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Abstract. The Paper is devoted to the construction and study of a mathematical model of plate 
vibrations in the incoming flow of the medium. A system with two degrees of freedom was 
investigated. Within the framework of the proposed mathematical model, stable modes of plate 
vibrations are obtained, in which the horizontal aerodynamic force acting on the plate is directed 
against the incoming flow. In this case, the angle between the velocity vector of the pressure center 
of the plate and the plate itself is almost constant. 
Keywords: fluctuations, pulling force, system with two degrees of freedom, aerodynamic forces, 
plate in free stream. 

Nomenclature 𝑥0 𝑦 Motionless system coordinates 𝜏0𝜉 Moving coordinate system 𝑐 Spring stiffness factor of statistical, mathematical, computational, or other formal techniques to 
analyze or synthesize study data. 𝑘 Torsion spring stiffness coefficient 𝑦 Linear coordinate 𝜑 Angular coordinate 𝑆 Aerodynamic drag force 𝑃 Aerodynamic lifting force 𝜌 Air density 𝜎 Plate area 𝛼 Angle of attack between the vector 𝑉⃗ (velocity of the pressure point) and the plate 𝑐 𝛼  Dimensionless aerodynamic drag coefficient 𝑐 𝛼  Dimensionless aerodynamic lift coefficient 𝑉 Air flow rate 𝜑 Angular velocity of the plate 𝑦 Velocity of the center of mass of the “plate-frame” system 𝑙  Distance between the center of mass of the “plate-frame” system to the center of mass of the 
plate 𝜀 𝛼  Distance between the center of gravity of the plate and its center of pressure 𝜀  Accepted value 𝜀 𝛼  (const) 𝑇 Kinetic energy 𝑚 Plate weight 𝑄 , 𝑄  The generalized forces along the corresponding coordinates 𝐼  Moment of inertia of the “plate-frame” system relative to its center of mass 𝑉  Velocity of point A of the plate 𝑄 Projection of aerodynamic forces on the 𝑥-axis 𝑝 , 𝑝  Natural frequencies of the “plate-frame” system 
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1. Introduction 

It is known that the drag forces of vehicles are proportional to the square of their speed. For 
modern vehicles, due to their high speeds, this problem is quite acute. In this paper, an attempt is 
made to obtain the pulling force of an oscillating plate directed against motion. Then, for cars in 
the future, it is possible to create such systems with oscillating plates that will repeatedly reduce 
the resistance forces depending on the speed of movement. Research in this direction may prove 
promising for the transport industry, which may arouse the interest of oilmen. 

In the article [1] it is shown that for a plate moving with translational velocity and oscillating 
according to some periodic law, there are modes in which the horizontal aerodynamic force 
applied to the plate pulls it forward. In this paper, the approach used in the works of 
V. A. Samsonov and D. V. Belyakov is adopted. Work [2] is devoted to the development of a 
mathematical model of self-oscillation of a plate in an air stream. Work [3] is devoted to the 
development of a mathematical model of the self-oscillations of an aerodynamic pendulum in the 
flow of the medium. As a model of the effect of the flow on the pendulum, a model of quasi-static 
flow around the plate by the medium is adopted. According to this hypothesis, the aerodynamic 
forces acting on the body are applied at the center of pressure. In the problem under consideration, 
the pressure center is movable relative to the plate. In [4], the equations of motion of a body in a 
medium flow and kinematic relations linking phase coordinates with the angle of attack are 
derived. The solution of the equilibrium equations is carried out and it is shown that the only 
equilibrium position is the state of rest. It is shown that as a result of interaction with the medium, 
the body in question can oscillate with increasing amplitude (flutter) in the flow of the medium. 
The paper [5] shows a violation of uniqueness in determining the angle of attack of an 
aerodynamic pendulum in a medium flow. A study of the stability of the equilibrium position 
corresponding to the state of rest, in which the Hurwitz criterion is implemented and the stability 
region is depicted, is carried out. It is shown that the forces of aerodynamic action for bodies with 
some shapes can contribute to the development of self-oscillations, and for others to attenuation. 
Work [6] and the study [7] are devoted to the construction and study of a mathematical model of 
the motion of an autorotating body of complex configuration in a gravitational field. Research is 
based on working with large databases. In [8], a systematic presentation of the problem of the 
motion of a material point and a solid body in a resisting medium is given. A consistent 
complication of the problem statement is carried out both with the enrichment of the 
environmental impact model and with an increase in the order of the dynamic system (from the 
first to the fourth). In [9], a qualitative analysis of the motion of a solid body in a resisting medium 
was carried out. In [10], a program is proposed that allows numerical studies of the stability of the 
rest state for the studied model of self-oscillations of the aerodynamic profile in the flow of the 
medium. The work [11] is devoted to the development of a mathematical model of a body of 
complex configuration that performs self-oscillations in the flow of a quasi-static medium under 
the action of aerodynamic forces. A violation of uniqueness in determining the angle of attack in 
some positions of the body has been established. 

In the proposed work, the “plate-frame” system with two degrees of freedom is considered: it 
can rotate around the center of mass, which moves in a straight line. The restoring force and the 
restoring moment are directly proportional to the movements. The aerodynamic forces applied to 
the body are assumed in accordance with the empirical theory of stationary flow around a flat 
plate. It is assumed that the pressure center of the plate is movable and is located at some point A, 
the position of which is determined by the dependence of the distance to it from the center of mass 
of the plate, which is determined by blowing rectangular plates in the wind tunnel [12] and 
depends on the angle between the velocity of point A and the plate itself. The aerodynamic forces 
acting on the plate are decomposed into two components: the drag force directed against the 
velocity of point A relative to the flow of the medium, and the lifting force directed orthogonally 
to it. 

In this article, for the first time, stable modes of plate oscillations with two degrees of freedom 
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are numerically obtained, at which there is a pulling force directed against the flow of the medium, 
which was predicted by M.V. Keldysh. and Lavrentiev M. A. in the 40 s of the last century. The 
results obtained can be very useful for vehicles, since additional power is required to decreasing 
of aerodynamic drag forces for various types of vehicles, such as truck, airplane, train, ships and 
so on. It can lead to significant fuel economy. 

2. Formulation of the problem  

Fig. 1 shows plate 1 in a fluid (air) flow with the center of mass at point 𝐺. It is rigidly 
connected to the frame 2. The center of mass of the "plate-frame" system due to the counterweight 
3 (point 𝐵) is at point 𝐶 (0). This point is connected to the fixed base by linear springs 4 and can 
move in a straight line. In addition, at this point the plate is connected to the torsion spring 5. A 
fixed coordinate system 𝑥0 𝑦 is used. A moving coordinate system 𝜏0𝜉 is rigidly connected to 
the plate. The plate at rest is in equilibrium and is oriented towards the flow. The restoring force 
and the restoring moment of springs 4 and 5 are directly proportional to the corresponding 
deviations: 𝑅 = −𝑐 ∙ 𝑦, 𝑀 = −𝑘 ∙ 𝜑. 

The material of the plate is not important in this study, the plate is taken rigid and thin. 
Elongation, the ratio of the width of the plate to its length is assumed to be 8. The geometric 
dimensions of the plate are given in [12]. Self-oscillations of a plate with large amplitudes arising 
in a stationary air flow are investigated. 

More detailed symbols and abbreviations are presented in the nomenclature. 

 
a) Front view 

 
b) Top view 

Fig. 1. A plate in a medium flow with two degrees of freedom: 
1 – plate; 2 – frame; 3 – counterweight; 4 – linear springs; 5 – torsion spring 

Fixed coordinate system 𝑥0 𝑦 and a movable coordinate system 𝜏𝐴𝜉, rigidly connected to the 
plate is introduced. In the resting position, the plate is in equilibrium and oriented towards the 
flow. Gravity forces are directed perpendicular to the drawing. The restoring force and the 
returning moment of springs 4 and 5 are directly proportional to the corresponding deviations: 𝑅 = −𝑐𝑦; 𝑀 = −𝑘𝜑. 

The values of aerodynamic forces 𝑆 and �⃗� acting at point 𝐴 are equal to: 𝑆 = 0.5𝜌𝜎𝑐 𝛼 𝑉 , (1)�⃗� = 0.5𝜌𝜎𝑐 𝛼 𝑉 , 
where 𝜌 = 1,225 kg/m3 is the air density; 𝜎 is the plate area; 𝛼 – angle of attack between the vector 𝑉⃗ and the plate; 𝑉  is the velocity of point 𝐴 of the plate; 𝑐 (𝛼), 𝑐 (𝛼) – dimensionless 
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aerodynamic functions (Fig. 1(a)). 
Velocity of point 𝐴: 𝑉 = 𝑉 𝑉 . 
Projection of the velocity vector to 𝑥-axis: 𝑉 = 𝑉 − 𝜑(ℓ 𝜀 )sin 𝜑 . 
Projection of the velocity vector to 𝑦-axis: 𝑉 = 𝑦 − 𝜑(ℓ 𝜀 )cos 𝜑 . 
The form of aerodynamic functions for different shapes of plates is given in [12]. The schemes 

in cases of Fig. 2(a) and Fig. 2(b) show such dependences for a plate with elongation. These 
dependences are approximated in the first order by the analytical functions (case Fig. 2(c) and 
Fig. 2(d)). 

 
a) Case “A” 

 
b) Case “B” 

 
a) Case “C” 

 
b) Case “D” 

Fig. 2. Dimensionless aerodynamic functions 𝑐 (𝛼) and 𝑐 (𝛼) 

The velocity of point 𝐴 is determined as the sum of three vectors (Fig. 1(a)): 𝑉⃗ = �⃗� 𝑉 𝜑𝐴0⃗, (2)

where 𝑦 is the velocity of point 0; V is the air flow rate; 𝜑 is the angular velocity of the plate; 𝐴0 = 0𝐺 𝐺𝐴.  
Let 0𝐺 = ℓ  be the distance between the center of mass of the “plate-frame” system to the 

center of mass of the plate. 
The pressure center of the plate, point A, is considered to be mobile, and the distance GA is 

described by the dependence 𝜀(𝛼), which is determined from blowing rectangular plates with a 
given elongation in a wind tunnel and is experimental data [12]. To determine the angle 𝛼, we 
determine the tangent of this angle by projecting the components of the vector 𝑉⃗(2) on the axis 𝜉 
and 𝜏. We accept the change in the projection on the 𝜀(𝛼) 𝑥-axis during plate vibrations as 
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insignificant in relation to the value ℓ  and consider that 𝜀(𝛼) ≡ 𝜀 − 𝑐𝑜𝑛𝑠𝑡: 
tg 𝛼 = 𝑉𝑉 = 𝜑(ℓ + 𝜀 ) − 𝑦cos 𝜑 − 𝑉sin[𝜑]𝑉cos[𝜑] − 𝑦sin[𝜑] . (3)

The scheme in Fig. 1 was chosen from the condition of simplifying calculations. With such a 
scheme, to determine the angle 𝛼, a numerical solution of Eq. (3) is not required (if 𝜀  the function 
would be instead 𝜀(𝛼)) and Eq. (4) can be used: 

𝛼 = arctg 𝜑(ℓ + 𝜀 ) − 𝑦cos[𝜑] − 𝑉sin[𝜑]𝑉cos[𝜑] − 𝑦sin[𝜑] . (4)

The system in Fig. 1 has two degrees of freedom. Let us write the Lagrange equation of the 
second kind for the coordinates 𝑦 and 𝜑: 𝑑𝑑𝑡 𝜕𝑇𝜕𝑦 − 𝜕𝑇𝜕𝑦 = 𝑄 , (5)𝑑𝑑𝑡 𝜕𝑇𝜕𝜑 − 𝜕𝑇𝜕𝜑 = 𝑄 , 
where 𝑇 is the kinetic energy; 𝑄 , 𝑄  are the generalized forces in the corresponding 
coordinates. 

The kinetic energy of the system is determined by the following formula: 

𝑇 = 𝑚𝑉2 + 𝐼 𝜑2 , (6)

where 𝑚 is the mass of the plate and the frame (Fig. 1, mass of the springs is neglected); 𝐼  is the 
moment of inertia of the "plate-frame" system relative to its center of mass; 𝑉 = 𝑦 is the velocity 
of the center of mass of the “plate-frame” system. 

To determine the generalized forces 𝑄  and, 𝑄  we equate the corresponding variations 𝛿𝜑 
and to zero 𝛿𝑦. Then: 

𝑄 = 𝑃cos[𝛼 + 𝜑]𝛿𝑦 + 𝑆sin[𝛼 + 𝜑]𝛿𝑦 − 𝑐𝑦𝛿𝑦𝛿𝑦 , 𝑄 = −𝑃cos[𝛼]𝐴0𝛿𝜑 − 𝑆sin[𝛼]𝐴0𝛿𝜑 − 𝑘𝜑𝛿𝜑𝛿𝜑 . 
Finally, we obtain the following differential equations describing the oscillations of the system 

in Fig. 1: 𝑚𝑦 = 𝑃cos[𝛼 + 𝜑] + 𝑆sin[𝛼 + 𝜑] − 𝑐𝑦, (7)𝐼 𝜑 = −𝑃cos[𝛼](ℓ + 𝜀 ) − 𝑆sin[𝛼](ℓ + 𝜀 ) − 𝑘𝜑. 
The initial conditions of Eq. (7) are as follows: At 𝑡 = 0: 𝑦 = 𝜑 = 0; 𝑦 > 0; 𝜑 > 0. 
The system of differential Eq. (7) was solved numerically in the Wolfram Mathematica 

mathematical package. 

3. Oscillation analysis 

We project the aerodynamic forces �⃗� and 𝑆 acting on the plate on the 𝑥-axis (Fig. 1): 
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𝑄 = 𝑃sin[𝛼 + 𝜑] − 𝑆cos[𝛼 + 𝜑]. (1)

Analysis of solutions of differential Eq. (7) showed that there are stable modes of oscillations 
(frequency and amplitude of oscillations do not change with time) of the system in Fig. 1 in which 
the horizontal aerodynamic force 𝑄 is directed against the oncoming flow (Fig. 3 (a)). Due to the 
incommensurability of the magnitude 𝑄 and the magnitudes 𝑦 and 𝜑, the dependencies 1000𝑄 
and 0.01𝑄 are presented in Fig. 3 for clarity. If the flow velocity is 𝑉 = 89 m/s then oscillations 
qualitatively change their form, and the horizontal force 𝑄 becomes negative (Fig. 3(b)). As can 
be seen from Fig. 3(b), the absolute value of force 𝑄 increases by several orders of magnitude. 
For a case Fig. 3(a) the angle 𝛼 according to Eq. (4) is almost equal to 0 (it changes from  
–3∙10-6 to 3∙10-6 rad.). For a case Fig. 3 (b), the angle 𝛼 also remains almost constant with time 
and equals approximately –0.133 rad. 

 
a) Behavior of the system  
in a case of V = 88 m/s 

 
b) Change in behavior of the system  

in a case of V = 89 m/s 
Fig. 3. Dependences of coordinates 𝑦, 𝜑 and horizontal aerodynamic force 𝑄 relative to time:  𝜎 = 0.2 m2; 𝜀 = 0.3 m; 𝑙 = 2 m; 𝑚 = 19.2 kg; 𝐼 = 19,8 kg∙m2;  𝑐 = 3870 N∙m/rad; 𝑘 = 3990 N/m; 𝑦 = 𝜑 = 0; 𝑦 = 1 m/s; 𝜑 = 1 s-1 

With a further increase in the velocity 𝑉, the practically constant angle 𝛼 decreases. For 
example, at 𝑉 = 100 m/s 𝛼 ≈ –0.82 rad. At 𝑉 > 127 m/s the numerical solution of Eq. (7) failed, 
the coordinates 𝑦 and 𝜑 tend to infinity. The nature of this failure is not clear at the moment. 
Additional research on this topic is required. 

The natural frequencies of the “plate-frame” system (Fig. 1) for the case shown in Fig. 3(a) are 
as follows: 𝑝 = 𝑐/𝑚 ≈ 14.1973 s-1; 𝑝 = 𝑘/𝐼 ≈ 14.1956 s-1. At these frequencies, the 
oscillations are steady. When these natural frequencies change, the vibrations of the plate, at which 
there is a “pulling” force directed against the flow, disappear. With certain parameters of the 
system in Fig. 1, resonance is possible (𝑄 < 0 (Fig. 4(a)). Also damped oscillations are possible 
(𝑄 < 0, Fig. 4(b)). 

 
a) Resonance in the system in a case 𝑚 = 5 kg 

 
b) Damped oscillations in the system 𝑚 = 5.5 kg 

Fig. 4. Dependences of coordinates 𝑦, 𝜑 relative to time: 𝜎 = 0.2 m2; 𝜀 = 0.3 m; 𝑙 = 2 m; 𝑉 = 20 m/s; 𝐼 = 5 kg∙m2; 𝑐 = 3870 N∙m/rad; 𝑘 = 3990 N/m; 𝑦 = 𝜑 = 0; 𝑦 = 1 m/s; 𝜑 = 1 s-1 
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4. Conclusions 

In conclusions two main theses can be underlines. 
The first thesis: within the framework of the proposed mathematical model, there are stable 

oscillation modes of the considered system with two degrees of freedom, in which the horizontal 
aerodynamic force acting on the plate is directed against the oncoming flow. 

The second thesis: in the proposed mathematical model resonance and damped oscillations are 
possible. 

The third thesis: there are stable modes of oscillation, in which the angles of attack between 
the velocity vector of the center of pressure of the plate and the plate itself are practically constant. 
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