition 2 

3. Three-dimensional system 

Consider the three-dimensional system of the form Eq. (1): 

⎩⎪⎨
⎪⎧𝑑𝑥ଵ𝑑𝑡 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅ 𝑎ଵଶ𝑥ଶ ൅ 𝑎ଵଷ𝑥ଷሻ − 𝑏ଵ𝑥ଵ,𝑑𝑥ଶ𝑑𝑡 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅ 𝑎ଶଶ𝑥ଶ ൅ 𝑎ଶଷ𝑥ଷሻ − 𝑏ଶ𝑥ଶ,𝑑𝑥ଷ𝑑𝑡 ൌ tanhሺ𝑎ଷଵ𝑥ଵ ൅ 𝑎ଷଶ𝑥ଶ ൅ 𝑎ଷଷ𝑥ଷሻ − 𝑏ଷ𝑥ଷ. (3)

Proposition 3. System Eq. (3) can have three limit cycles. 
Proof by construction the example. Let the coefficient matrix in Eq. (3) be: 

𝐴 ൌ ൭ 1.2 1.5 0−1.5 1.2 00 0 1.2൱ ,     𝑏ଵ ൌ 𝑏ଶ ൌ 𝑏ଷ ൌ 1, 
and see Fig. 4. 

The nullclines for the system Eq. (3) are given by the relations: 

ቐ0 ൌ tanhሺ𝑎ଵଵ𝑥ଵ ൅ 𝑎ଵଶ𝑥ଶ ൅ 𝑎ଵଷ𝑥ଷሻ − 𝑏ଵ𝑥ଵ,0 ൌ tanhሺ𝑎ଶଵ𝑥ଵ ൅ 𝑎ଶଶ𝑥ଶ ൅ 𝑎ଶଷ𝑥ଷሻ − 𝑏ଶ𝑥ଶ,0 ൌ tanhሺ𝑎ଷଵ𝑥ଵ ൅ 𝑎ଷଶ𝑥ଶ ൅ 𝑎ଷଷ𝑥ଷሻ − 𝑏ଷ𝑥ଷ. (4)

There are three periodic solutions. The respective trajectories are located in three planes (blue 



ON A THREE-DIMENSIONAL NEURAL NETWORK MODEL.  
DIANA OGORELOVA, FELIX SADYRBAEV 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479 71 

ones in Fig. 3). The critical points inside the limit cycles have the following characteristic 
numbers: 𝜆ଵ = –0.32, 𝜆ଶ,ଷ = 0.2±1.5i for the critical points at (0; 0; ±0.65857). The central critical 
point (0;0;0) has 𝜆ଵ = 0.2, 𝜆ଶ,ଷ = 0.2 ±1.5i. Trajectories go away from the central critical point. 

 
Fig. 3. Nullclines of the system Eq. (3),  

matrix 𝐴 

 
Fig. 4. Three periodic trajectories  

of the system Eq. (3) 

4. Perturbation of three-dimensional system 

Let the coefficients of the system Eq. (3) be perturbed as: 

𝐴ଵ = ൭ 1.2 1.5 0.1−1.5 1.2 −0.1−0.2 −0.2 1.2 ൱. (5)

 

 
Fig. 5. Nullclines of the system Eq. (3) with the 

coefficient matrix 𝐴ଵ  

 
Fig. 6. Two periodic attractors of the system Eq. (3), 

coefficient matrix 𝐴ଵ, and converging some other 
trajectories. The middle limit cycles are destroyed 

There are still three critical points at (–0.051; –0.039;0.68723), (0; 0; 0), (0.051; 0.039;  
–0.68723). Their characteristic numbers are: 𝜆ଵ = –0.3543, 𝜆ଶ,ଷ = 0.19±1.4946i for the first and 
the third critical points, and 𝜆ଵ = 0.2266, 𝜆ଶ,ଷ = 0.1866±1.5i for the central point. 

Let the coefficients of the system Eq. (3) be perturbed as: 

𝐴ଶ = ൭ 1.2 1.5 1.3−1.5 1.2 −0.1−0.4 −0.1 1.2 ൱. (6)
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There are still three critical points at (0.0527; 0.6533; –0.76188), (0;0;0), (–0.0527; –0.6533; 
0.76188). Their characteristic numbers are: 𝜆ଵ = –0.4434, 𝜆ଶ,ଷ = 0.089±1.1882i for the first and 
the third critical points, and 𝜆ଵ = 0.2921, 𝜆ଶ,ଷ = 0.1539±1.6632™ for the central point.  

 
Fig. 7. Nullclines of the system Eq. (3) with the 

coefficient matrix 𝐴ଶ 

 
Fig. 8. Two periodic attractors of the system Eq. (3), 

coefficient matrix 𝐴ଶ, and converging trajectories 

5. Conclusions 

Dynamical systems, arising in neurodynamic, can have periodic attractors in the form of the 
limit cycles. Periodic attractors in two-dimensional systems appear as the result of Andronov-Hopf 
bifurcation, where the bifurcating parameter is the value at the main diagonal of the coefficients 
matrix 𝐴. Three-dimensional systems can have two attractors in the form of limit cycles. Small 
perturbation of the coefficient matrix 𝐴 can destroy limit cycles lying in a non-stable manifold 
(that is, in the middle plane in the example above). It seems that two side attractors (which were 
in stable manifolds) are preserved under the perturbations saving the types of the corresponding 
critical points. For practical purposes, special attention should be paid to perturbations that 
preserve the structure of the nullclines and, as a consequence, characteristics of equilibria (critical 
points). 
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