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Abstract. Using the nonlocal Euler-Bernouli beam model, this paper is carried out to investigate 

the vibrations and instability of a single-walled carbon nanotube (SWCNT) conveying fluid 

subjected to a longitudinal magnetic field. The nanobeam with clamped-clamped boundary 

conditions lies on the Pasternak foundation. Hamilton’s principle is applied to derive the 

fluid-structure interaction (FSI) governing equation and the corresponding boundary conditions. 

In the solution part the differential transformation method (DTM) is used to solve the differential 

equations of motion. The influences of nonlocal parameter, longitudinal magnetic field, Pasternak 

foundation on the critical divergence velocity of the nanotubes is studied. 

Keywords: fluid-conveyed carbon nanotube, longitudinal magnetic field, Pasternak foundation, 

nonlocal parameter, differential transformation method. 

1. Introduction 

Micro and nanotube structural systems are widely used in biomedical applications, nanofiber 

composites, molecular drug delivery, and biosensors [1-2]. Experimental studies and molecular 

dynamics simulations have shown that small-scale effects have a significant impact on the 

properties of nanomaterials, but the classical continuum theory cannot accurately describe the 

mechanical behavior of such small-scale structures due to the lack of scale dependence, so a large 

number of continuum theories reflecting scale dependence have been proposed [3-4]. Among 

these, Eringen’s theory of nonlocal elasticity [5] has been successfully employed to examine a 

variety of static and dynamic mechanical behaviors of nanotubes. The fluid-conveying carbon 

nanotubes are commonly rested on a foundation, which could be simulated using the 

single-parameter Winkler foundation, the two-parameter Pasternak foundation, or several other 

viscoelastic foundation models [6-7]. Based on a nonlocal Euler-Bernouli beam model, Rafiei et 

al. [8] investigated the vibrational response of SWCNT conveying fluid resting on a viscoelastic 

Kelvin foundation. Recent research has revealed that the mechanical features of carbon nanotubes 

in an applied magnetic field and their magnetic properties have potential applications in the fields 

of nanosensors, spintronics, as well as micro- and nanoelectro mechanical systems [9-10]. For the 

chattering of fluid-conveying carbon nanotubes in an applied magnetic field, Ghane et al. [11] 

employed a nonlocal Timoshenko beam model to determine the impacts of magnetic field, flow 

velocityand small scale effect.  

The above literature generally focuses on the analysis of the vibration properties of nanotubes 

when several parameters are coupled, however each parameter’s influence on other parameters is 

rarely discussed. In this paper, based on the nonlocal Euler-Bernouli beam model, the vibration 

characteristics of the fluid conveying carbon nanotube is investigated when the two-parameter 

Pasternak elastic foundation is coupled with the longitudinal magnetic field.  
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2. Vibration governing equation 

Fig. 1 shows a schematic diagram of a fluid conveying carbon nanotube subjected to a 

longitudinal magnetic field resting on the Pasternak foundation. The system only undergoes a 

small in-plane transverse vibration, gravity and the external pull and pressure of the tube are not 

taken into account, and the fluid inside the tube is an ideal fluid with constant flow velocity which 

is recorded as 𝑈. 
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Fig. 1. A fluid-conveyed SWCNT in Pasternak medium under the longitudinal magnetic field 

Then, from the Euler-Bernoulli beam strain-displacement relationship we have: 

𝜀𝑋𝑋 = −𝑍
𝜕2𝑊

𝜕𝑋2
, (1) 

where 𝑊(𝑋, 𝑡)  is the 𝑍 -directional displacement, 𝑡  is the time, and 𝜀𝑋𝑋  is the strain in the  

𝑋-direction. 

From the theory of nonlocal elasticity [9], the stress-strain relationship containing small-scale 

effects is: 

𝜎𝑋𝑋 − (𝑒0𝑎)2
𝜕2𝜎𝑋𝑋

𝜕𝑋2
= 𝐸𝜀𝑋𝑋, (2) 

where 𝜎𝑋𝑋 is the stress in the 𝑋-direction, 𝐸 is the nanotube elastic modulus, 𝑒0 is the material 

constant, and 𝑎 is the material internal characteristic length. 

The force acting on the nanotube by the fluid inside the nanotube can be expressed as [12]: 

𝐹𝑓 = 𝑚𝑓 (
𝜕2𝑊

𝜕𝑡2
+ 2𝑈

𝜕2𝑊

𝜕𝑋𝜕𝑡
+ 𝑈2

𝜕2𝑊

𝜕𝑋2
), (3) 

where 𝑚𝑓 is the mass of fluid inside the nanotube per unit length. 

The Lorentz force per unit length acting on the nanotube is [9]: 

𝐹𝑍 = 𝜂𝐴𝐻𝑋
2 𝜕2𝑊

𝜕𝑋2
, (4) 

where 𝐴 is the cross-sectional area of the pipe. 

The force of the Pasternak elastic foundation on the nanotube is expressed as [6]: 

𝐹 = 𝐾𝑊 − 𝐺
𝜕2𝑊

𝜕𝑋2
, (5) 
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where 𝐾 is the elastic spring and 𝐺 is the shear spring. 

Based on the above equations, the work on the carbon nanotube by the elastic foundation, the 

magnetic field and the fluid inside the tube is: 

𝑊𝐸𝑥𝑡 =
1

2
∫ −(𝐾𝑊 − 𝐺

𝜕2𝑊

𝜕𝑋2
+ 𝐹𝑍 + 𝐹𝑓)𝑊𝑑𝑋

𝐿

0

. (6) 

Applying Hamilton’s Principle: 

∫ 𝛿(𝑇𝑝 − 𝑇𝑘 − 𝑊Ext)
𝑡2

𝑡1

𝑑𝑡 = 0, (7) 

where 𝑇𝑘 and 𝑇𝑝 are the total kinetic energy and strain energy of the nanotube system [4]. 

The system vibration differential equation can be obtained as: 

𝐸𝐼
𝜕4𝑊

𝜕𝑋4
+ (𝑚𝑓𝑈

2 − 𝜂𝐴𝐻2
𝑋 − 𝐺)

𝜕2𝑊

𝜕𝑋2
+ 2𝑚𝑓𝑈

𝜕2𝑊

𝜕𝑋𝜕𝑡
+ 𝐾𝑊 + (𝑚𝑐 + 𝑚𝑓)

𝜕2𝑊

𝜕𝑡2

       −(𝑒0𝑎)2

[
 
 
 (𝑚𝑓𝑈

2 − 𝜂𝐴𝐻2
𝑋 − 𝐺)

𝜕4𝑊

𝜕𝑋4
+ 2𝑚𝑓𝑈

𝜕4𝑊

𝜕𝑋3𝜕𝑡

+𝐾
𝜕2𝑊

𝜕𝑋2
+ (𝑚𝑐 + 𝑚𝑓)

𝜕4𝑊

𝜕𝑋2𝜕𝑡2 ]
 
 
 

= 0,

 (8) 

where 𝐸𝐼 is the bending stiffness of SWCNT, 𝑚𝑐 is the mass of the nanotube per unit length.  

The boundary conditions are: 

𝑋 = 0, 𝐿:𝑊 =
𝜕𝑊

𝜕𝑋
= 0. (9) 

3. Differential transformation method and solution methodology 

Introduction of dimensionless variables and parameters: 

𝑤 =
𝑊

𝐿
,     𝑥 =

𝑋

𝐿
,      𝜏 = √

𝐸𝐼

𝑚𝑐 + 𝑚𝑓

𝑡

𝐿2
,      𝛽 =

𝑚𝑓

𝑚𝑐 + 𝑚𝑓
, 

𝑢 = 𝑈𝐿√
𝑚𝑓

𝐸𝐼
,     𝜇 = (

𝑒0𝑎

𝐿
)

2

,       𝜓 = 𝜂𝐴𝐻𝑋
2
𝐿2

𝐸𝐼
,       𝑔 = 𝐺

𝐿2

𝐸𝐼
,      𝑘 = 𝐾

𝐿2

𝐸𝐼
.  

 

The above Eq. (8) and the boundary condition Eq. (9) can be rewritten as the dimensionless 

equation: 

𝜕4𝑤

𝜕𝑥4
+ (𝑢2 − 𝜓 − 𝑔)

𝜕2𝑤

𝜕𝑥2
+ 2𝑢√𝛽

𝜕2𝑤

𝜕𝑥𝜕𝜏
+ 𝑘𝑤 +

𝜕2𝑤

𝜕𝜏2

− 𝜇 [(𝑢2 − 𝜓 − 𝑔)
𝜕4𝑤

𝜕𝑥4
+ 2𝑢√𝛽

𝜕4𝑤

𝜕𝑥3𝜕𝜏
+ 𝑘

𝜕2𝑤

𝜕𝑥2
+

𝜕4𝑤

𝜕𝑥2𝜕𝜏2
] = 0, 

(10) 

with corresponding boundary conditions: 

𝑥 = 0,1:𝑤 =
𝜕𝑤

𝜕𝑥
= 0. (11) 



VIBRATION AND INSTABILITY OF A FLUID-CONVEYING NANOTUBE RESTING ON ELASTIC FOUNDATION SUBJECTED TO A MAGNETIC FIELD.  

MING LI, JUNRU ZHOU, QIAN DENG, LIUFEI LV 

102 VIBROENGINEERING PROCEDIA. NOVEMBER 2022, VOLUME 46  

Let the solution of Eq. (10) be 𝑤 = 𝜑𝑒Ω𝜏 , where Ω  is the dimensionless eigenvalue. 

Substituting the solution into Eq. (10) we have: 

𝑑4𝜑

𝑑𝑥4
+ (𝑢2 − 𝜓 − 𝑔)

𝑑2𝜑

𝑑𝑥2
+ 2𝑢√𝛽Ω

𝑑𝜑

𝑑𝑥
+ (Ω2 + 𝑘)𝜑

− 𝜇 [(𝑢2 − 𝜓 − 𝑔)
𝑑4𝜑

𝑑𝑥4
+ 2𝑢√𝛽Ω

𝑑3𝜑

𝑑𝑥3
+ (Ω2 + 𝑘)

𝑑2𝜑

𝑑𝑥2
] = 0. 

(12) 

The differential transformation method (DTM) was used to solve the Eq. (12), then we have 

the differential transformation form of Eq. (12): 

[1 − 𝜇(𝑢2 − 𝜓 − 𝑔)](𝑛 + 4)!Φ(𝑛 + 4) − 2𝜇𝑢√𝛽𝛺(𝑛 + 3)!Φ(𝑛 + 3) 

      +[(𝑢2 − 𝜓 − 𝑔) − 𝜇(Ω2 + 𝑘)](𝑛 + 2)!Φ(𝑛 + 2) + 2𝑢√𝛽Ω(𝑛 + 1)!Φ(𝑛 + 1) 

      +(Ω2 + 𝑘)𝑛!Φ(𝑛) = 0. 

(13) 

The DTM transformation of boundary conditions are given as follows: 

Φ(0) = Φ(1) = 0, (14) 

∑ Φ(𝑛)

∞

𝑛=0

= 0,      ∑ 𝑛Φ(𝑛)

∞

𝑛=0

= 0. (15) 

Let 𝐹(2) = 𝐶1, 𝐹 (3) = 𝐶2, and substitute into Eq. (13) with Eq. (14), iterate to obtain Φ(𝑛), 

𝑛 = 4, 5,…, 𝑁. Then, substituting Φ(𝑛) into Eq. (15), the following eigenvalue problem can be 

obtained: 

[
𝑎11 𝑎12

𝑎21 𝑎22
] {

𝐶1

𝐶2
} = 0, (16) 

where 𝑎𝑖𝑗 are functions of the dimensionless eigenvalue Ω and other parameters. By calculating 

the determinant, the value of complax eigenvalues Ω can be computed numerically. The real and 

imaginary parts of Ω  correspond to the damping and natural frequencies of the system, 

respectively. It should be mentioned that clamped-clamped nanotubes lose their stability by both 

imaginary and real parts of the first mode complax frequency are equal to zero. 

4. Numerical results and discussion 

The analytical parameters used in this paper are [9]: the density of the fluid 𝜌𝑓 =1000 kg/m3, 

and that of the carbon nanotube 𝜌𝑐 = 2300 kg/m3, its outer layer radius 𝑅0 = 3 nm, wall thickness 

𝑡𝑑 = 0.1 nm, elastic modulus 𝐸 = 3.4 TPa. Poisson’s ratio 𝜈 = 0.3. In vibration, the 𝐿 2𝑅0⁄ = 40, 

the magnetic permeability is taken as 𝜂 = 4𝜋×10-7 and 𝛽 = 0.5. The rest of the parameters are 

chosen in the examples, and the DTM algorithm is chosen an intercept number of 60.  

Figs. 2-3 present the critical flow velocity of the SWCNT conveying fluid as functions of 

coefficients of Pasternak foundation and magnetic field 𝐻𝑥 . Fig. 3 depicts that for different 

elasticity coefficients 𝑘, the enhancement of the magnetic field can increase the critical flow 

velocity of the nanotube system and thus improve its stability. However, when comparing the 

enhancement values of the critical flow velocity by increasing the same magnetic field strength in 

detail, it can be found that the enhancement is different for different elasticity factors 𝑘. This 

implies that the enhancement of the stability of the system by the magnetic field is suppressed to 

some extent with the increase of the elasticity coefficient 𝑘. Similar conclusions can be obtained 

from the analysis of Fig. 4: the stability of the fluid-conveying carbon nanotube increases with the 

enhancement of the magnetic field for different shear coefficients 𝑔. But the shear coefficient 𝑔 
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still suppresses the influence of the magnetic field on the stability of the system to some extent, 

although this suppression effect is not obvious, and the weaker the magnetic field the less obvious 

this effect is. 

The effects of the elasticity coefficient 𝑘 and shear coefficient g on the critical flow velocity 

when considering the small-scale effect are presented in Figs. 4 and 5. As can be seen from Figs. 4 

and 5, the increase in the nonlocal parameter with and without the elastic foundation reduces the 

stability of the system. A detailed comparison of the reduction in the dimensionless critical flow 

velocity, Δ𝑢𝑐𝑟, for increasing the same nonlocal parameter 𝜇 reveals that the shear coefficient 𝑔 

suppresses the effect of the nonlocal parameter on the system stability, however, the elasticity 

coefficient 𝑘 amplifies the effect. 

 
Fig. 2. Critical flow velocities with longitudinal 

magnetic field in a fluid-conveying SWCNT for 

different values 𝑘 (𝑔 = 𝜇 = 0) 

 
Fig. 3. Critical flow velocities with longitudinal 

magnetic field in a fluid-conveying SWCNT for 

different values 𝑔 (𝑘 = 𝜇 = 0) 

 

 
Fig. 4. Critical flow velocities with nonlocal 

parameter 𝜇 in a fluid-conveying SWCNT for 

different values 𝑘 (𝐻𝑋 = 𝑔 = 0) 

 
Fig. 5. Critical flow velocities with nonlocal 

parameter 𝜇 in a fluid-conveying SWCNT for 

different values 𝑔 (𝐻𝑋 = 𝑘 = 0) 

5. Conclusions 

Size-dependent vibrations and instability of fluid-conveying SWCNT resting on a Pasternak 

elastic foundation were studied. The effects of different effective parameters, including magnetic 

field strength, two Pasternak coefficients and nonlocal parameter, were discussed in detail. And 

the paramount goal of this paper is to highlight the interaction of above paremeters effects on the 

instability behavior of the nanotube. The results demonstrate that the two Pasternak foundation 

reduce the magnetic field's influence on the stability of the system. However, the two coefficients 

of foundation have opposing impacts on the nonlocal parameter. Specifically, the elastic parameter 

increases the small-scale effect on the nanotube system while the shear parameter lowers it. 
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