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Abstract. Our present manuscript is an attempt to derive a model of generalized thermoelasticity 

with dual phase lag heat conduction by using the methodology of memory dependent derivative 

for a isotropic rotating plate subject to the prescribed boundary conditions with constant magnetic 

and electric intensities. Two integral transform such as Laplace transform for time variable and 

Fourier transform for space variable are employed to the governing equations to formulate 

vector-matrix differential equation which is then solved by eigenvalue approach methodology. 

The inversion of two integral transformations is carried out using suitable numerical techniques. 

Numerical computations for displacement, thermal strain and stress component, temperature 

distribution are evaluated and presented graphically under influences of different physical 

parameters. 

Keywords: magnetothermoelasticity, memory dependent derivative, dual phase-lag model and 

vector-matrix differential equation. 

1. Introduction  

At present, the theory of magneto thermo elasticity which deals with the interactions among 

the strain, temperature and magnetic field has attracted research personalities not only due to its 

extensive uses in different fields such as geophysics, for understanding the effects of the earth’s 

magnetic field, seismic waves, emission of electromagnetic radiations from nuclear devices etc., 

but also for its applications in different fields such as engineering, high energy The classical 

coupled thermo elasticity theory of Biot [1] includes the strain-rate gradient in particle 

accelerators, nuclear reactor’s design etc. 

Fourier’s law of heat conduction equation which is transformed to parabolic type diffusion 

equation predicting infinite speed of propagation. Whereas Cattaneo [4] and Vernotte [18] theory 

admits the existence of thermal waves which propagate at a finite speed. Tzou [17] made the 

generalization of thermo elasticity theory with dual phase lag and suggested two different phase 

lags (DPL) in the Fourier Law of heat conduction in which the first is for the heat flux vector and 

the second for the temperature gradient. Generalization of thermo elasticity theory with two 

relaxation time has been made by Green and Lindsay [14] who obtained the explicit versions of 

the constitutive equations. Ezzat [10] obtained independently these equations and the fundamental 

solutions for this theory. Ezzat and El-Karamany [12] established the uniqueness and reciprocity 

theorems for anisotropic media. Ezzat, Othman and El-Karamany [13] introduced a formulation 

of the boundary integral equation method for generalized thermo elasticity with two relaxation 

times. The heat conduction equation and all the equations of motion were modified by Green and 

Lindsay [14] without violating Fourier Law introducing two relaxation time parameters. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jets.2022.22733&domain=pdf&date_stamp=2022-11-03
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Ibrahim A. Abbas et al. [20] [23] discussed fractional order thermoelasticity in infinite 

medium. 

The theory of materials with voids or vacuous pores was first proposed by Jace W.Nunziato 

and Stephen C. Cowin [21] in 1979 and in a study [22] by Marin Marin, Mohamed I. A. Othman 

and Ibrahim A. Abbas in which the domain of influence theorem has been extended to cover the 

generalized thermoelasticity of anisotropic bodies with voids in the context of Lord-Shulman and 

Green-Lindsay theories where it was proved that for a finite time 𝑡 > 0 the displacement field, the 

change in volume fraction and the temperature 𝑇  generate no disturbance outside a bounded 

domain . 

The G-N theory introduced by Green and Naghdi [15] is based on generalized thermo elasticity 

where thermal displacement gradient in the constitutive equations is considered. 

So we are getting different types of problems which have been solved using different 

approaches: 

Solutions of some problems are not convergent while involving potential functions, whereas 

they are actually convergent in physical problems.  

Because physical problems with given initial and boundary conditions are directly related to 

considered physical quantities (like stress, strain, heat, temperature etc.) and space variables 

(displacement, time etc.) but not to potential function. Bahar and Hetnarski [3] discussed the 

limitations of using potential functions. 

Solutions are found by state-space approach where Cayley-Hamilton theorem is applied to the 

co-efficient matrix of the field variables. 

Sometimes solutions are found by Eigen value approach, as in Das and Lahiri [6] in which 

using the basic equations a vector matrix differential equation is formed and the solutions for the 

resulting field equations are found by evaluating the Eigen values and Eigen vector of the 

corresponding coefficient matrix. 

The use of memory dependent derivative (MDD) in the Fourier law of heat conduction means 

that the heat conduction equation and the constitutive equations are modified with kernel function 

and the time delay in which they can be chosen freely which provides more flexible approaches 

to describe a material’s practical response. 

According to Wang and Li [19], as a new alternative to the fractional order derivative, which 

has certain features that lead to difficulties when applied to real world problems, the concept of 

memory-dependent derivative is developed. 

For a differentiable function 𝑓(𝑡): 

𝐷𝜔𝑓(𝑡) =
1

𝜔
∫ 𝐾(𝑡 − 𝜂)

𝜕𝑓(𝑡)

𝜕𝜂

𝑡

𝑡−𝜔

𝑑𝜂,  

is called the ‘first order memory-dependent derivative’ at t relative to the time delay 𝜔 > 0 , to 

denote memory dependence as,  𝑞 + 𝜔𝐷𝜔𝑞̇ = −𝑘∇𝑇 , 𝑞  being the heat flux relative to the 

temperature gradient and the kernel function 𝐾(𝑡 − 𝜂) being differentiable at 𝑡  and 𝜂  can be 

chosen freely as follows: 

𝐾(𝑡 − 𝜂) = 1 −
2𝑏

𝜔
(𝑡 − 𝜂) +

𝑎2

𝜔2
(𝑡 − 𝜂)2 =

{
 
 
 

 
 
 
1,                         𝑎 = 𝑏 = 0,        

1 −
(𝑡 − 𝜂)

𝜔
,     𝑎 = 0,     𝑏 =

1

2
,

1 − (𝑡 − 𝜂),    𝑎 = 0,    𝑏 =
𝜔

2
,

(1 −
(𝑡 − 𝜂)

𝜔
)

2

,    𝑎 = 𝑏 = 1,

  

where, 𝑎 and 𝑏 are constants. 
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Wang and Li [19] introduced memory-dependent derivative into Lord and Shulman [16] 

generalized thermoelasticity theory. Recently, Ezzat and Bary [11] also Ezzat, El-Karamany and 

El-Bary [12, 13] constructed a new generalized thermoelasticity as well as thermo-visco elasticity 

theory with memory-dependent derivatives.  

The present study deals with the concept of “Memory dependent derivative” in heat transfer 

process in an elastic solid body in absence of heat source in the context of two-phase-lag model 

of generalized thermo elasticity. Two integral transform such as Laplace transform for time 

variable and Fourier transform for space variable are employed to the governing equations to 

formulate vector-matrix differential equation which is then solved by the eigen value approach 

methodology. The upper and lower surfaces of the plate are shear–stress free whereas a time 

dependent compression is given to the both surfacesand the entire elastic medium is also rotating 

with a uniform angular velocity. The inversion of Fourier transformation is carried out using 

suitable numerical techniques while numerical inversion of Laplace transformation is done by 

Bellman’s method. Numerical computations for displacement, thermal strain and stress 

component, temperature distribution are evaluated and presented graphically under influences 

of different physical parameters. 

2. Mathematical model 

As discussed in Chakraborty, Das and Lahiri [5], in the fields relating to generalized magneto 

thermoelasticity with memory-dependent derivative, the displacements and the thermal fields as 

well as the stress-strain-temperature relations for a linear isotropic medium take the following 

forms: 

The equation of motion: 

𝜎𝑖𝑗,𝑗 + 𝐅𝑖 = 𝜌 [ 𝐮̈𝑖 + (𝛀 × (𝛀 × 𝐮))𝑖 +
(2𝛀 × 𝐮̇)𝑖], (1) 

where, 𝐅 = 𝐉 × 𝐁 = 𝜇0(𝐉 × 𝐇) represents the Lorentz’s force. 

The generalized heat conduction equation with memory dependent derivative (MDD) in 

absence of heat source: 

𝑘(1 + 𝑡1𝐷𝜔)𝑇,𝑖𝑖 = 𝜌𝐶𝐸(1 + 𝜏0𝐷𝜔 + 𝑡2
2𝐷𝜔

2)𝑇̇ + (1 + 𝑛0𝜏0𝐷𝜔 + 𝑡2
2𝐷𝜔

2)𝛾𝑇0𝑒̇. (2) 

The constitutive stress components are: 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝜆𝑒𝛿𝑖𝑗 − 𝛾 (1 + 𝜈0
𝜕

𝜕𝑡
) 𝑇𝛿𝑖𝑗 . (3) 

The strain displacement components are: 

𝑒𝑖,𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (4) 

where, electro-magnetic field components are satisfying the Maxwell’s equation which is given 

by: 

𝐽 = 𝑐𝑢𝑟𝑙 ℎ − 𝜀0𝐸̇,    𝑐𝑢𝑟𝑙 𝐸 = −𝜇0
𝜕ℎ

𝜕𝑡
,     𝑑𝑖𝑣 ℎ = 0,     𝐸 = −𝜇0(𝑢̇ × 𝐻), 

𝐵 = 𝜇0(ℎ + 𝐻),     𝐷 = 𝜀0𝐸 . 
(5) 

Conventionally, we can conclude the following four renowned theories such as: 

For classical thermoelasticity (CD) theory [1]: 𝑡1 = 𝑡2 = 𝜈 = 𝜏0 = 𝑛0 = 0. 
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For Lord and Shulman (LS) theory [16], generalized thermoelastic formulation with one 

relaxation time parameter:𝑡1 = 𝑡2 = 𝜈 = 0, 𝜏0 > 0, 𝑛0 = 0, where 𝜔 ⟶ 0 and 𝐷𝜔𝑓(𝑡) ⟶
𝜕𝑓(𝑡)

𝜕𝑡
. 

For Green and Lindsay (GL) theory [14], generalized thermoelastic formulation with two 

relaxation time parameter: 𝑡1 = 𝑡2 = 𝑛0 = 0, 𝜈 ≥ 𝜏0 > 0, where 𝜔 ⟶ 0 and 𝐷𝜔𝑓(𝑡) ⟶
𝜕𝑓(𝑡)

𝜕𝑡
. 

For dual-phase-lag (DPL) theory [17], 𝑡1 > 0, 𝜏0 > 0, 𝑡2
2 =

1

2
𝜏0
2, 𝑛0 = 𝜈 = 1, where 𝜔 ⟶ 0 

and 𝐷𝜔𝑓(𝑡) ⟶
𝜕𝑓(𝑡)

𝜕𝑡
. 

Where, 𝑢𝑖  are displacement components, e is the cubical dilatation, 𝑡 is time variable, 𝜈0, 𝜏0  
are thermal relaxation time parameters, 𝑛0 is constant positive number, 𝑡1, 𝑡2 are dual-phase-lag 

parameters, 𝐽  is electric current density vector, 𝐵 is magnetic induction vector, 𝐷  is electric 

induction vector, 𝑇  is absolute thermo dynamical temperature distribution, 𝑇0  is reference 

temperature chosen such that |
𝑇−𝑇0

𝑇0
| ≪ 1, 𝜌 is density of the medium, 𝜇0 is magnetic permeability, 

𝜀0 is electric permeability, 𝛿𝑖𝑗  is Kronecker’s delta tensor, 𝛼0
2 is Alfen velocity =

𝜇0𝐻0
2

𝜌
, 𝑐2 is 

velocity of light = 1 𝜇0𝜀0⁄ , 𝑐2
2  is velocity of transverse waves = 𝜇 𝜌⁄ , 𝐶𝐸  is Specific heat at 

constant strain, 𝜆 , 𝜇  are Lame’s Constant, 𝛼𝑇  is coefficient of linear thermal expansion, 𝛾 =
(3𝜆 + 2𝜇)𝛼𝑇 , 𝑘  is coefficient of thermal conductivity, 𝜀 = 𝛾2𝑇0 𝜌𝐶𝐸(𝜆 + 2𝜇)⁄  is the thermal 

coupling parameter and 𝜌 is density of the material. 

3. Formulation of physical problem  

Here, the problem is considered for a homogeneous and rotating isotropic infinitely extended 

thick plate of a finite thickness 2L along the 𝑥-axis occupying region 𝑅 = {(𝑥, 𝑦, 𝑧): −𝐿 < 𝑥 <
𝐿,−∞ < 𝑦 < ∞}, as shown in Fig. 1. 

We get the displacement components as 𝐮 = (𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡), 0) with cubical dilatation, 

electric and induced magnetic intensities are given by: 

𝑒 = 𝑑𝑖𝑣 𝐮 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
,     𝐄 = 𝜇0𝐻0(−𝑣̇,  𝑢̇, 0),     𝐡 = −𝐻0(0,0, 𝑒). (6) 

 
Fig. 1. Isotropic elastic plate 

In absence of body force and internal heat source, we get the equation of motion for the 

Lorentz’s force as: 

𝜌 (
𝜕2𝑢

𝜕𝑡2
− Ω2𝑢 − 2Ω

𝜕𝑣

𝜕𝑡
)

= (𝜆 + 2𝜇) (
𝜕2𝑢

𝜕𝑥2
) + 𝜇

𝜕2𝑢

𝜕𝑦2
+ (𝜆 + 𝜇)

𝜕2𝑣

𝜕𝑥𝜕𝑦
− 𝛾 (

𝜕𝑇

𝜕𝑥
+ 𝜈0

𝜕2𝑇

𝜕𝑡𝜕𝑥
) + 𝜇0𝐻0𝐽2, 

(7) 
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𝜌 (
𝜕2𝑣

𝜕𝑡2
− Ω2𝑣 + 2Ω

𝜕𝑢

𝜕𝑡
)

= (𝜆 + 2𝜇) (
𝜕2𝑣

𝜕𝑥2
) + 𝜇

𝜕2𝑣

𝜕𝑦2
+ (𝜆 + 𝜇)

𝜕2𝑢

𝜕𝑥𝜕𝑦
− 𝛾 (

𝜕𝑇

𝜕𝑦
+ 𝜈0

𝜕2𝑇

𝜕𝑡𝜕𝑦
) − 𝜇0𝐻0𝐽1. 

(8) 

The heat conduction equation with MDD is: 

𝑘 [
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝑡1
𝜔
∫ 𝐾(𝑡 − 𝜉)
𝑡

𝑡−𝜔

𝜕

𝜕𝜉
(
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
)𝑑𝜉] = 𝜌𝑐𝐸

𝜕𝑇

𝜕𝑡
+ 𝛾𝑇0 (

𝜕2𝑢

𝜕𝑡𝜕𝑥
+
𝜕2𝑣

𝜕𝑡𝜕𝑦
) 

      +
𝜏0
𝜔
[∫ 𝐾(𝑡 − 𝜉) {𝜌𝑐𝐸

𝜕2𝑇

𝜕𝜉2
+ 𝑛0𝛾𝑇0 (

𝜕3𝑢

𝜕𝑥𝜕𝜉2
+

𝜕3𝑣

𝜕𝑦𝜕𝜉2
)}

𝑡

𝑡−𝜔

𝑑𝜉] 

      +
𝑡2
2

𝜔
[∫ 𝐾(𝑡 − 𝜉) {𝜌𝑐𝐸

𝜕3𝑇

𝜕𝜉3
+  𝛾𝑇0 (

𝜕4𝑢

𝜕𝑥𝜕𝜉3
+

𝜕4𝑣

𝜕𝑦𝜕𝜉3
)}

𝑡

𝑡−𝜔

𝑑𝜉], 

(9) 

and the constitutive stress components are: 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
+ 𝜆

𝜕𝑣

𝜕𝑦
− 𝛾 (1 + 𝜈0

𝜕

𝜕𝑡
) 𝜃, 

𝜎𝑦𝑦 = (𝜆 + 2𝜇)
𝜕𝑣

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑥
− 𝛾 (1 + 𝜈0

𝜕

𝜕𝑡
) 𝜃, 

𝜎𝑥𝑦 = 𝜇 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
). 

(10) 

We now define the following non-dimensional variables: 

(𝑥∗, 𝑦∗, 𝑢∗, 𝑣∗) = 𝑐0𝜂0 (𝑥, 𝑦, 𝑢, 𝑣), (𝑡
∗, 𝜏0

∗, 𝜈0
∗) = 𝑐0

2𝜂0 (𝑡,  𝜏0,  𝜈0), 

𝜎𝑖𝑗
∗ =

𝜎𝑖𝑗

𝜇
 ,      𝜃∗ =

𝛾

𝜆 + 2𝜇
𝑇 ,      (𝐸𝑖

∗, ℎ∗, 𝐽𝑖
∗) =

 1

𝐻0
(
𝐸𝑖
𝜇0𝑐0

 , ℎ ,
𝐽𝑖
𝜂0𝑐0

). 
(11) 

Using the non-dimensional variables and for convenience omitting ‘*’ symbol, we can get the 

non-dimensional form of the Eqs. (5-10) such as: 

𝑒 = 𝑑𝑖𝑣 𝒖 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
,      𝐉 = 𝑐𝑢𝑟𝑙 𝐡 − 𝑐1

2𝐄̇,      𝐄 = (−𝑣̇, 𝑢̇, 0),     𝐡 = −(0,0, 𝑒), (12) 

𝛼0
𝜕2𝑢

𝜕𝑡2
− 𝜀3𝑢 − 𝜀4

𝜕𝑣

𝜕𝑡
= 𝛽2

𝜕2𝑢

𝜕𝑥2
+ (𝛽2 − 1)

𝜕2𝑣

𝜕𝑥𝜕𝑦
+
𝜕2𝑢

𝜕𝑦2
− 𝛽2 (

𝜕𝜃

𝜕𝑥
+ 𝜈0

𝜕2𝜃

𝜕𝑡𝜕𝑥
), (13) 

𝛼0
𝜕2𝑣

𝜕𝑡2
− 𝜀3𝑣 + 𝜀4

𝜕𝑢

𝜕𝑡
=
𝜕2𝑣

𝜕𝑥2
+ 𝛽2

𝜕2𝑣

𝜕𝑦2
+ (𝛽2 − 1)

𝜕2𝑢

𝜕𝑥𝜕𝑦
− 𝛽2 (

𝜕𝜃

𝜕𝑦
+ 𝜈0

𝜕2𝜃

𝜕𝑡𝜕𝑦
), (14) 

𝜕2𝜃

𝜕𝑥2
+
𝜕2𝜃

𝜕𝑦2
+
𝑡1
𝜔
∫ 𝑘(𝑡 − 𝜉)
𝑡

𝑡−𝜔

𝜕

𝜕𝜉
(
𝜕2𝜃

𝜕𝑥2
+
𝜕2𝜃

𝜕𝑦2
)𝑑𝜉 =

𝜕𝜃

𝜕𝑡
+ 𝜀1 (

𝜕2𝑢

𝜕𝑡𝜕𝑥
+
𝜕2𝑣

𝜕𝑡𝜕𝑦
) 

       +
𝜏0
𝜔
[∫ 𝑘(𝑡 − 𝜉) {𝜀2

𝜕2𝜃

𝜕𝜉2
+ 𝑛0𝜀1 (

𝜕3𝑢

𝜕𝑥𝜕𝜉2
+

𝜕3𝑣

𝜕𝑦𝜕𝜉2
)}

𝑡

𝑡−𝜔

𝑑𝜉] 

       +
𝑡2
2

𝜔
[∫ 𝑘(𝑡 − 𝜉) {𝜀2

𝜕3𝜃

𝜕𝜉3
+ 𝜀1 (

𝜕4𝑢

𝜕𝑥𝜕𝜉3
+

𝜕4𝑣

𝜕𝑦𝜕𝜉3
)}

𝑡

𝑡−𝜔

𝑑𝜉], 

(15) 

𝜎𝑥𝑥 = 𝛽0
2 𝜕𝑢

𝜕𝑥
+ (𝛽0

2 − 2)
𝜕𝑣

𝜕𝑦
− 𝛽0

2 (1 + 𝜈0
𝜕

𝜕𝑡
) 𝜃 , 

𝜎𝑦𝑦 = 𝛽0
2 𝜕𝑣

𝜕𝑦
+ (𝛽0

2 − 2)
𝜕𝑢

𝜕𝑥
− 𝛽0

2 (1 + 𝜈0
𝜕

𝜕𝑡
) 𝜃,     𝜎𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
, 

(16) 
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where: 

𝛼 =
𝛼0

2

𝑐2
+ 1,      𝑐0

2 =
𝜆 + 2𝜇

𝜌
+ 𝛼0

2,      𝛽2 =
𝑐0
2

𝑐2
2
 ,      𝛼0 = 𝛼𝛽

2,      𝑐1
2 =

𝑐0
2

𝑐2
 ,       

𝛽0
2 =

𝜆 + 2𝜇

𝜇
,       𝜀 =

𝛾2𝑇0
𝜌𝐶𝑒(𝜆 + 2𝜇)

 ,       𝑇0 =
𝜌0

2𝑐0
2

𝛾
 ,       𝜂0 =

𝜌𝐶𝑒
𝑘
 , 

𝛼0
2 =

𝜇0𝐻0
2

𝜌
,      𝑐2 =

1

𝜇0𝜀0
,       𝑐2

2 =
𝜇

𝜌
. 

(17) 

From now and on the kernel function 𝐾(𝑡 − 𝜉) can be chosen freely as follows: 

𝐾(𝑡 − 𝜉) = 1 −
2𝑏

𝜔
(𝑡 − 𝜉) +

𝑎2

𝜔2
(𝑡 − 𝜉)2 =

{
 
 
 

 
 
 
1,                         𝑎 = 𝑏 = 0,           

1 −
(𝑡 − 𝜉)

𝜔
, 𝑎 = 0,      𝑏 =

1

2
,

1 − (𝑡 − 𝜉),          𝑎 = 0,     𝑏 =
𝜔

2
,

(1 −
(𝑡 − 𝜉)

𝜔
)

2

, 𝑎 = 𝑏 = 1,   

 (18) 

where, 𝑎 and 𝑏 are constants. 

4. Solution procedure in laplace and fourier transform domain  

The definition of Laplace and Fourier transform of a function 𝑓(𝑥, 𝑦, 𝑡) is given by: 

𝑓̅(𝑥, 𝑦, 𝑠) = ℒ𝑓(𝑥, 𝑦, 𝑡) = ∫ 𝑓(𝑥, 𝑦, 𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡,     𝑅𝑒(𝑠) > 0. 

𝐹̅(𝑥, ψ, 𝑠) = ℱ𝑓̅(𝑥, 𝑦, 𝑠) = ∫ 𝑓̅(𝑥, 𝑦, 𝑠)
∞

0

𝑒−𝑖𝜓𝑦𝑑𝑦 

(19) 

Since, ℒ [∫ 𝐾(𝑡 − 𝜉)
𝑡

𝑡−𝜔
𝑓′(𝑥, 𝑦, 𝜉)𝑑𝜉] = 𝑓̅(𝑥, 𝑦, 𝑠)𝐺(𝑥, ψ, 𝑠), where, 𝐺(𝑥, ψ, 𝑠) = (1 −

2𝑏

𝜔
+

2𝑎2

𝜔2𝑠2
) − 𝑒−𝜔𝑠 [(1 − 2𝑏 + 𝑎2) +

2(𝑎2−𝑏2)

𝜔𝑠
+

2𝑎2

𝜔2𝑠2
]. 

Taking Laplace and Fourier transform [defined by the Eq. (19)] of the Eqs. (13-15) and 

omitting the bar symbol, we get: 

(𝛼0𝑠
2 − 𝜀3 +𝜓

2)𝑈 − 𝜀4𝑠 𝑉 = 𝛽
2
𝜕2𝑈

𝜕𝑥2
− 𝑖(𝛽2 − 1)𝜓

𝜕𝑉

𝜕𝑥
− 𝛽2(1 + 𝜈0𝑠)

𝜕Θ

𝜕𝑥
, (20) 

(𝛼0𝑠
2 − 𝜀3 +𝜓

2𝛽2)𝑉 + 𝜀4𝑠 𝑈 =
𝜕2𝑉

𝜕𝑥2
− 𝑖(𝛽2 − 1)𝜓

𝜕𝑈

𝜕𝑥
+ 𝑖𝛽2(1 + 𝜈0𝑠)𝜓Θ, (21) 

(1 +
𝑡1
𝜔
𝐺)
𝜕2Θ

𝜕𝑥2
− (1 +

𝑡1
𝜔
𝐺)𝜓2Θ

= (𝑠 +
𝜏0𝑠 𝜀2
𝜔

𝐺 +
𝑡2
2𝑠2𝜀2
𝜔

𝐺)Θ + (𝜀1𝑠 +
𝜏0𝜀1𝑛0
𝜔

𝐺 +
𝑡2
2𝑠2𝜀1
𝜔

𝐺)
𝜕𝑈

𝜕𝑥

+ (−𝑖𝜀1𝑠𝜓 − 𝑖
𝜏0𝜀1𝑛0
𝜔

𝐺𝜓 − 𝑖
𝑡2
2𝑠2𝜀1
𝜔

𝐺𝜓)𝑉 

(22) 

As in Das, Chakraborty and Lahiri [8] also in Das and Lahiri [7], Eqs. (20-22) can be written 

as: 
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𝐷𝑣(𝑥, 𝜓, 𝑠) =  𝐴(𝜓, 𝑠)𝑣(𝑥, 𝜓, 𝑠) ,    𝐷 ≡
𝑑

𝑑𝑥
, (23) 

where, 𝑣(𝑥, 𝜓, 𝑠) =  [𝑈    𝑉   Θ     𝐷𝑈    𝐷𝑉    𝐷Θ]𝑇 and the coefficient matrix 𝐴(𝜓, 𝑠) is given in 

the “Appendix”. 

For the solution of the vector-matrix differential equation (23), we now apply the method of 

Eigen value method as in Das, Chakraborty and Lahiri [9] also in Das and Lahiri [8]. The 

characteristic equation of the matrix 𝐴(𝜓, 𝑠) can be written as: 

𝜆6 +𝑚1𝜆
4 +𝑚2𝜆

3  + 𝑚3𝜆
2 +𝑚4 𝜆 + 𝑚5 = 0 .  (24) 

The roots of the characteristic Eq. (24) are: 𝜆 = ±𝜆𝑖, where, 𝑖 =  1(1)3, which are also the 

eigenvalues of the matrix 𝐴 and the corresponding eigenvector 𝑉𝑖 corresponding to the eigenvalue 

𝜆𝑖  can be calculated as: 𝑉𝑖 = [𝑋]𝜆= ±𝜆𝑖 , 𝑖 = 1(1)3, where, the values of 𝑚𝑖’𝑠, 𝑖 = 1(1)5, are 

given in Appendix.  

Considering the regularity condition at infinity, as in Das, Chakraborty and Lahiri [9] also in 

Das and Lahiri [8], the general solution of the vector-matrix differential Eq. (23) can be written 

as: 

(𝑢, 𝑣, 𝜃) =∑(𝑥𝑗1 ,𝑥𝑗2,  𝑥𝑗3)𝐴𝑗𝑒
𝜆𝑗𝑥

6

𝑗=1

, (25) 

and Eq. (16) also gives the expressions for stress components such as: 

𝜎𝑦𝑦 = 𝑀21∑𝐴𝑖𝑥𝑖2𝑒
𝜆𝑖𝑥

6

𝑖=1

+𝑀22∑𝐴𝑖𝜆𝑖𝑥𝑖1𝑒
𝜆𝑖𝑥 +𝑀23∑𝐴𝑖𝑥𝑖3𝑒

𝜆𝑖𝑥

6

𝑖=1

6

𝑖=1

, 

𝜎𝑥𝑥 = 𝑀11∑𝐴𝑖𝜆𝑖𝑥𝑖1𝑒
𝜆𝑖𝑥

6

𝑖=1

+𝑀12∑𝐴𝑖𝑥𝑖2𝑒
𝜆𝑖𝑥 +𝑀13∑𝐴𝑖𝑥𝑖3𝑒

𝜆𝑖𝑥

6

𝑖=1

6

𝑖=1

, 

𝜎𝑥𝑦 = 𝑀31∑𝐴𝑖𝑥𝑖1𝑒
𝜆𝑖𝑥

6

𝑖=1

+𝑀32∑𝐴𝑖𝜆𝑖𝑥𝑖2𝑒
𝜆𝑖𝑥

6

𝑖=1

. 

(26) 

𝐴𝑗
′𝑠 are the arbitrary constants which are determined from the following boundary conditions 

and the values of 𝑀𝑖𝑗’s and 𝑥𝑖𝑗 are given in Appendix. 

5. boundary conditions  

The boundary conditions are described as follows: 

5.1. Thermal boundary condition 

The temperature gradient is zero to the both thermally insulated surfaces 𝑥 = ±𝐿 of the plate 

that is: 

𝜕𝑇

𝜕𝑥
= 0, 𝑥 = ± 𝐿. (27) 

5.2. Mechanical boundary condition 

The upper and lower surface of the plate is shear-stress free whereas a time dependent 
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compression is given to the both surfaces i.e.: 

𝜎𝑥𝑥 = −
𝑝0(𝑦, 𝑡)

𝜇
,     𝑥 = ± 𝐿,     𝜎𝑥𝑦 =  0,     𝑥 = ± 𝐿. (28) 

To get the values of 𝐴𝑗′𝑠, we apply Eq. (11) and (19) to the Eqs. (27) and (28) also using 

Eqs. (25) and (26), we obtain a system of simultaneous equations satisfied by the arbitrary 

constants, which are given in Appendix. 

6. Numerical results and discussions   

The inversion procedure of Laplace and Fourier transform for the expressions of displacement 

components, temperature distribution and stress components in space-time domain are very much 

complicated. For this purpose, we prefer to use an efficient computer programme using suitable 

programming language for the inversion of two integral transforms. Inversion of Laplace 

transform for the time variable is carried out numerically using Bellman [2] method whereas the 

inversion of Fourier transform for the space variable is carried out by Gaussian formula for fixed 

values of 𝑥 and 𝑦. 

In the process of numerical calculation, we consider the homogeneous, isotropic, thermally 

and electrically conducting material medium as that of copper. The material constants (in SI unit) 

are given by 𝜆 =  7.76×1010;  𝜇 = 3.86×1010; 𝛼𝑡 = 1.78×10-5; 𝐻0 = 10
7 4𝜋⁄ ; 𝐿 =  1, 𝑇0 =  293; 

𝐶𝐸 = 383.1; 𝜏 = 5.5; 𝜌 = 8954; 𝑎 = 0.3; 𝑏 = 0.4. 

7. Graphical analysis 

Figs. 2 and 3 depict the variations of stress (𝜎𝑥𝑥) versus the space variable (𝑥) which is the 

depth of the plate for fixed values of time 𝑡 = 𝑡1, 𝑡 = 𝑡3 and 𝑡 = 𝑡5 and rotation Ω = 10 and 30 

respectively. As mentioned earlier for the freely choices of the values of kernel function 𝐾(𝑡 − 𝜉), 

such as 𝐾(𝑡 − 𝜉) = 1, 1 −
𝑡−𝜉

𝜔
, 1 − (𝑡 − 𝜉), (1 −

𝑡−𝜉

𝜔
)
2

, it clearly shows that the magnitude of 

normal stress (𝜎𝑥𝑥) vanishes on the upper and lower surfaces of the plate for the same set of values 

of parameters used in this problem. For the illustration of the stress component (𝜎𝑥𝑥) it is also 

very much important the role of the kernel function (𝑡 − 𝜉). It is obviously seen that at the lower 

boundary (𝑥 =  − 𝐿)  of the plate, 𝜎𝑥𝑥  attains maximum for 𝐾(𝑡 − 𝜉) =  (1 −
𝑡−𝜉

𝜔
)
2

 than  

(1 −
𝑡−𝜉

𝜔
) which is also maximum for 𝐾(𝑡 − 𝜉) =  1 than 𝐾(𝑡 − 𝜉) = 1 − (𝑡 − 𝜉). The values of 

stress (𝜎𝑥𝑥) is almost parallel for the fixed values of time 𝑡 = 𝑡1, 𝑡 = 𝑡3 and 𝑡 = 𝑡5 at the middle 

region of the plate. It is clearly shown from this figures that the stress component (𝜎𝑥𝑥)  is 

extensive in nature throughout the whole region −𝐿 ≤  𝑥 ≤  𝐿, it also attains the maximum value 

at 𝑥 = ± 0.8. These two figures show that the magnitude of stress (𝜎𝑥𝑥) sharply increases and also 

attains the maximum value at the lower boundary of the plate and similarly at the upper boundary, 

it sharply decreases and finally vanishes. 

Figs. 4 and 5 give the variations of the shearing stress component (𝜎𝑥𝑦) against the depth of 

the isotropic plate for the same set of values of the parameters used in the MDD model. Here, 

Fig. 4 is for the value of rotation Ω = 10 and Fig. 5 is for Ω = 50. It gives the maximum value at 

𝑥 = ± 0.8 and no significant changes in the middle region (−0.6 ≤ 𝑥 ≤ 0.6) of the plate. 

Figs. 6 and 7 have been plotted to study the variation of stress (𝜎𝑦𝑦) against the depth of the 

plate (𝑥). The value of kernel function is taken to be 𝐾(𝑡 − 𝜉) =  1 −
𝑡−𝜉

𝜔
, where, 𝜔 = 0.01 and 

𝑡 = 𝑡1, 𝑡 = 𝑡3 and 𝑡 = 𝑡5. The qualitative behavior of the stress component (𝜎𝑦𝑦) is given by 

these two figures for different values of rotation (Ω) and time. The three different values of rotation 

are taken as Ω = 10 and 30 respectively. The stress component (𝜎𝑦𝑦) also vanishes at the both 
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lower and upper surfaces of the plate whereas the value of 𝜎𝑦𝑦 increases and decreases at the 

region of the plate −1 ≤ 𝑥 ≤ −0.4 and 0.4 ≤ 𝑥 ≤ 1 respectively. In the region,−0.4 ≤ 𝑥 ≤ 0.4, 

it is almost parallel to each other and significant changes occur. 

 
Fig. 2. Distribution of stress component (𝜎𝑥𝑥) versus 𝑥 at fixed values of time (𝑡) and rotation (Ω) 

 
Fig. 3. Variation stress component (𝜎𝑥𝑥) versus x for fixed values of time (𝑡) and rotation (Ω) 

 
Fig. 4. Distribution of stress (𝜎𝑥𝑦) versus 𝑥 for fixed values of time (𝑡) and rotation (Ω) 

 
Fig. 5. Distribution of stress component (𝜎𝑥𝑦) versus 𝑥 for fixed values of time (𝑡) and rotation (Ω) 

In Fig. 8, the variation of temperature (Θ) is found for the different choices of the kernel 

function 𝐾(𝑡 − 𝜉) and the constant values of ‘a’ and ‘b’ also for fixed value of time 𝑡 = 𝑡5. The 

magnitude of temperature decreases up to 𝑥 ≤  0.2 for different values of kernel function 
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𝐾(𝑡 − 𝜉). 
In Fig. 9, the variation of temperature (Θ) is found for the different 𝑥. The magnitude of 

temperature decreases up to 𝑥 ≤  0.2 and no significant changes occur in the region  

0.2 ≤ 𝑥 ≤ 0.35. 

 
Fig. 6. Distribution of stress component (𝜎𝑦𝑦) versus 𝑥 for fixed values of time (𝑡) and rotation (Ω) 

 
Fig. 7. Distribution of stress component (𝜎𝑦𝑦) versus 𝑥 for fixed values of time (𝑡) and rotation (Ω) 

 
Fig. 8. Distribution of temperature (Θ) versus 𝑥 for fixed values of kernel function [𝐾(𝑡 − 𝜉)] 

 
Fig. 9. Distribution of temperature (Θ) versus 𝑥 for different time 
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8. Application 

As a new alternative to the Integral Order Calculus and Fractional Order Calculus, having 

certain features that lead to difficulties when applied to real world fields, such as geophysics, for 

understanding the effects of the earth’s magnetic field, seismic waves, emission of 

electromagnetic radiations from nuclear devices, engineering, high energy particle accelerators, 

nuclear reactor’s designing etc., the concept of Memory-Dependent Derivative was developed. 

We get more accurate results than the others while using Laplace and Fourier Transformations 

with time parameters and kernel function with the time-delay parameter. 

The results will guide us to slove a 2-D problem with dynamic response of memory-dependent 

derivatives in homogeneous isotropic magneto-thermoelastic medium with two temperatures 

which is advantageous to successful applications of memory dependence in heat conduction. 

9. Conclusions 

The main goal of this article is to introduce a unified new model of generalized magneto 

thermoelasticity theory with time delay 𝜔 (> 0)  and the kernel function 𝐾(𝑡 − 𝜉)  using the 

definition for reflection of the memory effect. The form of the kernel function for time delaying 

memory effect can be chosen freely according to the various applications of the problems. 

Graphical representations are also explained the necessary importance for the stress distributions 

in the medium of the plate. Therefore, we can conclude that  

1) Thermally and mechanically disturbances are very clear in the neighboring region of the 

upper and lower surfaces of the plate. No significant disturbance occurred in the middle plane or 

neighboring region of the middle plane. 

2) Significant variations of temperature (Θ ) are observed for different choices of kernel 

functions. To analyze the time delaying memory effect, it is more fruitful to us to deal with 

different value of kernel function and it is also more realistic and eventually more compatible to 

the physical aspects.  

3) This problem may be reduced to the simple generalized magneto thermo-elastic model using 

more conventional Fourier’s law of heat conduction equation defining the values of kernel 

function as constant and one can compared this result as existing literature. 
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Appendix 

𝐴(𝜓, 𝑠)  =

[
 
 
 
 
 
0 0 0
0 0 0
0
𝐶41
𝐶51
0

0
𝐶42
𝐶52
𝐶62

0
0
0
𝐶63

1 0 0
0 1 0
0
0

     
0
𝐶64

0
𝐶45
𝐶55
0

1
𝐶46
𝐶56
0 ]
 
 
 
 
 

, 

𝐶41 =
1

𝛽2
(𝛼0𝑠

2 − 𝜀3 +𝜓
2),     𝐶42 = −

1

𝛽2
𝜀4𝑠,     𝐶43 = 0,     𝐶44 = 0,     𝐶45 = 𝑖

(𝛽2 − 1)

𝛽2
𝜓, 

𝐶46 = (1 + 𝜈0𝑠),     𝐶51 = 𝜀4𝑠,     𝐶52 = −(𝛼0𝑠
2 − 𝜀3 + 𝜓

2𝛽2),     𝐶53 = 0, 
𝐶54 = 𝑖(𝛽

2 − 1)𝜓,      𝐶55 = −𝑖𝛽
2(1 + 𝜈0𝑠)𝜓,     𝐶56 = 0,     𝐶61 = 0, 

𝐶62 =
1

1 +
𝑡1
𝜔
𝐺
(−𝑖𝜀1𝑠𝜓 − 𝑖

𝜏0𝜀1𝑛0
𝜔

𝐺𝜓 − 𝑖
𝑡2
2𝑠2𝜀1
𝜔

𝐺𝜓), 

𝐶63 = {𝜓
2 +

1

1 +
𝑡1
𝜔
𝐺
(𝑠 +

𝜏0𝑠 𝜀2
𝜔

𝐺 +
𝑡2
2𝑠2𝜀2
𝜔

𝐺)}, 

𝐶64 =
1

1 +
𝑡1
𝜔
𝐺
(𝜀1𝑠 +

𝜏0𝜀1𝑛0
𝜔

𝐺 +
𝑡2
2𝑠2𝜀1
𝜔

𝐺),     𝐶65 = 0,     𝐶66 = 0, 

𝑑11𝐴1 + 𝑑12𝐴2 + 𝑑13𝐴3 + 𝑑14𝐴4 + 𝑑15𝐴5 + 𝑑16𝐴6 = 0, 
𝑑21𝐴1 + 𝑑22𝐴2 + 𝑑23𝐴3 + 𝑑24𝐴4 + 𝑑25𝐴5 + 𝑑26𝐴6 = 0, 
𝑑31𝐴1 + 𝑑32𝐴2 + 𝑑33𝐴3 + 𝑑34𝐴4 + 𝑑35𝐴5 + 𝑑36𝐴6 = 0, 
𝑑41𝐴1 + 𝑑42𝐴2 + 𝑑33𝐴3 + 𝑑44𝐴4 + 𝑑45𝐴5 + 𝑑46𝐴6 = 0, 

𝑑51𝐴1 + 𝑑52𝐴2 + 𝑑53𝐴3 + 𝑑54𝐴4 + 𝑑55𝐴5 + 𝑑56𝐴6 = −
𝑃0
𝜇
, 

𝑑61𝐴1 + 𝑑62𝐴2 + 𝑑63𝐴3 + 𝑑64𝐴4 + 𝑑65𝐴5 + 𝑑66𝐴6 = −
𝑃0
𝜇
, 

𝑑11 = 𝑥13𝜆1𝑒
𝜆1𝐿,     𝑑12 = 𝑥23𝜆2𝑒

𝜆2𝐿 ,     𝑑13 = 𝑥33𝜆3𝑒
𝜆3𝐿, 

𝑑14 = 𝑥43𝜆4𝑒
𝜆4𝐿,     𝑑15 = 𝑥53𝜆5𝑒

𝜆5𝐿,      𝑑16 =  𝑥63𝜆6𝑒
𝜆6𝐿, 

𝑑21 = 𝑥13𝜆1𝑒
−𝜆1𝐿,     𝑑22 = 𝑥23𝜆2𝑒

−𝜆2𝐿 ,     𝑑23 = 𝑥33𝜆3𝑒
−𝜆3𝐿, 

𝑑24 = 𝑥24𝜆4𝑒
−𝜆4𝐿,     𝑑25 = 𝑥53𝜆5𝑒

−𝜆5𝐿,     𝑑26 =  𝑥63𝜆6𝑒
−𝜆6𝐿, 

𝑑31 = (𝑥11𝑀31 + 𝑥12𝑀32𝜆1)𝑒
𝜆1𝐿,     𝑑32 = (𝑥21𝑀31 + 𝑥22𝑀32𝜆2)𝑒

𝜆2𝐿, 
𝑑33 = (𝑥31𝑀31 + 𝑥32𝑀32𝜆3)𝑒

𝜆3𝐿,     𝑑34 = (𝑥41𝑀31 + 𝑥42𝑀32𝜆4)𝑒
𝜆4𝐿, 

𝑑35 = (𝑥51𝑀31 + 𝑥52𝑀32𝜆5)𝑒
𝜆5𝐿,     𝑑36 = (𝑥61𝑀31 + 𝑥62𝑀32𝜆6)𝑒

𝜆6𝐿, 
𝑑41 = (𝑥11𝑀31 + 𝑥12𝑀32𝜆1)𝑒

−𝜆1𝐿,     𝑑42 = (𝑥21𝑀31 + 𝑥22𝑀32𝜆2)𝑒
−𝜆2𝐿, 

𝑑43 = (𝑥31𝑀31 + 𝑥32𝑀32𝜆3)𝑒
−𝜆3𝐿, 𝑑44 = (𝑥41𝑀31 + 𝑥42𝑀32𝜆4)𝑒

−𝜆4𝐿, 

 

𝑑45 = (𝑥51𝑀31 + 𝑥52𝑀32𝜆5)𝑒
−𝜆5𝐿,     𝑑46 = (𝑥61𝑀31 + 𝑥62𝑀32𝜆6)𝑒

−𝜆6𝐿,  

𝑑51 = (𝑥11𝑀11𝜆1 + 𝑥12𝑀12 + 𝑥13𝑀13)𝑒
𝜆1𝐿,     𝑑52 = (𝑥21𝑀11𝜆2 + 𝑥22𝑀12 + 𝑥23𝑀13)𝑒

𝜆2𝐿,  

𝑑53 = (𝑥31𝑀11𝜆3 + 𝑥32𝑀12 + 𝑥33𝑀13)𝑒
𝜆3𝐿,     𝑑54 = (𝑥41𝑀11𝜆4 + 𝑥42𝑀12 + 𝑥43𝑀13)𝑒

𝜆4𝐿,  

𝑑55 = (𝑥51𝑀11𝜆5 + 𝑥52𝑀12 + 𝑥53𝑀13)𝑒
𝜆5𝐿,     𝑑56 = (𝑥61𝑀11𝜆6 + 𝑥62𝑀12 + 𝑥63𝑀13)𝑒

𝜆6𝐿, 
𝑑61 = (𝑥11𝑀11𝜆1 + 𝑥12𝑀12 + 𝑥13𝑀13)𝑒

−𝜆1𝐿,     𝑑62 = (𝑥21𝑀11𝜆2 + 𝑥22𝑀12 + 𝑥23𝑀13)𝑒
−𝜆2𝐿, 

𝑑63  = (𝑥31𝑀11𝜆3 + 𝑥32𝑀12 + 𝑥33𝑀13)𝑒
−𝜆3𝐿,     𝑑64 = (𝑥41𝑀11𝜆4 + 𝑥42𝑀12 + 𝑥43𝑀13)𝑒

−𝜆4𝐿, 
𝑚1 = (𝐶45𝐶54 + 𝐶46𝐶64 − 𝐶63 − 𝐶42 − 𝐶51),      
𝑚2 = (𝐶45𝐶54𝐶63 + 𝐶56𝐶62 − 𝐶56𝐶64 + 𝐶45𝐶51 + 𝐶46𝐶61 − 𝐶41𝐶52 − 𝐶42𝐶51), 

 

𝑚3 = (𝐶45𝐶56𝐶62 + 𝐶45𝐶54𝐶63 − 𝐶41𝐶56𝐶62 − 𝐶42𝐶56𝐶61 + 𝐶46𝐶51𝐶62 − 𝐶46𝐶52𝐶61 + 𝐶41𝐶63
+  𝐶43𝐶52 + 𝐶56𝐶64), 

 

𝑚4 = (𝐶42𝐶54𝐶63 − 𝐶45𝐶51𝐶63 − 𝐶41𝐶62 − 𝐶42𝐶56),      𝑚5 = 𝐶45(𝐶51𝐶62 − 𝐶52𝐶61),  

𝑥11  = 𝜆1(𝐶42 + 𝜆1𝐶45)𝐶56  −  𝜆1(𝐶52 − (𝜆1)
2 )𝐶46,  
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𝑥21 = 𝜆1(𝐶51 + 𝜆1𝐶54)𝐶46 − 𝜆1(𝐶41 − (𝜆1)
2)𝐶56,  

𝑥31 = (𝐶41 − (𝜆1)
2)(𝐶52 − (𝜆1)

2) − (𝐶42 + 𝜆1𝐶45)(𝐶51 + 𝜆1𝐶54),  
𝑥41 = (𝜆1)

2 (𝐶42 + 𝜆1𝐶45)𝐶56 − (𝜆1)
2 (𝐶52 − (𝜆1)

2)𝐶46, 
𝑥51 = (𝜆1)

2 (𝐶51 + 𝜆1𝐶54)𝐶46 − (𝜆1)
2 (𝐶41 − (𝜆1)

2)𝐶56, 
𝑥61 = 𝜆1(𝐶41 − (𝜆1)

2)(𝐶52 − (𝜆1)
2) − (𝜆1)(𝐶42 + 𝜆1𝐶45)(𝐶51 + 𝜆1𝐶54), 

𝑥12  = (𝜆2)(𝐶42 + (𝜆2)𝐶45)𝐶56 − (𝜆2)(𝐶52 − (𝜆2)
2)𝐶46, 

𝑥22 = (𝜆2)(𝐶51 + (𝜆2)𝐶54)𝐶46 − (𝜆2)(𝐶42 − (𝜆2)
2)𝐶56, 

𝑥32 = (𝐶41 − (𝜆2)
2)(𝐶52 − (𝜆2)

2) − (𝐶42 + (𝜆2)𝐶45)(𝐶51 + (𝜆2)𝐶54), 
𝑥42 = (𝜆2)

2 (𝐶42 + (𝜆2)𝐶45)𝐶56 − (𝜆2)
2(𝐶52 − (𝜆2)

2)𝐶46, 
𝑥52 = (𝜆2)

2 (𝐶51 + (𝜆2)𝐶54)𝐶46 − (𝜆2)
2(𝐶41 − (𝜆2)

2)𝐶56, 
𝑥62 = (𝜆2)(𝐶41 − (𝜆2)

2)(𝐶52 − (𝜆2)
2) − ( 𝜆2)(𝐶42 + (𝜆2)𝐶45)(𝐶51 + (𝜆2)𝐶54), 

𝑥13   = (𝜆3)(𝐶42 + (𝜆3)𝐶45)𝐶56 − (𝜆3)(𝐶52 − (𝜆3)
2)𝐶46, 

𝑥23  = (𝜆3)(𝐶51 + (𝜆3)𝐶54)𝐶46 − (𝜆3)(𝐶41 − (𝜆3)
2)𝐶56, 

𝑥33  = (𝐶41 − (𝜆3)
2)(𝐶52 − (𝜆3)

2) − (𝐶42 + (𝜆3)𝐶45)(𝐶51 + (𝜆3)𝐶54), 
𝑥43  = (𝜆3)

2 (𝐶42 + (𝜆3)𝐶45)𝐶56 − (𝜆3)
2(𝐶52 − (𝜆3)

2)𝐶46, 
𝑥53  = (𝜆3)

2 (𝐶51 + (𝜆3)𝐶54)𝐶46 − (𝜆3)
2 (𝐶41 − (𝜆3)

2)𝐶56, 
𝑥63  = (𝜆3)(𝐶41 − (𝜆3)

2)(𝐶52 − (𝜆3)
2) − ( 𝜆3)(𝐶42 + (𝜆3)𝐶45)(𝐶51 + (𝜆3)𝐶54), 

𝑥14  = 𝜆4(𝐶42 + 𝜆4)𝐶45𝐶56 − 𝜆4(𝐶52 − (𝜆4)
2)𝐶46, 

𝑥24  = 𝜆4(𝐶51 + 𝜆4)𝐶54𝐶46 − 𝜆4(𝐶41 − (𝜆4)
2)𝐶56, 

𝑥34  = (𝐶41 − (𝜆4)
2)(𝐶52 − (𝜆4)

2) − (𝐶42 + (𝜆4)𝐶45)(𝐶51 + (𝜆4)𝐶54), 
𝑥44 = (𝜆4)

2 (𝐶42 + 𝜆4𝐶45)𝐶56 − (𝜆4)
2 (𝐶52 − (𝜆4)

2 )𝐶46, 
𝑥54 = (𝜆4)

2  (𝐶51 + 𝜆4𝐶54)𝐶46 − (𝜆4)
2 (𝐶41 − (𝜆4)

2 )𝐶56,   
𝑥64 = (𝜆4𝐶41 − (𝜆4)

2)(𝐶52 − (𝜆4)
2) − 𝜆4(𝐶42 + 𝜆4𝐶45)(𝐶51 + 𝜆4𝐶54),  

𝑥15  = (𝜆5)(𝐶42 + (𝜆5)𝐶45)𝐶56 − (𝜆5)(𝐶52 − (𝜆5)
2)𝐶46, 

𝑥25  = (𝜆5)(𝐶51 + (𝜆5)𝐶54)𝐶46 − (𝜆5)(𝐶41 − (𝜆5)
2)𝐶56, 

𝑥35  = (𝐶41 − (𝜆5)
2)(𝐶52 − (𝜆5)

2) − (𝐶42 + (𝜆5)𝐶45)(𝐶51 + (𝜆5)𝐶54), 
𝑥45  = (𝜆5)

2 (𝐶42 + (𝜆5)𝐶45)𝐶56 − (𝜆5)
2(𝐶52 − (𝜆5)

2)𝐶46, 
𝑥55  = (𝜆5)

2(𝐶51 + (𝜆5)𝐶54)𝐶46 − (𝜆5)
2 (𝐶41 − (𝜆5)

2)𝐶56, 
𝑥65  = (𝜆5)(𝐶41 − (𝜆5)

2)(𝐶52 − (𝜆5)
2) − (𝜆5)(𝐶42 + (𝜆5)𝐶45)(𝐶51 + (𝜆5)𝐶54), 

𝑥16   = (𝜆6)(𝐶42 + (𝜆6)𝐶45)𝐶56 − (𝜆6)(𝐶52 − (𝜆6)
2)𝐶46,   

𝑥26  = (𝜆6)(𝐶51 + (𝜆6)𝐶54)𝐶46 − (𝜆6)(𝐶41 − (𝜆6)
2)𝐶56,  

𝑥36  = (𝐶46 − (𝜆6)
2)(𝐶52 − (𝜆6)

2) − (𝐶42 + (𝜆6)𝐶45)(𝐶51 + (𝜆6)𝐶54),  
𝑥46  = (𝜆6)

2 (𝐶42 + (𝜆6)𝐶45)𝐶56 − (𝜆6)
2(𝐶52 − (𝜆6)

2)𝐶46,   
𝑥56  = (𝜆6)

2(𝐶51 + (𝜆6)𝐶54)𝐶46 − (𝜆6)
2 (𝐶41 − (𝜆6)

2)𝐶56, 
𝑥66  = (𝜆6)(𝐶41 − (𝜆6)

2)(𝐶52 − (𝜆6)
2) − (𝜆6)(𝐶42 + (𝜆6)𝐶45)(𝐶51 + (𝜆6)𝐶54), 

𝑀11 = 𝛽0
2,    𝑀12 = 𝛽0

2 − 2.0,    𝑀13 = 𝛽0
2(1 + 𝜈0𝑠), 

𝑀21 = 𝑖𝜓𝛽0
2,    𝑀22 = 𝛽0

2 − 2.0,    𝑀23 = 𝑀13,    𝑀31 = −𝑖𝜓,    𝑀32 = 1.0. 
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