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Abstract. Based on harmonic balance calculation technology with a single-passage phase-lag 
periodic boundary, the influence of tip gap size on the aerodynamic damping characteristics of 
rotor for first-order torsional vibration is analyzed with energy method. This research shows that 
the aerodynamic damping coefficient of the blade has a parabolic distribution law of first 
decreasing and then increasing with the increase of the tip clearance size. There is a most 
dangerous clearance value of torsional flutter characteristics in the blade, and the aerodynamic 
damping under this clearance is 12.67 % lower than the maximum damping value. The influence 
of the leakage flow on the time-averaged flow field near the blade tip leads to significant 
differences in the local aerodynamic work. In addition, the effect of leakage flow on the amplitude 
and phase of the local first-order unsteady pressure also bring about a significant influence on 
local aerodynamic work near blade tip. 
Keywords: tip clearance, aerodynamic damping, aerodynamic work, harmonic balance. 

1. Introduction 

Flutter is a self-excited vibration. Aerodynamic damping is an important parameter for 
evaluating vibration-induced effects for blade flutter prediction. In the aeronautical compression 
system, the clearance between the rotors and the casing is often inevitable. When the impact of 
the clearance leakage flow on the aerodynamic performance of the compressor is significant, it is 
inevitable to affect the flutter characteristics. Due to the large amplitude of the blade tip, the effect 
of clearance flow near the blade tip on the aerodynamic damping should be carefully evaluated. 

The research on the leakage vortex structure of tip clearance and its correlation with rotating 
stall has received extensive attention [1-2]. However, the effect of tip clearance on blade 
aeroelasticity is rarely studied. Bell and He [3] experimentally studied the unsteady flow for an 
isolated turbine blade in the bending mode. Sanders et al. [4] studied the characteristics of stall 
flutter of a transonic fan and found that the tip clearance had a significant effect on the magnitude 
and phase of the unsteady pressure near the tip, and even affected the flutter boundary of the blade. 
Huang et al. [5] experimentally studied the effect of tip clearance flow on blade aerodynamic 
damping for linear oscillating turbine cascades. The results showed that when the clearance was 
small, the leakage vortex had a stabilizing effect on the blade. Yang et al. [6] carried out aeroelastic 
experiments on the linear cascade of the compressor. The results showed that with the increase of 
the tip clearance, the clearance flow had an unstable influence on the blade, which affects almost 
the entire blade height. Besem and Kielb [7] used the frequency domain unsteady flow calculation 
method to numerically predict the flutter of rotors in a three-stage axial flow compressor. The 
influence of different tip sizes on the aeroelastic stability of the blade under torsional mode was 
investigated. It was found that there was a clearance value that maximizes the aerodynamic 
damping coefficient of the blade in the entire inter-blade phase angle range. 

Torsional flutter is a frequent phenomenon of blade aeroelastic instability [8]. This paper 
selects NASA Rotor 67 as the research object. Based on the harmonic balance technology, through 
the one-way energy method, the unsteady flow of the blade torsional motion under different tip 
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gap sizes is simulated. The aerodynamic work and the aerodynamic damping difference under 
different tip clearance sizes are compared and analyzed in order to reveal the influence mechanism 
of the leakage flow on the aerodynamic damping of the torsional oscillating blade which is helpful 
for engineers to avoid torsional flutter, optimize aeroelastic stability of blades and widen reliability 
design boundary.  

2. Numerical method 

In order to consider the influence of blade vibration, based on the Arbitrary Lagrangian 
Eulerian Method (Arbitrary Lagrangian Eulerian Method), the integral form of the NS equation 
describing the unsteady flow derives as follows: 𝜕𝜕𝑡ම 𝑄𝑑𝑉 + ඵ (𝐹 − 𝑄𝑣௠௚)ఋ஺ఋ௏ 𝑑𝐴 = ම (𝑆௜ + 𝑆௩)𝑑𝑉ఋ௏ , (1)

where 𝑄 is the conserved variable; 𝐹 is the inviscid flux term; 𝑣௠௚ is the mesh velocity; 𝑆௜ is the 
non-viscous source term under the centrifugal force, and 𝑆௩ is the viscous term. 

The harmonic balance method is a nonlinear high-efficiency simulation method for 
quasi-periodic unsteady flow [9]. Expressing the unsteady conserved variable 𝑄 in the form of a 
Fourier series, and ignoring the higher-order terms above 𝑁, we have: 

𝑄 = 𝑄 + ෍൫𝐴௡sin(𝜔 𝑡௡ ) + 𝐵௡cos(𝜔௡𝑡)൯ே
௡ୀଵ . (2)

Substituting Eq. (2) into Eq. (1) and adding the virtual time derivative term, the original 
governing equation is deduced as follows: 𝜕𝜕𝜏ම 𝑄∗𝑑𝑉 + ඵ (𝐹∗ − 𝑄∗𝑣௠௚)ఋ஺ఋ௏ 𝑑𝐴 = ම (𝑆௜∗ + 𝑆௩∗ + 𝐷𝑄∗)𝑑𝑉ఋ௏ , (3)

where 𝐷𝑄∗ = డாడ௧ 𝐸ିଵ𝑄∗, and 𝐷 is called the frequency domain operator. 
Comparing Eq. (3) with Eq. (1), it can be found that the two equations are highly similar in 

form. The traditional steady-state solution methods are thus applicable here, and the numerical 
methods are the same as in [10]. 

For the numerical simulation of the turbomachinery flow field, the inlet boundary gives the 
total temperature, total pressure and inflowing angle, and the outlet gives the back pressure. The 
solid boundary is given no-slip boundary condition. For both steady simulation and unsteady 
flutter analysis of oscillating blade rows, the computational domain is a single blade passage. 

3. Structural dynamics analysis 

In order to study the effect of tip leakage flow on blade aerodynamic damping, six blade 
models with tip gap size of 0.0 %, 0.2 %, 0.5 %, 0.8 %, 1.0 %, and 1.2 % blade height are selected 
for comparative analysis of flutter characteristics. 

Before studying the flutter characteristics, the structural dynamics analysis of the blade is 
necessary. The natural vibration frequency and scaled modal amplitude obtained by the finite 
element calculation are used to determine the motion law of the blade in a one-way coupled flutter 
prediction, that is, neglecting the influence of fluid on structural vibration due to high mass 
coefficient of solid blades, the aerodynamic damping of the blades can be obtained only by 
calculating the energy exchange between moving blades and the working fluid in deterministic 
harmonic vibration manner based on modal analysis solution [10].  
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Based on the commercial software ANSYS, titanium alloy TC4 is selected as the blade 
material and material property are shown in the Table 1. The 20-node Solid 186 high-order 
elements are used to construct a finite element grid which total number of elements is 2287. The 
fixed constraint is set at the root of the rotor blade. Considering the effect of rotational prestress, 
the first-order torsional mode shape (1T) shown in Fig. 1 is obtained. The six tip gap models from 
small to large are represented by Tip gap 1-Tip gap 6. The first-order torsional vibration 
frequencies obtained from the simulation are slightly different, as shown in Table 2. 

  
Fig. 1. The first-order torsional mode of Rotor67 

Table 1. The material property of titanium alloy TC4 
Density (kg/m3) 4480 
Poisson’s ratio 0.33 

Elastic modulus (GPa) 109 
 

Table 2. The frequency of the  
first-order torsional mode 

Model 1T natural frequency (Hz) 
Tip gap 1 1760.6370 
Tip gap 2 1765.8550 
Tip gap 3 1773.6440 
Tip gap 4 1781.5120 
Tip gap 5 1786.8530 
Tip gap 6 1792.2700 

 

4. Flutter analysis 

For steady simulation of the flow field of Tip gap 1-6, the inlet boundary is given sea level 
atmosphere and axial inflowing condition. The compressor pressure ratio characteristics shown in 
Fig. 2 can be calculated by adjusting the outlet back pressure. It can be seen that as the tip gap 
increases, the stable margin is more affected, resulting in the stalls of Tip gap 4-6 before reaching 
the design pressure ratio of 1.63. Therefore, this working point of 120 kpa back pressure is selected 
as the reference condition so that the research on aerodynamic damping under different tip gap 
sizes is comparable. 

Fig. 3 shows the variation of the aerodynamic damping coefficient with the nodal diameter for 
different tip gap sizes under the first-order torsional mode. The aerodynamic damping of Tip gap 
1-6 is greater than 0, indicating that the blade has no flutter risk. The aerodynamic damping at 
large inter-blade phase angles are quite different. Nevertheless, with the decrease of the nodal 
diameter, the six curves gradually approach and reach the minimum aerodynamic damping state 
at ND = –3. In Fig. 4 the relationship between the aerodynamic damping coefficient and the tip 
gap size of Tip gap 1-6 in the first-order torsional mode can be depicted as a parabolic curve. The 
medium clearance case Tip gap 3 has the lowest aeroelastic stability, and its aerodynamic damping 
coefficient is 7.13 % lower than that of clearance free scheme. The maximum clearance scheme 
Tip gap 6 has the highest aeroelastic stability. Its aerodynamic damping coefficients are 4.62 % 
and 12.67 % higher than that of Tip gap 1 and Tip gap 3, respectively. 

Fig. 5 is the variation curve of the aerodynamic work on the blade surface with different tip 
gap sizes. When the blade vibrates in the first-order torsional mode, the negative aerodynamic 
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work intensity on the suction surface increases basically with the increase of the gap size. The 
relationship between the negative work of the pressure surface and the clearance shows a 
parabolic-like distribution, and the minimum value appears in the medium clearance scheme Tip 
gap 4. The negative work intensity on this surface is lower than the suction surface under all 
clearance cases. Due to the distribution characteristics of the two surfaces, the relationship 
between the aerodynamic damping and tip gap size is shown in Fig. 4. 

 
Fig. 2. Pressure ratio characteristics of Rotor67  

 
Fig. 3. Variation of aerodynamic damping  

with nodal diameters 
 

 
Fig. 4. Variation of minimum aerodynamic  

damping with tip gap size 

 
Fig. 5. Variation of accumulated work  

on blade surface with tip clearance 

The vibration amplitude of the blade tip is relatively high, and the leakage flow has a prominent 
influence on the local flow. Fig. 6 shows the distribution of the time-averaged static pressure and 
aerodynamic work with chord length at 98 % of the blade height. Between the suction leading 
edge and 30 % chord, the large tip clearance leads to a local “unloading” of the static pressure, 
and the negative work of Tip gap 5 and Tip gap 6 is significantly enhanced in this region. In 
addition, the difference in the distribution of aerodynamic work is mainly caused by the change 
of the shock wave shape, which is also reflected in the distribution of static pressures. For the 
pressure surface, although the impact of tip gap size on the shock intensity and position is 
significant, the shock oscillation on the surface does not induce a large aerodynamic work. As 
such, the aerodynamic work near the shock region under different clearance schemes has little 
difference. The influence of leakage flow on the aerodynamic work distribution is mainly 
manifested in the vicinity of the leading and trailing edges. From Tip gap 1 to Tip gap 6, the 
negative work intensity near the trailing edge gradually increases with the increase of the 
clearance. The change of the aerodynamic work at the leading edge is relatively complex. 

Fig. 7 is the distribution of the phase and amplitude of the first-order unsteady pressure at 98 % 
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leaf height with chord length. Under the large clearance case, the high static pressure oscillation 
near the suction leading edge corresponds to the static pressure unloading area. The local leakage 
flow not only affects the time-averaged flow field, but also has a prominent effect on the unsteady 
pressure oscillation induced by the blade vibration. The blade locally contributes more positive 
damping, so that the negative work intensity of the damping blade vibration on this surface is 
significantly improved. The amplitude and phase difference of the pressure oscillation near the 
trailing edge is the result of the impact of the shock wave and leakage flow. For the pressure 
surface, since the shock wave is close to the torsional pitch diameter, the difference in the leakage 
flow intensity leads to a large difference in the amplitude and phase of the pressure response near 
the 40 % chord length. The local vibration amplitude is small, resulting in no significant difference 
in the local aerodynamic work. 

 
a) Suction surface 

 
b) Pressure surface 

Fig. 6. Time-averaged static pressure and aerodynamic work at 98 % blade height with chord length 

 
a) Suction surface 

 
b) Pressure surface 

Fig. 7. First-order unsteady pressure phase and amplitude with chord length at 98 % blade height  

5. Conclusions 

In this paper, the influence of different tip gap sizes on the blade aerodynamic damping 
coefficient was numerically investigated. The aerodynamic work distribution on the blade surface 
and the relationship between the first-order unsteady pressure response and the clearance scale 
were analyzed. Related conclusions are as follows: 

1) With the increase of tip gap size, the minimum aerodynamic damping coefficient of the 
blades first decreases and then increases with a similar parabolic distribution. The most dangerous 
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case of aeroelastic stability is at medium tip gap size and reducing tip gap size as much as possible 
is beneficial to balance the aeroelastic stability and aerodynamic performance. 

2) The aerodynamic work of different blade surfaces varies due to different tip gap sizes. The 
negative aerodynamic work of the suction surface increases slowly with the increase of gap sizes. 
The negative aerodynamic work intensity on the pressure surface varies sharply with respect to 
gap sizes, and the variation law is similar to that of the blade aerodynamic damping. 

3) The region where the leakage flow has an obvious effect on the time-averaged flow field 
near the blade tip exactly corresponds to the region where the amplitude and phase of the 
first-order unsteady pressure fluctuation are significantly dissimilated due to different tip gap 
sizes, then the comprehensive effect of the leakage flow on the time averaged and unsteady flow 
fields is the main reason for the difference in blade aerodynamic damping. 
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