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Abstract. Inspired by the successful experience of convolutional neural networks (CNN) in image 
classification, encoding vibration signals to images and then using deep learning for image 
analysis to obtain better performance in bearing fault diagnosis has become a highly promising 
approach. Based on this, we propose a novel approach to identify bearing faults in this study, 
which includes image-interpreted signals and integrating machine learning. In our method, each 
vibration signal is first encoded into two Gramian angular fields (GAF) matrices. Next, the 
encoded results are used to train a CNN to obtain the initial decision results. Finally, we introduce 
the random forest regression method to learn the distribution of the initial decision results to make 
the final decisions for bearing faults. To verify the effectiveness of the proposed method, we 
designed two case analyses using Case Western Reserve University (CWRU) bearing data. One 
is to verify the effectiveness of mapping the vibration signal to the GAFs, and the other is to 
demonstrate that integrated deep learning can improve the performance of bearing fault detection. 
The experimental results show that our method can effectively identify different faults and 
significantly outperform the comparative approach. 
Keywords: bearing fault diagnosis, Gramian angular field, deep learning, ensemble learning. 

1. Introduction 

In modern industries, machine health monitoring is a prerequisite for maintaining the proper 
operation of industrial machines. Breakdowns in industrial machines can cause huge financial 
losses and even pose a threat to the people who use them. Therefore, the need for better and smarter 
machine health-monitoring technologies has never ceased [1]. Rolling bearings are considered the 
most common and critical mechanical components in rotating machinery, and their health can 
have a significant impact on the performance, stability, and service life of the machine. Because 
rolling bearings are usually in harsh operating environments, they are prone to failure during 
operation. Failure to detect defects in time can lead to unplanned machine downtime or even 
catastrophic damage. Therefore, rolling bearing fault detection is essential for the safe and reliable 
operation of machinery and production [2]. 

Recently, several bearing fault recognition methods have been proposed. Learning-based 
(including statistical learning methods and neural network methods) recognition methods can 
capture mechanical fault information by learning historical data and thereby enabling the 
automated analysis of bearing faults. The flow chart of these methods usually includes data 
preprocessing, feature extraction, and classifier design. Although a well-designed classification 
algorithm is a prerequisite for automated bearing fault detection [3], data preprocessing and feature 
extraction are also important steps. 

Designing manual features based on the signal mechanism is a hot field for bearing fault 
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diagnosis. Chen et al. [4] merged the bearing signal features of the time and frequency domains 
and then inputted these features into a deep fully connected network for fault detection. Bao et al. 
[5] calculated the L-kurtosis feature in the envelope spectrum of a vibration signal to detect pulse 
periodicity. Chen et al. [6] first transformed a vibration signal into the spectrum domain and 
extracted the mapping amplitude entropy as a learnable feature. Zhao et al. [7] first performed 
empirical mode decomposition (EMD) on a vibration signal, and then selected the top few-mode 
components containing the main information of the signal to extract the sample entropy. Liu et al. 
[8] proposed a feature extraction method based on variational mode decomposition and singular 
value decomposition (SVD). Unfortunately, these manual feature extraction processes are 
laborious and unfriendly to machine-learning designers. 

 
Fig. 1. The flow chart of the proposed method 

Owing to the powerful feature learning ability of deep learning techniques, many researchers 
have attempted to introduce deep learning into the field of fault detection. Example include 
convolutional neural network (CNN)-based methods [1], [2], [9], [10]-[14], sparse auto-encoder 
(SAE)-based methods [15], [16], and recursive neural network (RNN)-based methods [17], [18], 
etc. Because the original signal is easily affected by noise, the signal is often transformed into an 
amplitude-frequency domain sequence. Generally speaking, CNN models are good at learning 
deep features from image data; thus, one-dimensional vibration signals encoded as two-
dimensional image data have attracted much attention. CNN and their improved models have been 
successfully applied to image classification because they can extract robust features directly from 
two-dimensional images. Many image-interpreting vibration signal approaches have been 
proposed. Ding et al. [2] proposed a method for reconstructing a two-dimensional wavelet packet 
energy image (WPI) of the frequency space. The WPI can represent the dynamic structure of the 
wavelet packet energy distribution of different bearing faults. However, the WPI method 
combines the wavelet packet transform and phase space reconstruction technique, which not only 
has high time complexity but also loses the information of the original signal when performing 
multiple transformations of the representation space. Mantas et al. [19] converted the time series 
to the Permutation Entropy (PE) pattern, which is a 2D digital image with multiscale time delays. 
However, the method ignores the amplitude information of the time series, and it is sensitive to 
noise in the view of the principle behind the method. Wang et al. [20] combined Symmetrized Dot 
Pattern (SDP) with CNN for intelligent bearing fault diagnosis. SDP method [21] converts the 
time series into polar SDP images, which have the frequency and amplitude of the raw signals. In 
[22] and [9], they convert the time series into a 2D gray image. In addition, a variety of methods 
use the time-frequency image to represent the time series [23], [24], but the time-frequency 
analysis methods cost a lot of time so it is difficult for actual online diagnosis. Wang et al. [25] 
encoded a time series as the GAF image and then took advantage of the deep model for image 
representation learning to obtain a better classification accuracy rate. The algorithm was validated 
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on a 20-time series dataset and outperformed the traditional k-NN+DTW method, which was 
earlier considered the most effective method for time series classification. 

The advantages of image-interpreting time series as a GAF image include the following: 
1) there is no spatial transformation of the original time series, and the encoding process is 
performed in the original representation space. In other words, the time complexity of the 
algorithm is of the linear order Ο(𝑛), where n is the length of the time series. 2) The principle of 
the approach is simple, easy to understand, and reproducible. Surprisingly, the GAF pictorial 
method has rarely been applied to bearing fault detection problems. The GAF pictorial method 
has two different representations, including the Gramian Angular Summation Field (GASF) and 
the Differential Difference Field (GADF). The GASF and GADF provide different levels of 
information, such that, the final decision results of using them for deep learning are different. 
Given this, this study introduces the stacking generalization method [26], [27] to fuse the initial 
decision results based on GASF and GADF. The proposed method improved the classification 
accuracy rate of bearing faults and increased the reliability of the results. 

The flow of the proposed approach is shown in Fig. 1. It can be seen that the method is 
composed of data preprocessing, image-interpreted vibration signal, and ensemble deep learning. 
The image-interpreting stage was used to better explore the vibration signals information. 
Ensemble deep learning can make full use of different levels of information to achieve better 
performance in bearing fault detection. 

In sum, the main contributions of this study are as follows:  
1) The GAFs approach is introduced to encode the bearing vibration signal into GASF and 

GADF matrices. The GAFs contain temporal correlation of vibration signal. The 2D-CNN is used 
to learn the deep features of the images, and then the idea of the stacking ensemble method is 
combined to construct an integrated deep model to achieve a high accuracy rate of bearing fault 
detection. It is a decision-level fusion strategy. Due to the deep learning with GASF and GADF 
obtains different accuracy rates, namely, they contain different information for classification. 
Therefore, building an ensemble model is an ideal fault detection scheme. 

2) Last but not least, we design two experiments on CWRU datasets to evaluate the 
performance of bearing fault classification. With those comparable results, we demonstrate that 
our method achieves a better performance than the comparative method. 

3) The rest of the paper is organized as follows: In Section 2, we introduce the principle of 
encoding time series as GAF images; we present the proposed method in Section 3; next, we 
conduct a performance test on the CWRU dataset. Finally, in Section 5, we conclude the paper. 

2. Image-interpreted time series 

Encoding vibration signals into images of different granularities is a popular research area for 
bearing fault diagnosis. Here, we introduce the GAF encoding method, which first transforms the 
vibrating bearing signal into a 2D image, and then uses a 2D-CNN to learn the knowledge of the 
image. 

2.1. GAF encoding method 

Given a time series 𝑋 = ሼ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥ሽ, where 𝑥 is scaled in [−1,1] or [0,1] using: 

𝑥ప = 𝑥 − 𝑚𝑎𝑥ሺ𝑋ሻ + 𝑥 − 𝑚𝑖𝑛ሺ𝑋ሻ𝑚𝑎𝑥ሺ𝑋ሻ −𝑚𝑖𝑛ሺ𝑋ሻ , (1)𝑥ప = 𝑥 − 𝑚𝑖𝑛ሺ𝑋ሻ𝑚𝑎𝑥ሺ𝑋ሻ − 𝑚𝑖𝑛ሺ𝑋ሻ. (2)

Then, the 𝑋෨ can be encoded as the angular cosine and the timestamp as the radius using Eq. (3): 
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ቐ𝜙 = arccosሺ𝑥పሻ, −1 ≤ 𝑥ప ≤ 1,    𝑥ప ∈ 𝑿 ,𝑟 = 𝑡𝑁 , 𝑡 ∈ ℕ,  (3)

where 𝑡 is the timestamp and 𝑁 is a constant factor. Based on this, a one-dimensional time series 
is mapped to the two-dimensional image. Because 𝑥 ∈ [−1,1] or 𝑥 ∈ [0,1], cosሺ𝜙ሻ (𝜙 ∈ [0,𝜋]) 
is monotonic, such that GAF encoding is bijective. In other words, a time series can be mapped 
only to a unique polar coordinate space. In addition, the time dependence is preserved by the 𝑟 
coordinates. 

     

     
Fig. 2. GASF images of 10 bearing status 

     

     
Fig. 3. GADF images of 10 bearing status 

Once performing the GAF encoding for time series, the temporal correlations within different 
time intervals are identified by considering the triangular sum/difference between each point: 

𝐺𝐴𝑆𝐹ሺ𝑖, 𝑗ሻ = cos൫𝜙 + 𝜙൯ = 𝑥ప𝑥ఫ − ඥ1 − ሺ𝑥పሻଶට1 − ൫𝑥ఫ൯ଶ, (4)𝐺𝐴𝐷𝐹ሺ𝑖, 𝑗ሻ = sin൫𝜙 − 𝜙൯ = 𝑥ఫඥ1 − ሺ𝑥పሻଶ − 𝑥పට1 − ൫𝑥ఫ൯ଶ. (5)

The GAF matrix was constructed in the original representation space of the time series. 
Therefore, the encoding method has significant advantages in terms of efficiency, while avoiding 
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temporal information loss in the process of representation space transformation [25]. Work [25] 
pointed out that the GAF has two significant advantages. First, the GAF matrix preserves the time 
dependence of the time series, that is, each element of the GAF matrix was generated sequentially 
from the top left to the bottom right according to the temporal order of the original time series. 
Second, the GAF matrix contains temporal correlations; for example, 𝐺𝐴𝐹ሺ𝑖, 𝑗ሻ denotes the time 
interval 𝑘 = |𝑖 − 𝑗| relative correlation in the direction. 

In practical applications, direct encoding of the bearing vibration signal in the time domain 
into a GAF matrix is often unsatisfactory. This is because the bearing signal in the time domain 
can easily be contaminated by noise. Therefore, we encoded the amplitude-spectrum sequence of 
the bearing signal into the GAF image. In the amplitude spectrum, the energy of useful information 
is concentrated in a narrow range of frequency bands, whereas the noise energy is distributed over 
the entire frequency band. Assuming that 𝑋ത = ሼ𝑥ଵതതത, 𝑥ଶതതത,⋯ , 𝑥തതതሽ is the amplitude spectrum of a 
bearing vibration signal, such that 𝑋ത can be denoised according to Eq. (6): ሺ𝑥పഥሻᇱ = ൜𝑥పഥ − 𝜇, 𝑥పഥ > 𝜇,0,                  𝑥పഥ ≤ 𝜇, (6)

where, 𝜇 is the mean value of 𝑋. As the amplitude spectrum of the vibration signal is symmetric, 
it is possible to consider only the left amplitude spectrum. Fig. 2 and 3 show the GASF and GADF 
images of 10 different bearing faults, respectively. The class distributions of these faults are shown 
in Table 1.  

Table 1. Class distribution of 9 types of faults 
Fault type Load (HP) Speed (rpm) Ball Inner race Outer race 

0.007" 0 1797 class 1 class 4 class 7 
0.014" 0 1797 class 2 class 5 class 8 
0.021" 0 1797 class 3 class 6 class 9 

3. Denoising method 

In real applications, the sampling points of the time series are usually very large; therefore, it 
is necessary to reduce the dimensionality of the time series before GAF encoding. Considering 
that the piecewise aggregate approximation (PAA) algorithm [28] can not only preserve the basic 
trend of the time series but also has low time complexity, we use the PAA algorithm to pre-process 
the bearing vibration signal. 

PAA is a simple and effective time series smoothing algorithm that preserves the trend of the 
time series. The time complexity of PAA is low; therefore, the PAA algorithm is widely used in 
time series analysis problems. Considering the time series 𝑋 = ሼ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥ሽ is mapped to a new 
time series 𝑋 = ሼ𝑥ଵෞ, 𝑥ଶෞ,⋯ , 𝑥ෞሽ, 𝑥పෝ  can be calculated using the following formula: 

𝑥పෝ = 𝑚𝑛 × ቌ  𝑥 ሺ×ሻ⁄
ୀ ሺିଵሻାଵ⁄ ቍ  ,      1 ≤ 𝑖 ≤ 𝑚. (7)

From Eq. (7), we find that 𝑋 is sequentially divided into 𝑚 blocks of equal size, and the mean 
value of each block is used to re-represent the block. The PAA algorithm has a certain noise 
reduction effect, as it uses the mean value to smooth the data. Clearly, the selection of 𝑚 is crucial. 
If 𝑚 is too large, the smoothed result loses the original structural information, where 𝑚 is too 
small, and the effect is not suitable for noise reduction. From Eq. (7), we can also see that the 
traditional PAA needs to satisfy 𝑛 𝑚⁄  as an integer. For 𝑛 𝑚⁄  is a non-integer number that can be 
found in [29] and [30]. 
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3.1. Stacking integration methodology 

Bagging, boosting, and stacking methods are three commonly used ensemble learning 
methods. The bagging method is an algorithm to reduce the variance in the estimate by using 
voting or mean reversion to achieve the fusion of multiple decision results [31]. Boosting method 
can upgrade weak learners to strong learners. Unlike the parallel learning approach of the bagging 
method, boosting method is a sequential framework. Boosting method works by sequentially 
training an initial learner from the training set, and then adjusting the distribution of training 
samples according to the results of the initial learner, thus, those instances of wrong decisions of 
the previous initial learner will be received attention. AdaBoost [32] method is a very classic 
boosting method. The stacking method is a different fusion method that is essentially 
representation learning. The principle of the stacking method is that they perform the second-stage 
learning with the result of the initial learner. Stacking method has yielded unusually brilliant 
results in many data mining competitions (e.g., data science competitions on the Kaggle platform). 
For example, in the solution proposed by the grand prize winner of the 2009 Netflix 
recommendation competition, integrating multiple initial learners is the core of its design [34]. 

In the case of the classification task, the basic process of the stacking method is to learn 
different classification algorithms ℒଵ,⋯ ,ℒ on the dataset 𝐷. 𝑑 = ሺ𝑥 ,𝑦ሻ ∈ 𝐷 is an instance, 
where 𝑥 is the feature vector and 𝑦 is the corresponding label. In the first stage of the stacking 
method, a set of base classifiers 𝐶ଵ,⋯ ,𝐶 where 𝐶 = ℒሺ𝐷ሻ are generated. In the second stage, a 
meta-classifier was learned based on the outputs of the base classifiers. Note that the leave-one-
out method or cross-validation [35] was applied to generate the training set for learning the 
meta-classifiers [33]. For the leave-one-out method, each base classifier uses almost all examples 
and leaves the remaining one for testing. The procedure can be formalized as ∀𝑖 = 1,⋯ ,𝑛 (𝑛 is 
the number of examples), 𝐶௧ = ℒ௧ሺ𝐷 − 𝑑ሻ, ∀𝑡 = 1,⋯ ,𝐾, and next, the base learner is used to 
classify 𝑑 by 𝑦௧ = 𝐶௧ሺ𝑥ሻ. Therefore, 𝑑 can be reconstructed to a new vector ቀሺ𝑦ଵ,⋯ ,𝑦ሻ,𝑦ቁ. 
The inputs of the meta-learning phase comprised the predictions of the base classifier. 

As the leave-one-out method reconstructs only a sample per learning, it increases the time cost 
of the reconstruction step, whereas cross-validation predicts a pre-defined subset of the original 
sample set at a time and gets the predictions of the base classifier on these subsets. Thus, cross-
validation is preferred for applying the stacking algorithm for big data.  

4. Experiments 

Here, we used CWRU bearing data [36] to verify the effectiveness of the proposed method. 
The dataset comprised a multivariate vibration time series generated by the bearing test 
equipment, as shown in Fig. 4. In this study, the bearing dataset included the following four 
conditions: normal, outer race failure, inner race failure, and roller failure. The drive-side vibration 
signal was used with a sampling rate of 48 kHz and a motor load of 0 hp. Table 1 shows the class 
distributions of the selected data. 

 
Fig. 4. Test-stand [36] 
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Table 2. Accuracy rate of 5 methods on raw CWRU 

Algorithm GASF+2D-
CNN 

GADF+2D-
CNN 

WPI+2D-
CNN 

Amplitude spectrum + 
1D-CNN 

Ensemble 
method 

acc 99.4 % 99.8 % 98.7 % 75.6 % 100 % 

5. Experimental design 

Here, we used a 2D-CNN as the initial learner. Considering useable data is small, the 2D-CNN 
model includes only three convolutional layers, three pooling layers, and one fully connected 
structure. Meanwhile, the batch normalization [37] and the dropout [38] methods are used to 
reduce the risk of deep model over-fitting. The 2D-CNN uses the cross-entropy loss function, and 
Adam optimizes the algorithm [39]. We used the random forest regression method as the 
meta-learner. We follow the common practice of dividing the CWRU dataset was divided into the 
training set, test set, and validation set in the ratio of 0.5, 0.3, and 0.2. The training set was used 
to train the 2D-CNN and the validation set was used to train the random regression model. The 
experiments are repeated 10 times under different random seeds, and the final results are taken as 
the mean value of the 10 experiments. Considering the uniform distribution of classes, performing 
different algorithms can be well measured by the traditional classification accurate rate: 

𝑎𝑐𝑐 = Correctly Identified InstancesTotal Instances × 100%, (8)

5.1. Raw CWRU data 

In this section, the experiments were divided into two parts. The first was to verify the validity 
of the image interpretation of vibration signals. Its purpose was to compare the fault recognition 
performance before and after image encoding. We used the 1D-CNN model to learn one-
dimensional vibration signals and applied the 2D-CNN model to the imaged data. Second, we 
compare the performance of the proposed method with that of the existing method in [2] (hereafter 
referred to as WPI+2D-CNN). The topological structure of 2D-CNN is described in the above 
section. In addition, the 1D-CNN model contains a one-dimensional convolutional layer, a pooling 
layer, and a fully connected structure. To reduce the overfitting of CNN, batch normalization and 
dropout are used to reduce the risk of overfitting. 

We showed the accuracy rates on the original CWRU data in Table2. From the table, we can 
conclude that: 1) the vibration signal encoded to a two-dimensional image can be better learned 
to achieve better performance; 2) the proposed ensemble method gets better performance than the 
existing method. Although WPI+2D-CNN also gets the accurate rate close to our approach, it has 
a high time cost than the proposed method. Due to GAFs performing the outer product of the time 
series, so the time complexity of GAFs is Oሺ𝑁ଶሻ, 𝑁 is the length of time series. Work [2] does not 
give the time complexity of WPI, such that we add a test to compare their runtimes. Table 3 shows 
the time consumption of imaging the raw CWRU data using GAFs and WPI respectively. From 
the table, we can see that WPI costs 2938.267 seconds, which is awful larger than GASF and 
GADF. 

Table 3. Runtime of GAFs and WPI 
 GASF GADF WPI 

Runtime (s) 2.289 (s) 2.236 (s) 2938.267 (s) 

Why can fusing the knowledge of both GASF and GADF can improve accurate rates? From 
Fig. 2, we can see that class 5, class 6, and class 7 have a similar representation in the GASF image 
while presenting a significant difference in the GADF domain. In the same light, class 2 and class 
3 have similar GADF features, instead, have different GASF features. Fig. 2 and 3 explain the 
advantages of our method. In fact, from the perspective of information theory, fusing different 
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representation features of the GAF can increase the information entropy of the inputs and help 
improve the accuracy of the learning-based prediction model. 

5.2. Noise-added CWRU data 

To further verify the robustness of our method, we added Gaussian white noise to raw CWRU 
data. We added noise to the vibration signal with SNR of [–5 dB, –2 dB, 2 dB, 5 dB]. The 
experimental results are in Table 4. From the table, we can see that: 1) the proposed method can 
achieve better performance than WPI+2D-CNN in a noisy environment. 2) The fault identification 
performance of GADF+2D-CNN is close to GASF+2D-CNN. 3) The ensemble model fusing the 
GAF image information can achieve excellent performance. Note that for the bearing signal with 
complex noise, we can choose advanced denoising methods instead of formula (6). Examples 
include deep learning, wavelet shrinkage-based, SVD-based methods, and EMD-based methods. 

In summary, we can conclude that fusing the knowledge of the GASF and the GADF can 
improve the performance of bearing fault diagnosis for the CWRU dataset. Considering that the 
time cost of building the GAF was low, the proposed method was more in line with the practical 
application requirements. 

Table 4. Accuracy rate of 5 methods on noisy CWRU 
 –5 dB –2 dB 2 dB 5 dB 

WPI+2D-CNN 87.1 % 93.2 % 97.6 % 97.8 % 
GASF+2D-CNN 99.0 % 99.0 % 99.1 % 99.4 % 
GADF+2D-CNN 99. 4 % 99.1 % 99.0 % 99.6 % 
Ensemble method 99.8 % 100 % 100 % 100 % 

6. Conclusions 

This study proposed a bearing fault detection method that combines im-age-interpreting 
vibration signals and integrating deep learning, which can realize the accurate identification of 
bearing faults. Our method encoded one-dimensional vibration signals into a two-dimensional 
image and then used a 2D-CNN to obtain the initial decision result. Finally, we introduced a 
decision layer integration method to realize the fusion of multiple underlying decisions. 
Experiments on the CWRU real-world dataset show that the proposed method can obtain a better 
recognition accuracy rate than the existing method (i.e., WPI+2D-CNN), even when Gaussian 
white noise is added to the original vibration signal. 

Altogether, the learning-based method for bearing fault detection is provided in this work. 
Next, we plan to apply our method to different publicly available bearing failure datasets and 
laboratory datasets. 
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