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Abstract. Dynamic model of bearing-rotor system is developed considering the collision effects 
between the cage and its guiding land. The modal characteristic and vibration response are studied 
with the fourth-order Runge-Kutta method. It is demonstrated that the cage whirling motion 
arising as a result of collision with the guiding land would induce abnormal frequency components 
in the system’s response including the multiple frequency as well as the modulation between the 
speed frequency and the natural frequency. Additionally, cage whirling motion and rotor vibration 
become severe when the rotor rotates around its pitching-mode critical speed. It is shown that the 
amplitudes of abnormal frequencies can be decreased by reducing rotor unbalance in a given 
range. 
Keywords: bearing-rotor system, cage whirling motion, dynamic response, frequency 
modulation. 

1. Introduction 

Rolling bearing is widely used in rotating machinery, and its performance directly affects the 
rotor dynamic response. Bearing cage is significant component to separate and guide elements. 
Cage whirling motion due to destructive collision force between the cage and rolling elements or 
race land can give rise to destruction of bearing structure and abnormal vibration of rotor system. 
Fig. 1 shows one typical case of bearing structure failure, and cage spin frequency 𝑓௖ modulated 
to rotor rotation frequency 𝑓଴, producing sideband signals 𝑓଴±𝑓௖, which might generate great harm 
to the security of whole equipment. Therefore, it is critical to study the mechanism of cage 
whirling motion and its influence on the dynamic characteristic of bearing-rotor system. 

 
a) Cage fracture and element wearing 

 
b) Frequency modulation in rotor vibration signal 

Fig. 1. Typical case of bearing damage and rotor vibration problem related to cage whirling motion 

In the past decades, many researches have been conducted about the dynamic characteristic of 
bearing cage. Kingsbury [1] firstly put forward the mechanism that the amplitude of cage whirling 
motion would varies at a particular frequency because of element loading inequality and 
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periodically changing sides within their pockets. Walters [2] numerically integrated the bearing 
motion equations with a fourth order Runge-Kutta scheme, and the results demonstrated that the 
cage whirling direction would be different as the cage guiding condition was changed. After that, 
abundant works have been done about dynamic modeling, parameters effects and motion stability 
of bearing cages [3]-[6]. However, the influence of rotor dynamic response on the cage motion 
are hardly considered. On the other hand, dynamic analysis of bearing-rotor system is the hotspot 
in rotating machinery engineering, but the scholars are mainly focused on the nonlinear stiffness 
and rotor instability caused by bearing clearance or varying compliance [7]-[9], ignoring the effect 
of cage motion or excitation. In recent years, some studies on the dynamic interaction between 
bearing cage and rotor system have been conducted. Chen [10] investigated the effects of rotor 
vibration on the cage dynamic performance. But the mechanism of cage whirling motion and its 
influence on the rotor dynamic remains unclear. 

In this paper, a dynamic model for high-speed bearing-rotor system considering cage whirling 
motion and the cage collision with its guiding land is proposed. On the basis, the cage motion 
characteristic and the frequency components of the rotor response are studied in order to 
investigate the dynamic coupling effects between rotor and bearing cage.  

2. Dynamic model of bearing-rotor system 

The structure of typical bearing-rotor system supported by fulcrums is shown in Fig. 2. 𝑘௜, 𝑐௜, 𝑙௜ (𝑖 ൌ 1, 2) are respectively supporting stiffness, damping coefficient and distance to the centroid 
of two fulcrums. In order to simplify the question, only the effect the rear bearing is investigated, 
as shown in Fig. 3, and the interface of inner ring and rotor journal is considered totally bounded. 

 
Fig. 2. Structural sketch  

of typical bearing-rotor system 

 
Fig. 3. Structural diagram of the rolling 

bearing at the rear fulcrum 

2.1. Dynamic differential equations of the rotor system 

Assuming the rotor is rigid, the dynamic equations of the rotor system are written in Eq. (1): 𝑚଴𝑥ሷ଴ ൅ 𝑘ଵሺ𝑥଴ ൅ 𝑙ଵ𝜃௑ሻ ൅ 𝑐ଵ൫𝑥ሶ଴ ൅ 𝑙ଵ𝜃ሶ௑൯ ൌ 𝑚௘଴𝑒଴𝜔଴ଶ cos𝜔଴𝑡 ൅ 𝑄ଶ௫,𝑚଴𝑦ሷ଴ ൅ 𝑘ଵሺ𝑦଴ − 𝑘ଵ𝜃௒ሻ ൅ 𝑐ଵ൫𝑥ሶ଴ − 𝑙ଵ𝜃ሶ௒൯ ൌ 𝑚௘଴𝑒଴𝜔଴ଶ sin𝜔଴𝑡 ൅ 𝑄ଶ௬,𝐼ௗ𝜃ሷ௑ − 𝐼௣𝜔ଵ𝜃ሶ௒ ൅ 𝑙ଵ𝑘ଵሺ𝑦଴ − 𝑙ଵ𝜃௑ሻ ൅ 𝑙ଵ𝑘ଵ൫𝑦ሶ଴ − 𝑙ଵ𝜃ሶ௑൯ ൌ 𝑙௕𝑚௘଴𝑒଴𝜔଴ଶ cos𝜔଴𝑡 − 𝑙ଶ𝑄ଶ௫,𝐼ௗ𝜃ሷ௒ ൅ 𝐼௣𝜔ଵ𝜃ሶ௑ ൅ 𝑙ଵ𝑘ଵሺ𝑥଴ ൅ 𝑙ଵ𝜃௒ሻ ൅ 𝑙ଵ𝑘ଵ൫𝑥ሶ଴ ൅ 𝑙ଵ𝜃ሶ௒൯ ൌ 𝑙௕𝑚௘଴𝑒଴𝜔଴ଶ sin𝜔଴𝑡 − 𝑙ଶ𝑄ଶ௬,
 

(1)

where 𝑚଴, 𝐼ௗ, 𝐼௣ are respectively the rotor’s mass, polar and diameter moment of inertia; 𝑚௘଴, 𝑒଴ 
are the rotor unbalance and its eccentricity, which is considered located at the rear half; 𝑙௕ is the 
distance between the centroid to the unbalance; 𝜔଴ is the angular velocity; 𝑄ଶ௫, 𝑄ଶ௬ are bearing 
force components in 𝑋 and 𝑌 direction at the rear fulcrum.  

2.2. Bearing forces considering cage collision with guiding land 

Plenty of researches have been conducted to describe the bearing forces 𝑄ଶ௫ and 𝑄ଶ௬ in Eq. (1). 
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Based on the bearing dynamic model developed in [11] and [12], this article further considers the 
effects of cage whirling motion and cage collision with its guiding land. The forces acting on cage 
are shown in Fig. 4, and the dynamic differential equations of cage are established as Eq. (2).  

In Eq. (2), 𝑁 is the number of elements; 𝑚௖ is the mass of cage; 𝐼௖ represents moment inertias 
of cage on different directions; 𝜓௖ and 𝜑௖ are the skewing angular and position angles; 𝐹௖௝௖௡, 𝐹௖௝௖௧ 
are respectively the contact forces between cage and element in normal and tangential directions; 𝑀௖௝௖௡, 𝑀௖௝௖௧ are torques due to the cage skewing and the force maldistribution. 𝑀௖௢௜ , 𝑀௖௢௢  are 
respectively the lubricating oil resistances: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑚௖𝑥ሷ௖ = ෍ ൫𝐹௖௝௖௡ sin𝜑௝ + 𝐹௖௝௖௧ cos𝜑௝൯ே௝ୀଵ + 𝐹௖௚௡ cos𝜑௖௚ + 𝐹௖௚௧ sin𝜑௖௚ + 𝐹௖௥ cos𝜑௖௕ ,𝑚௖𝑦ሷ௖ = ෍ ൫𝐹௖௝௖௡ cos𝜑௝ − 𝐹௖௝௖௧ sinφ୨൯ே௝ୀଵ + 𝐹௖௚௡ sin𝜑௖ − 𝐹௖௚௧ cos𝜑௖ + 𝐹௖௥ sin𝜑௖௕,𝐼௖௓𝜑ሷ௖௕ = ෍ ൫𝐹௖௝௖௡ 𝑑௠ 2⁄ ൯ே௝ୀଵ − 𝑀௖௢௜ − 𝑀௖௢௢ , 𝐼௖௑𝜓ሷ௖௑ = ෍ ൫𝑀௖௝௖௧ sin𝜑௝ −𝑀௖௝௖௡ cos𝜑௝൯,ே௝ୀଵ𝐼௖௒𝜓ሷ௖௒ = ෍ ൫𝑀௖௝௖௡ sin𝜑௝ + 𝑀௖௝௖௧ cos𝜑௝൯ே௝ୀଵ .

 (2)

As shown in Fig. 5, there is an initial clearance (𝑐଴௚) between the cage and its guiding land at 
static state, and the clearance varies (𝑐௪௚) during the working process due to the skewing and 
procession motion of the cage and inner ring, which is expressed as Eq. (3): 𝑐௪௚ = 𝑐଴௚ − ൣΔ𝑟௜ − Δ𝑟௖ + 𝑟௜௚൫1 − cos𝜃௜௚൯ + 𝑏௚ sin𝜃௜௚ − 𝑟௖௚൫1 − cos𝜃௖௚൯ + 𝑏௚ sin𝜃௖௚൧, (3)

where 𝑟௜௚, 𝑟௖௚ are respectively the radius of cage and inner ring at the guiding area; 𝑏௚ is the half 
width of the guiding land in 𝑍 direction. Δ𝑟, 𝜃௚ are the procession radius and skewing angle.  

The collision between cage and inner ring occurs when 𝑐௪௚ ≤ 0. The normal and tangential 
component of the collision force respectively are: 𝐹௖௚௡ = 𝑘௖௚௡ ⋅ 𝑎𝑏𝑠൫𝑐௪௚൯,     𝐹௖௚௧ = 𝜇௖௚௡𝐹௖௚௡, (4)

where 𝑘௖௚௡ is the stiffness characteristic of the cage-land contact, and 𝜇௖௚௡ is the friction 
coefficient. 

 
Fig. 4. Schematic diagram of the forces 

acting on the cage 

 
Fig. 5. Schematic diagram of the collision effect 

between the cage and its guiding land 

The dynamic model of the whole bearing-rotor system consists of the rotor model part (Eq. (1)) 
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and the bearing model part, including the bearing forces model (Eq. (2)). These two parts are 
assembled with the equilibriums of the inner ring, which is fixed on and keeps the same 
displacement with the rotor shaft. The force balance equations for the inner ring are: 

⎩⎪⎨
⎪⎧𝑄ଶ௫ −෍ ൫𝐹௝௢௡ cos𝜑௝ + 𝐹௝௢௧ sin𝜑௝൯ே௝ୀଵ − ൫𝐹௖௚௧ sin𝜑௖௚ + 𝐹௖௥ cos𝜑௖௕൯ = 0,𝑄ଶ௬ −෍ ൫𝐹௝௢௡ sin𝜑௝ − 𝐹௝௢௧ cos𝜑௝൯ே௝ୀଵ − ൫𝐹௖௚௧ cos𝜑௖ − 𝐹௖௥ sin𝜑௖௕൯ = 0,  (5)

where 𝐹௝௢௡, 𝐹௝௢௧ are respectively the normal and tangential force between the element and the outer 
raceway, and 𝑀௝௢௡, 𝑀௝௢௧ are torques due to the element skewing and the force maldistribution. 

2.3. Calculation procedure of the dynamic model 

The basic steps of the calculation procedure for dynamic equations of the whole bearing-rotor 
system are listed as follow: 

1) Input the structural parameters and working conditions (including rotation speed, preload) 
of the system, and start the quasi-static analysis with Newton-Raphson method to acquire the 
initial displacement/velocity state. 

2) Calculate the interaction forces/toques on the basis of the dynamic models, and acquire the 
acceleration state of the whole system. 

3 Conduct time integration calculation by the four order Runge-Kutta method. Reduce the time 
increment if the truncation error exceeds the allowance. Otherwise, update the 
displacement/velocity state for the next timestep until the time ending. 

3. Results and discussion 

Based on the above dynamic model and calculation method, modal characteristics and 
dynamic response of the bearing-rotor system is analyzed considering the effect of cage whirling 
motion. The key parameters of the system are shown in Table 1. 

Table 1. Structural parameters of the bearing-rotor system 
Rotor parameters 

Rotor mass 𝑚଴ 200 kg Centroid distance to unbalance 𝑙௕ 300 mm 
Rotor diameter rotary inertia 𝐼௣ 20 kg∙m2 Rotor unbalance 𝑚௘଴ 100 g 

Unbalance eccentricity 𝑒଴ 10 mm Centroid distance to unbalance 𝑙௕ 300 mm 
Front supporting stiffness 𝑘ଵ 2.5e7 Nm Rear supporting stiffness 𝑘ଶ 4e7 Nm 

Centroid distance to front fulcrums 𝑙ଵ 600 mm Centroid distance to rear fulcrums 𝑙ଶ 450 mm 
Bearing parameters 

Number of the elements 16 Radial internal clearance 0.04 m𝑚 
Cage mass 𝑚௖ 0.2704 kg Cage unbalance 10 g∙mm 

Cage pocket clearance 0.1 mm Cage guiding clearance 𝑐଴௚ 0.04 mm 

3.1. Modal characteristics of the simple supported rotor system 

Eigenvalue of Eq. (1) is obtained given 𝑚௘଴ equals to zero, and modal characteristics of the 
simple supported rotor system are analyzed. Campbell diagram and mode diagrams under the 
critical speed of the rotor system are shown in Fig. 6 and Fig. 7 respectively. The first order of the 
rotor modal is translational mode whose critical speed is 5400 rpm, and the second order is 
pitching mode whose critical speed is 10711 rpm.  
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3.2. Dynamic response of the bearing-rotor system 

On the basis of modal characteristics analysis, four typical speeds are picked up including 
2 krpm, 5 krpm, 10 krpm and 20 krpm, corresponding four typical rotating states: far below the 
critical speed, near to the translational critical speed, near to the pitching critical speed and far 
above the critical speed. Fig. 8 shows the dynamic responses of the bearing-rotor system under 
these four typical speeds. 

 
Fig. 6. Campbell diagram  

of the simple supported rotor system 

 
a) The first order, translational mode 

 
b) The second order, pitching mode 

Fig. 7. Mode diagrams of the simple supported  
rotor system under critical speeds 

 

 
a) Center orbits at the fulcrums and the shaft axis of the rotor 

 
b) Frequency spectrums of the rear fulcrum load response 

 
c) Center orbit of the cage 

Fig. 8. Dynamic responses of the bearing-rotor system under different speed 

0 5000 10000 15000 20000 25000 30000
0

100

200

300

400

500

Second-order Critical
10711rpm

Fr
e
q
u
en

c
y
 
(H

z
)

Speed (rpm)

 First-order Backward
 First-order Forward
 Second-order Backward
 Second-order Forward
 Ratio=1

First-order Critical
5400rpm

 
0

200 400 600 800

100
0

120
0 -0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.
05

-0.
04

-0.
03

-0.0
2

-0.0
1

0.00

0.01

0.02

0.03

0.04

0.05

X d
isp

lac
eme

nt 
(mm

)

Y
 
d
i
s
p
l
a
c
e
m
e
n
t
 
(
m
m
)

Z location (mm)

rotor speed n=2000 rpm
 Front support
 Rear support
 Shaft axis (Initial time)
 Rotation axis

0
200 400 600 800

100
0

120
0 -0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.
05

-0.
04

-0.
03

-0.0
2

-0.0
1

0.00

0.01

0.02

0.03

0.04

0.05

X d
isp

lac
eme

nt 
(mm

)

Y
 
d
i
s
p
l
a
c
e
m
e
n
t
 
(
m
m
)

Z location (mm)

rotor speed n=5400 rpm

 Front support
 Rear support
 Shaft axis (Initial time)
 Rotation axis

0
200 400 600 800

100
0

120
0 -0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.
05

-0.
04

-0.
03

-0.0
2

-0.0
1

0.00

0.01

0.02

0.03

0.04

0.05

X d
isp

lac
eme

nt 
(mm

)

Y
 
d
i
s
p
l
a
c
e
m
e
n
t
 
(
m
m
)

Z location (mm)

rotor speed n=10000 rpm

 Front support
 Rear support
 Shaft axis (Initial time)
 Rotation axis 0

200 400 600 800

100
0

120
0 -0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

-0.
05

-0.
04

-0.
03

-0.0
2

-0.0
1

0.00

0.01

0.02

0.03

0.04

0.05

X d
isp

lac
eme

nt 
(mm

)

Y
 
d
i
s
p
l
a
c
e
m
e
n
t
 
(
m
m
)

Z location (mm)

rotor speed n=20000 rpm

 Front support
 Rear support
 Shaft axis (Initial time)
 Rotation axis

 0 50 100 150 200
0

10

20

30

Am
p
li
t
ud
e 
(
N)

Frequency (Hz)

fs=33.3Hz

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Am
p
li

t
ud

e 
(
N)

Frequency (Hz)

fs=90Hz

0 200 400 600 800
0

50

100

150

200

4fs

2(fs-fc)

Am
p
li

t
ud

e 
(
N)

Frequency (Hz)

fs=166.7Hz

fc=70.7Hz
fs-fc

2fc

2fs

3fs

fs+fc

2fs-fc 2fs+fc

0 200 400 600 800 1000 1200
0

50

100

150

Am
p
li

t
ud

e 
(
N)

Frequency (Hz)

fs=333.3Hz

fc=141.4Hz

fs-fc

2fc

2fs

3fs

fs+fc

2fs-fc

2fs+fc

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Y
 d

i
sp

l
ac

em
e
nt

 (
m
m)

X displacement (mm)
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Y
 d

i
sp

l
ac

em
e
nt

 (
m
m)

X displacement (mm)
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Y
 d

i
sp

l
ac

em
e
nt

 (
m
m)

X displacement (mm)
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Y
 d

i
sp

l
ac

em
e
nt

 (
m
m)

X displacement (mm)



DYNAMIC RESPONSE ANALYSIS OF BEARING-ROTOR SYSTEM CONSIDERING CAGE WHIRLING MOTION.  
JIE HONG, JIAN ZHANG, YONGFENG WANG, YANHONG MA, RONGHUI CHENG 

26 VIBROENGINEERING PROCEDIA. AUGUST 2022, VOLUME 44  

The results show that the rotor rotates under the translational mode shape at 2 krpm and 
5 krpm, and rotating speed frequency is the only component in the spectrums of fulcrum load 
response. The cage center orbits are both circular with a similar radius. However, the load response 
of the rear fulcrum is higher at the 5 krpm as the rotor system is near to the resonance range. 

The pitching mode shape of the rotor system is observed at the speed of 10 krpm and 20 krpm, 
and the frequency components are much more complicate, including the rotor rotatory speed 𝑓ୱ, 
the cage rotatory speed 𝑓ୡ, and their multiple frequencies 2𝑓ୱ, 2𝑓ୡ, 3𝑓ୱ, 3𝑓ୡ… and the modulation 
frequencies, for example, 𝑓ୱ ± 𝑓ୡ, 2𝑓ୱ ± 𝑓ୡ and so on. The cage center orbits no longer keep 
circular, and there are severe collisions between the cage and its guiding land, leading to the cage 
whirling motion. The results exhibit the coupling effects between the rotor and the bearing cage 
when the rotor is rotating under the pitching mode. 

3.3. Effects of the rotor unbalance on the dynamic response 

Additional conditions of different rotor unbalance (20 g, 200 g) are considered and the dynamic 
responses of the bearing-rotor system are analyzed, as shown in Fig. 9. The rotor pitching angle 
and the rear fulcrum load response both increase when adding the rotor unbalance. However, the 
amplitudes at the modulation frequencies are found to be lower than the 100 g unbalance 
condition. When the rotor unbalance is 20 g, the response of whole system is at a lower level, and 
the collision of the cage is weaker. When it comes to the 200 g condition, rotor’s centrifugal effect 
is too strong, and the cage is forced to whirling on the rotor’s orbit, which also leading to the 
reduction of the cage collision effect and the components of modulation frequencies in the 
response signal. 

 
a) Rotor unbalance = 20 g 

 
b) Rotor unbalance = 200 g 

Fig. 9. Effects of the rotor unbalance on the dynamic response of the system 

4. Conclusions 

Through the analysis, the conclusions can be drawn as follow: 
1) The influence of the cage whirling motion should be considered during the dynamic 

response analysis of the bearing-rotor system, which can cause abnormal vibration of the rotor 
system, inducing the multiple frequencies and modulation frequencies components in the system 
response. 

2) The cage whirling motion is more easily induced when the rotor rotates around its pitching 
mode critical speed, as the skewing of the shaft and the inner ring exacerbates the collision 
between the cage and its guiding land. 

3) The abnormal vibration of the bearing-rotor system can be suppressed by controlling the 
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rotor unbalance, which essentially decreases the shaft pitching angle and the cage-guiding land 
collision effects. 
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