
 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 69 

Determination of damage properties of polyethylene 
pipes under high impact load 

Nan Jiang1, Yongsheng Jia2, Yingkang Yao3, Jinshan Sun4, Zhongwei Cai5, Yuqi Zhang6, 
Tingyao Wu7 
1, 2, 3, 4Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan, China 
1, 6Faculty of Engineering, China University of Geosciences, Wuhan, China 
5China International Water and Electric Corporation, Beijing, 100120, China 
7China State Construction Bridge Group, Ltd., Beijing, China 
3Corresponding author 
E-mail: 1jiangnan@cug.edu.cn, 2jason03566@163.com, 3shanxiyao@jhun.edu.cn, 
4sunjinshan@cug.edu.cn, 5cai_zhongwei@ctg.com.cn, 6yuqiz@cug.edu.cn, 7wutingyao@cug.edu.cn 
Received 16 May 2022; received in revised form 2 August 2022; accepted 13 August 2022 
DOI https://doi.org/10.21595/jve.2022.22707 

Copyright © 2022 Nan Jiang, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. An experimental protocol was developed to predict the service period of polyethylene 
pipes under high loads. This paper presents the results of field test of chimney demolition loading 
to polyethylene pipeline, and compared with the numerical simulation. Combined with the 
practical engineering situation, the ground impact load first propagates to the explosion-facing 
side of the pipeline, and the effect was found to decrease as the applied stress decreased, however, 
under high impact load, ring strain tends to be greater than axial strain. The test data such as 
vibration velocity and frequency are processed to determine the damage characteristics needed to 
protect the pipeline from damage. Finally, the safety assessment of pipeline under impact load 
was determined by yield criterion. 
Keywords: demolition blasting, impact load, high-density polyethylene pipe, theoretical 
calculation, a safety assessment. 

1. Introduction 

With the development of our country, it is becoming more and more important to protect the 
environment from pollution, and a large number of industrial chimneys have been abandoned. To 
save land resources, the abandoned chimneys were pulled down. The mechanical method and 
blasting are the two common ways for chimneys demolition. For taller chimneys, demolition by 
blasting will be safer and more efficient. But blasting demolition will bring a lot of negative 
effects, such as blasting flying stone, dust, noise, earthquake effect. Among them the biggest 
influence is the earthquake effect. Seismic effects are mainly composed of shock waves from 
explosions and vibration waves, which are generated when a building collapses and touches the 
ground. The city’s underground pipelines are intricate. High density polyethylene pipe (HDPE) 
pipes are widely used in municipal sewage transportation due to its good corrosion resistance, 
impact resistance, environmental protection and low cost. At present, the damage of urban 
pipelines is mainly caused by third-party reasons. Among them, the impact load generated by 
demolition blasting is larger in amplitude than that of urban subway tunnel blasting and deep 
foundation pit blasting vibration and natural earthquakes, and it is easier to damage the pipeline. 
If the ground impact load caused by the demolition of the chimney is too large, the pipeline will 
be ruptured and the sewage will leak, rendering inconvenience to residents and contaminate the 
surrounding soil. Therefore, it is of great practical engineering significance and scientific research 
value to study the dynamic characteristics of pipelines under the impact load caused by demolition 
and blasting of tall chimneys and evaluate the safety of pipelines.  

At present, the research of domestic and foreign scholars in demolition blasting mainly focuses 
on the damage effect of explosive on the object itself. For example, Kazunori Fujikake [1] studied 
the residual resistance strength of reinforced concrete columns in buildings and the strength of 
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reinforcing bars in the columns during demolition by blasting. Koji Uenishi [2] took blasting 
demolition of pier of a highway bridge as an example and verified the accuracy of the numerical 
model in simulating the change of mechanical properties of reinforcement in the process of 
blasting demolition by using field test data. Sun et al. [3] analyzed the obtained data by removing 
the cylinder in the 56 m high frame structure and proposed the concept of stress transient model 
that can be used for numerical simulation. 

However, the seismic effect of the impact load caused by blasting demolition should be paid 
more attention to. The seismic effect is mainly composed of the shock wave caused by explosive 
explosion and the vibration wave caused by the falling object touching the ground, the latter being 
the main component. The mechanism of earthquake caused by blasting, vibration caused by 
ground collapse and natural earthquake damage to buildings (structures) is similar. This damage 
is caused by the sudden release of a large amount of energy and the propagation of elastic waves 
in the earth’s crust. But the frequency and energy amplitude between the three are different. Zhu 
et al. [4] proposed that the frequency of collapse impact load is between the frequency of blasting 
vibration (15-45 Hz) and the natural seismic frequency (2-5 Hz), which is generally 2-22 Hz. 
Zhong et al. [5] found that when the excitation frequency was 4 Hz-9 Hz, the peak strain of PE 
pipeline was the most obvious, suggesting that the natural vibration frequency of HDPE pipeline 
was less than 10 Hz. Therefore, the collapse impact load is more likely to cause the pipe resonance 
damage.  

In terms of pipeline response characteristics under impact load, many scholars have studied 
pipeline response and failure characteristics under natural geological hazards by means of 
laboratory model test and numerical simulation [6-9]. Zhu et al. [10] has carried out 52 impact 
tests on seamless low-carbon steel pipe, and proposed the dynamic inelastic response and failure 
prediction of pipe under mass impact. Deng et al. [11] used discrete element software to simulate 
the dynamic response of buried pipelines caused by high-speed falling rock mass impacting the 
ground. It is proposed that the pipeline is more likely to undergo large deformation when the 
pipeline depth is increased and the non-sticky sand is filled. Yu et al. [12] proposed a numerical 
modal prediction method for pipeline deformation by simplifying the seabed soil into rigid bodies. 
Jiang et al. [13] applied finite element software to simulate the response characteristics of the 
pipeline under the impact load, and revealed the influence of various mechanisms on the response 
of the pipeline. According to this, these impact loads are mostly caused by natural geological 
disasters, such as landslide, collapse, debris flow and so on. These engineering geological disasters 
are mostly located far away from urban areas and most of the pipelines are steel pipes or cast-iron 
pipes. However, demolition blasting engineering are mostly concentrated in urban areas, and the 
pipeline types are complex. Therefore, it is of certain practical engineering value to study the 
impact load of blasting collapse on pipeline. 

This paper mainly studies the dynamic performance of adjacent buried HDPE pipeline under 
the impact load of chimney demolition blasting. Firstly, the stress of pipeline under impact load 
is obtained by using Hertz collision formula and Boussinesq equation, and the peak surface 
vibration velocity is predicted (Section 3). Then, the data of maximum impact load, earth pressure 
and vibration velocity on the surface, as well as the vibration velocity and dynamic strain of the 
pipeline are processed. The propagation law of blasting impact load in demolition is analyzed, and 
the reliability of theoretical analysis results is verified by monitoring data (Section 4). Finally, the 
pipeline safety was evaluated with Von Mises yield criteria (Section 5). 

2. Materials and methods 

2.1. Theoretical solution of impact load and vibration velocity 

Compared with the blasting vibration, the impact load generated by the blasting falling body 
has greater strength, longer duration and lower frequency, and it is more harmful to the protection 
target. Assuming that the soil is linear elastomer and the impact load of demolition blasting is 
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considered as elastic collision, the Hertz collision theory can be used to obtain the maximum 
impact load 𝑃௠௔௫ under the action of the center of gravity. Combined with the theory of semi-
infinite space elastomer, the Boussinesq equation is used to calculate the stress state formula of 
pipeline under impact load. 

The impact load generated by blasting demolition body can be defined as the impact load 
generated by heavy weight falling from a height to touch the ground. The removed body and soil 
can be regarded as two elastic spheres 𝑚ଵ and 𝑚ଶ respectively. The impact load caused by falling 
weight m1 can be calculated by Hertz collision theory formula. The form is shown in Eq. (1) [14]: 

𝑃௠௔௫ = 𝐾ଶହ ൬54 𝑣଴ଶ 𝑚ଵ𝑚ଶ𝑚ଵ + 𝑚ଶ൰ଷହ, (1)

where: 𝑃௠௔௫ – maximum surface impact load, MPa. 𝑚ଵ, 𝑚ଶ – the mass of two bounces, kg; 𝜐଴ – 
the instantaneous velocity before the collision, m/s; 𝐾 – constant. It can be obtained from the 
following Eq. (2-4): 

𝐾 = 43𝜋ඨ 𝑟ଵ𝑟ଶ𝑟ଵ + 𝑟ଶ ⋅ 1𝐶ଵ + 𝐶ଶ, (2)

𝐶ଵ = 1 − 𝜇ଵଶ𝜋𝐸ଵ , (3)𝐶ଶ = 1 − 𝜇ଶଶ𝜋𝐸ଶ , (4)

where: 𝑟ଵ, 𝑟ଶ – the radius of the two bounces, m. 𝐸ଵ, 𝐸ଶ – the modulus of elasticity of the two 
bounces, MPa; 𝜇ଵ, 𝜇ଶ – the Poisson’s ratio of the two bounces. 

Because the stiffness of the removed body is much greater than that of the soil, the soil is 
regarded as a semi-infinite elastic solid. Therefore, it can be regarded as 𝐸ଵ → ∞, 𝑚ଵ → ∞,  𝑟ଶ → ∞ [15]. Therefore, Eqs. (2-4) can be expressed as: 

𝐶ଵ = 0,     𝐶ଶ = 1 − 𝜇ଶଶ𝜋𝐸ଶ ,     𝐾 = 43 𝐸ଶ1 − 𝜇ଶଶ ඥ𝑟ଵ, (5)

𝑃௠௔௫ = 1.2827ቆ 𝐸ଶ1 − 𝜇ଶଶቇଶହ 𝑟ଵ଴.ଶ𝑚ଵ଴.଺𝑣଴ଵ.ଶ. (6)

2.2. Load analysis of pipeline 

By using the semi-infinite space elastomer theory and the Boussinesq equations, the stress 
acting on the pipe in all directions can be calculated [16]. A schematic diagram of pipe pressure 
is shown in Fig. 1. The calculation formulas of tangential stress 𝜎௥, axial stress 𝜎ఏ and 𝑟𝑧 plane 
shear stress 𝜏௥௭ under the impact load are respectively shown in Eq. (7-9): 

𝜎௥ = 𝑃௠௔௫2𝜋 ቈ 3𝑟ଶ𝑧ሺ𝑟ଶ + 𝑧ଶሻଶ.ହ − 1 − 2𝜇ଶ𝑟ଶ + 𝑧ଶ + 𝑧ሺ𝑟ଶ + 𝑧ଶሻ଴.ହ቉, (7)𝜎ఏ = −𝑃௠௔௫2𝜋 ሺ1 − 2𝜇ଶሻ ൤ 𝑧ሺ𝑟ଶ + 𝑧ଶሻଵ.ହ − 1𝑟ଶ + 𝑧ଶ + 𝑧ሺ𝑟ଶ + 𝑧ଶሻ଴.ହ൨, (8)𝜏௥௭ = 3𝑃௠௔௫2𝜋 ቈ 𝑟𝑧ଶሺ𝑟ଶ + 𝑧ଶሻଶ.ହ቉, (9)
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where: 𝑃௠௔௫ – the maximum load on the soil surface, MPa; 𝜎௥ – tangential stress of pipeline, MPa; 𝜎ఏ – axial stress of pipeline, MPa; 𝜏௥௭ –  shear stress of pipeline 𝑟𝑧 plane, MPa; 𝑧 – distance from 
the top of the pipe to the surface, m; 𝑟 – horizontal distance from tube top to operation point, m. 𝜇ଶ – Poisson’s ratio of bounce 2 (soil mass). 

 
Fig. 1. Schematic diagram of pipeline stress under impact load 

Under the high-speed impact load of a falling object, the vertical force on the pipeline is not 
only the impact load, but also the dead weight stress map of the upper soil. By using the 
semi-infinite space elastomer theory and Boussinesq equation, the vertical (or annular) stress 
acting on the pipeline by impactor can be calculated, as shown in Fig. 1. The radial stress 𝜎௭ଵ at 
the pipe vertex under impact load is shown in f Eq. (10): 

𝜎௭ଵ = 3𝑃௠௔௫2𝜋𝑧ଶ ൤ 11 + ሺ𝑟/𝑧ሻଶ൨ଶ.ହ, (10)

where: 𝜎௭ଵ represents radial stress of pipeline under impact load, MPa; 𝑃௠௔௫ represents the 
maximum load on the soil surface, MPa; 𝑧 represents distance from the top of the pipe to the 
surface, m; 𝑟 represents horizontal distance from tube top to operation point, m. 

The position of the water line shall be taken into account in the calculation of the earth pressure 
acting on the pipeline. In this project, the water level line is under the pipe, and the earth pressure 
applied on the pipe is a constant load generated by the weight of the soil. The radial stress of the 
pipeline under the action of earth pressure can be calculated as follows: 𝜎௭ଶ = 𝛾𝑧, (11)

where: 𝜎௭ଶ represents radial stress of pipeline under the action of overburden pressure, MPa; 𝛾 
represents silty clay volumetric weight, MPa; 𝑧 represents distance from the top of the pipe to the 
surface, m. 

Since the pipeline force is related to buried depth 𝑧, combined with Eq. (10-11), the radial 
force received by the pipeline is shown in Eq. (12) [17]: 𝜎௭ = 𝐹ᇱఙ೥భ + 𝜎௭ଶ, (12)

where: 𝐹ᇱ represents perforation coefficient, which is a coefficient related to the buried depth of 
pipeline. It can be evaluated as shown in Table 1. 

Table 1. Comparison of theoretical and measured data 
Pipeline buried depth / m 0-0.3 0.3-0.6 0.6-0.9 >0.9 𝐹ᇱ 1.5 1.35 1.35 1.15 
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2.3. Surface vibration velocity 

There is no unified formula to calculate the collapse vibration velocity caused by the collapse 
of a structure. At present, a researcher at the institute of mechanics, Chinese academy of sciences, 
is generally used for calculation [18]. According to the regression analysis of the measured 
vibration monitoring data of similar projects in Wuhan by Wuhan blasting company, 𝐾௧ = 3.37 
and 𝛽 = 1.66 were calculated: 

𝑉௧ = 𝐾௧ ቈሺ𝑀𝑔𝐻/𝜎௧ሻଵ/ଷ𝑅 ቉ఉ , (13)

where: 𝑉௧ – collapse vibration velocity, cm/s; 𝑀 – mass of falling member, kg; 𝐺 – gravitational 
acceleration, m/s2; 𝐻 – height of gravity center of collapse, m; 𝜎௧ – failure strength of surface 
medium, MPa; 𝑅 – the distance from the measuring point to the center of the impact, m; 𝐾௧,  𝛽 –attenuation parameter. 

3. Demolition blasting test  

Currently, because of the many advantages of HDPE pipes, it is widely used in Wuhan urban 
water supply and drainage systems. The demolition blasting project is located near the brick and 
tile village of No. 1 team, Xingou Town, Dongxihu District, Wuhan City. Due to urban road 
reconstruction, a 50 m high brick chimney needs to be demolished. The surrounding environment 
of the demolished object is relatively simple, as shown in Fig. 2. The east side of the chimney is 
218 meters from the house; The south side is open, with no building within 200 meters. The west 
side of the chimney is 53 meters from the house. Therefore, in order to achieve the purpose of 
safety and efficiency, it can be demolished by blasting. 

 
Fig. 2. Aerial view of the surrounding environment 

The specific collapse process of chimney demolition and blasting is shown in Fig. 3. According 
to Fig. 3, dust from the inner wall of the chimney began to fly out from the mouth of the chimney 
after the detonation of 0.3 seconds. After detonation for 2.1 seconds, the chimney became unstable 
and began to collapse due to the destruction of the center of gravity. At 4.4 seconds, the chimney 
continued to collapse and cracks appeared in the middle. When the chimney breaks in 5.2 seconds, 
the crack gradually increases and continues to collapse. The chimney broke into two parts in 
5.9 seconds. After 6.6s, the lower part of the chimney continued to collapse, and the upper part 
shifted to the bottom of the chimney due to inertia. The chimney collapsed at 8.5 seconds. The 
demolition blasting lasted 8.5 seconds. The removal of waste materials is shown in Fig. 3(k). 

3.1. Test parameters 

The blasting chimney is a brick structure. The total height of the chimney is 50 m. The outer 
radius of the bottom is 2.55 m, the inner radius is 1.5 m, and the wall thickness is 1.05 m. Chimney 
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density 𝜌௖ = 1600 kg·m-3, collapse mass 𝑚ଵ = 7×105 kg, collapse height 𝐻 = 20 m. Next to the 
chimney is an HDPE sewage pipe buried in the ground. The soil layer embedded in the pipe is a 
typical silty clay layer of Wuhan stratum, with a depth of 2 m. The vertical distance between the 
chimney and the pipeline axis is 9 m. The direction of the chimney collapse is parallel to the 
direction of the pipeline axis. The outside diameter 𝐷 is 90 cm and the inside diameter 𝑑 is 78 cm. 
The total length of the pipeline is 18 m, and the length of each of the three sections is 6 m. The 
pipe interface is socket type, and the thickness of rubber ring at the pipe interface is 0.5 cm. The 
spatial position relationship between pipe and chimney is shown in Fig. 4. The dimensions of 
pipes and chimneys are shown in Fig. 5. 

 
a) Before initiating 

 
b) 0.3 sec 

 
c) 2.1 sec 

 
d) 4.4 sec 

 
e) 5.2 sec 

 
f) 5.9 sec 

 
g) 6.6 sec 

 
g) 8.5 sec 

 
k) Falling objects 

Fig. 3. Demolish collapse flow 

 
Fig. 4. Schematic diagram of the relationship between pipe and chimney position 

The temperature in the pipe is 20 ℃. The environment temperature in the pipe is 20 ℃. 
Pipeline physical parameters: Poisson’s ratio 𝜇 = 0.46; density 𝜌 = 936 kg·m-3, Young’s modulus 𝐸 = 834.9 MPa, ring stiffness 𝑆𝑁 = 8kN·m-2, strength limit 𝜎௨ = 31.6 MPa, elongation 116 %. 

Because the chimney adopts the directional collapse scheme and the collapse distance is 
allowed, the blasting cut is arranged at the bottom of the chimney. The incision shape was positive 
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trapezoid, the central angle of the incision was 216°, and the incision height was 1.5 m. The 2# 
rock emulsion explosive is adopted, the hole diameter is 40 mm, the depth is 70 cm, the spacing 
is 50 cm, the row spacing is 50 cm. The single hole charge is 300 g. 

 
a) 

 
b) 

Fig. 5. Chimney and pipe size and space position, a) planform, b) sectional view 

3.2. Monitoring scheme and arrangement of measuring points 

The purpose of this experiment is to obtain the change of earth pressure, the change of velocity 
of the pipe and the soil above the pipe, and the change law of dynamic strain of the pipe under the 
impact load caused by demolition blasting and collapse of the chimney. For the purposes 
mentioned above, the main test items include: pipeline dynamic strain (𝜀), pipeline particle 
vibration velocity (𝑉௉) and earth pressure (𝑃), and particle velocity above the pipeline (𝑉 ). The 
point space diagram of each monitoring item is shown in Fig. 6. 

 
Fig. 6. Schematic diagram of monitoring points 
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3.2.1. Soil pressure 

In order to study the change characteristics of earth pressure caused by the collapse of chimney 
demolition to the ground, three earth pressure boxes were embedded under the center of gravity 
of the collapsed object. Three earth pressure boxes were buried at equal distances, with a spacing 
of 2.5 m. The middle earthen box is at the center of the chimney collapse. The line of the earth 
pressure cells is perpendicular to the established collapse axis, and the line is 20 m away from the 
chimney. The buried earth pressure box is shown in Fig. 7. The whole bridge of the earth pressure 
box is connected, and DH5956 dynamic signal acquisition instrument is used for data acquisition. 

 
Fig. 7. Soil pressure test point 

3.2.2. Dynamic strain 

In order to study the stress and strain state of pipeline under blasting vibration, a monitoring 
section is set in the numerical model. The monitoring section is located at the shortest distance 
from the chimney, 4.7 m from the pipe ends. Two measuring points are arranged along the annular 
direction of the pipeline, and the annular strain gauge and axial strain gauge were arranged at each 
measuring point. There were 4 strain gauges in total. As shown in Fig. 8. The strain gauge with 
length of 80 mm and resistance 120 Ω is instrumented on the pipeline and connected with a quarter 
of the bridge to DH5956 with a measuring accuracy of 10 microstrain and sampling rate 
20000 Hz/channel. 

 
Fig. 8. Dynamic strain test point 

3.2.3. Vibration velocity 

In order to study the vibration velocity change of the particle, including particles on the surface 
and in the pipeline. The tc-4850 blasting vibration meter was selected as the vibration velocity 
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measurement system. Due to the influence of soft soil properties on vibration propagation and 
monitoring, a special support device is used to fix the sensor o TC-4850, as is shown in Fig. 7. 
The device can connect vibration sensors to soil particles, and the sensor will not be loose and 
unable to collect data during the process of vibration wave propagation. 

Three vibration velocity measuring points are arranged in the pipeline, which are located at 
the pipe end (measuring point 5) inside the pipeline, the closest position to the center of the 
chimney axis (measuring point 4) and the pipe joint interface (measuring point 3). Two measuring 
points are placed on the surface above the pipeline, namely, ground measurement point 1 is 
directly above measurement point 3, and ground measurement point 2 is directly above 
measurement point 4. All points are shown in Fig. 9. Because there is a sewage well at the position 
of the pipe opening, the vibration velocity measuring point is not arranged on the ground directly 
above the pipe opening. 

 
Fig. 9. Vibration velocity test point 

4. Analysis of test results 

4.1. Soil pressure 

Combined with the principle of soil pressure test, the soil pressure measured in the test is the 
product of the strain of the soil pressure box and the constant coefficient 𝐾, the unit is MPa. 
Therefore, the earth pressure curve obtained by data processing is shown in Fig. 10.  

 
Fig. 10. Soil pressure test results 

It can be known that the impact load at the center of gravity of chimney collapse is the largest, 
with a value of 590.3 MPa. There is little difference in the peak value of impact load on both sides, 
and its value is smaller than the center of the pipeline. All monitoring points are subjected to 
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compressive stress. According to curve C, the acting time of impact load is about 2 seconds and 
reaches its peak value when it is close to 2.5 seconds. However, curve AB shows that at the 
chimney edge, the impact load is a three-stage change law, which first reaches the peak value and 
then gradually decreases and finally tends to equilibrium. 

4.2. Dynamic strain 

Due to the low frequency and long duration of impact load, the collected data need to be de-
noised. The dynamic strain of each measurement point of the pipeline after denoising is shown in 
Fig. 11. According to the results shown in the Fig. 11, the point dynamic strain at A above the 
pipeline is smaller than that at B on the explosion-facing side of the pipeline, and the annular strain 
at both points is larger than the axial strain. Annular is compressive strain, axial is tensile strain. 
The maximum microstrain of the circumferential strain at point A is 1403, and the maximum 
microstrain of the circumferential strain at point B is 1065. Due to the propagation characteristics 
of caving impact load, its propagation law under the surface is similar to blasting seismic wave, 
both of which are dominated by P wave incidence. Combined with the practical engineering 
situation, the vibration shock wave first propagates to the explosion-facing side of the pipeline, 
and the effect on the top of the pipeline is relatively weak. 

  
Fig. 11. Dynamic strain test results, a) measuring point A, b) measuring point B 

4.3. Vibration velocity 

As a reflection of the energy when the blasting seismic wave passes through the medium, the 
vibration velocity is the most intuitive measurement data in vibration monitoring. According to 
the experimental protocol mentioned above, the monitoring data of collapse vibration velocity of 
demolition blasting is obtained. The vibration velocity and dominate frequency of each direction 
of the 5 measuring points are listed as shown in Table 2. According to the statistical results in the 
table, it can be seen that: 1) The internal vibration velocity of the pipeline is greater than the 
surface vibration velocity; 2) Main frequencies in all directions are concentrated between  
5 Hz-20 Hz; 3) The vibration velocity and dominate frequency of the particle in the 𝑍 direction in 
the pipeline are greater than 𝑋 and 𝑌 direction, while the vibration velocity of the particle in the 𝑍 direction at the surface is smaller than 𝑋 and 𝑌 and the frequency is greater than 𝑋 and 𝑌. This 
is because the impact vibration wave operating point is located at the surface, so the surface is 
easier to be affected by the surface wave, so the horizontal direction of the vibration speed is 
greater than the vertical direction. However, the shock vibration wave propagates the body wave 
in the soil, so the particle vibration velocity has more influence in the vertical direction. 

The vibration velocity waveforms of surface measurement point 1 and pipeline measurement 
point 4 are shown in Fig. 12(a) and 12(b). The vibration shock wave generally consists of three 
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stages in the propagation process, namely the initial phase, the main phase and the aftershock 
phase. Combined with Fig. 12(a), it can be seen that the collected data of vibration shock wave 
conforms to the theory. 

Table 2. Statistics of vibration velocity results 
Measuring point 𝑋 / (cm/s) 𝑓 / Hz 𝑌 / (cm/s） 𝑓 / Hz 𝑍 / (cm/s） 𝑓 / Hz 𝑉ோ / (cm/s） 

1 0.353 10.336 0.13 11.142 0.008 17.937 0.377 
2 0.143 6.768 0.05 6.079 0.007 16 0.152 
3 2.26 8.163 0.829 13.937 3.365 40.816 4.137 
4 2.367 12.8 1.967 10.695 3.762 11.364 4.860 
5 1.77 5.743 1.935 5.682 4.215 6.873 4.964 

 

Fig. 12. Vibration velocity results, a) measuring point 1, b) measuring point 4 

4.4. Validation for theoretical analysis by example and numerical simulation 

The data of the project case is put into the theoretical calculation formula mentioned above. 
This is equivalent to a sphere with a radius (𝑅ଶ) of 4.71m, depending on the mass and density of 
the chimney. The initial velocity of the ball (𝑣଴) at the moment of free fall is 98 m/s. The elastic 
modulus (𝐸ଶ) of silty clay is 5 MPa. 

According to Eq. (6), the maximum impact load generated by this project is 684.3 MPa. 
Combined with the pipeline stress state Eq. (7-12), the different stresses on the pipeline can be 
obtained, as shown in Table 3. According to the surface vibration velocity prediction formula, the 
combined vibration velocity at the actual surface monitoring point 1 and 2 can be calculated as 
0.451 cm/s and 0.178 cm/s, respectively. 

Table 3. List of stresses 
Type of stress Tangential stress Axial stress Radial stress Shear stress 
Value / MPa 0.022 0.052 0.61 0.0002 

The process of numerical simulation is as follows. Firstly, the numerical model of pipeline 
collapse is adopted to obtain the pressure of pipeline collapse to the ground. Secondly, the surface 
pressure is obtained according to the location of pipeline collapse, and the pressure is applied to 
the pipeline model for calculation. The specific numerical model parameters are shown as follows. 

The pipe is high-density polyethylene, and it is a viscous-elastic material. This material can be 
modeled by *MAT_ PLASTICITY_POLYMER. This is an elastic-plastic material model that can 
define an arbitrary stress-strain curve and arbitrary strain rate dependency. Furthermore, the model 
can simulate the exact brittle response of the polymer at high strain. The stress-strain curve used 
in this study is obtained by [19]. The equation can be expressed as: 
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𝜎ሺ𝜀ሻ =
⎩⎪⎨
⎪⎧ 32ሺ1 + 𝑣ሻ𝐸𝜀, 𝜀 ≤ 𝜀௬,𝑑൛[𝑎(𝜀 + 𝑏)](௖ିଵ) − [𝑎(𝜀 + 𝑏)ି௖]ൟ + 𝑒, 𝜀௬ < 𝜀 ≤ 𝜀௡𝛼𝑘𝜀ே, 𝜀௡ < 𝜀 ≤ 𝜀௧ ,𝐾exp൫𝑀𝜀ఉ൯, 𝜀 > 𝜀௧ .

, (1)

The physical and mechanical parameters are determined by experiments, other parameters in 
the equation are determined by Reference and shown in Table 4. 

Table 4. Parameters in Kwon constitutive equation 𝜀௬  𝑑 𝑎 𝑏 𝑐 𝑒 
0.015 –22.29 33.41 0.0149 0.001 15.50 𝛼௞ 𝑁 𝜀௧ 𝐾 𝑀 𝛽 

35.517 0.077 0.32 30.66 0.4953 1.80 

The calculation parameters used in the numerical simulation are based on laboratory 
mechanical tests. All materials in the model are simplified to be isotropic and homogeneous 
without considering the material fracture, rock mass joints, and discontinuities. 
*MAT_DRUCKER_PRAGER is used to model the silty clay [20]. The frictional angle and 
cohesion determine the yield surface. The modified Drucker-Prager yield surface is used in this 
material model enabling the shape of the surface to be distorted into a more realistic definition for 
soils. The yield surface is expressed as: 

ቐ𝐹 = 𝑇 + 3𝛽𝜎௠ − 𝜎௬,𝛽 = 2sin𝜑√3(3 − sin𝜑),     𝜎௬ = 6𝑐cos𝜑√3(3 − sin𝜑) , (2)

where 𝑇 is the shear strength, 𝜎௠ is the mean stress, 𝜑 is the internal friction angle, 𝑐 is the 
cohesion. 

*MAT_PLASTIC_KINEMATIC material model is used for strong weathered sandstone and 
stemming. To manage the material failure, the PK material model is used in conjunction with the 
secondary created material failure criterion model *MAT_ADD_EROSION of LS-DYNA. The 
constitutive formula is as follows: 

𝜎௬ = ൥1 + ቀ𝜀𝐶ቁଵ௉൩ ൫𝜎଴ + 𝛽𝐸௉𝜀௉௘௙௙൯, (3)

where 𝜎௬ is the yield stress, 𝜎଴ is the initial yield stress, 𝐶 and 𝑃 are the strain rate parameters, 𝜀 
is the strain rate, 𝜀௣௘௙௙ is the effective plastic strain, 𝐸௣ is the plastic hardening modulus, 𝛽 is the 
hardening coefficient: 𝐸௣ = 𝐸௧௔௡𝐸𝐸 − 𝐸௧௔௡, (4)

where 𝐸௧௔௡ is the tangent modulus and 𝐸 is Young’s modulus. The physical and mechanical 
parameters of soil, rock, and stemming are shown in Table 5. The numerical simulation process 
of chimney collapse is shown in Fig. 13. 



DETERMINATION OF DAMAGE PROPERTIES OF POLYETHYLENE PIPES UNDER HIGH IMPACT LOAD.  
NAN JIANG, YONGSHENG JIA, YINGKANG YAO, JINSHAN SUN, ZHONGWEI CAI, YUQI ZHANG, TINGYAO WU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 81 

Table 5. Physical and mechanical parameters 

Material  Density 
/ g·m-3 

Elastic 
modulus 

/ GPa 

Shear 
modulus 

/ GPa 

Poisson’s 
ratio 

Cohesion 
/ MPa 

Internal 
friction 
angle/° 

Tensile 
strength 
/ MPa 

HDPE 
pipe 0.941 0.758 0.26 0.40 – – 31.6 

Silty clay 1.98 0.11 0.044 0.33 0.035 15 0.028 
Chimney 1.8 12 – 0.15 – – 1.5 

 

 
a) 0 sec 

 
b) 4.4 sec 

 
c) 5.2 sec 

 
d) 6 sec 

 
e) 6.6 sec 

 
f) Falling objects 

Fig. 13. Numerical simulation process of chimney collapse 

The maximum impact load and surface combined vibration velocity obtained by theoretical 
calculation are compared with the actual engineering test results and numerical simulation results, 
as shown in Table 6. It can be found that the value obtained by theoretical calculation is slightly 
larger than the actual monitoring data. The reason is that the discontinuity of soil during the 
propagation of shock wave is not considered in the theoretical calculation, which results in energy 
loss. So the vibration amplitude is reduced. And in the actual blasting process, the chimney 
collapse form is not the whole collapse. Therefore, theoretical calculation is larger than actual 
monitoring data. However, the error between them is less than 20 %, so the theoretical results are 
reliable. 

It needs to be explained that: a. Combined with the actual situation, the amplitude of impact 
load decreases rapidly with the increase of horizontal distance from the pipe, and the frequency 
also decreases with the increase of distance from the action center of impact load. Therefore, the 
probability of failure due to resonance in the far zone is small. b. In the near region, the shock load 
frequency is similar to the natural vibration frequency of the pipeline, so when the amplitude of 
energy reaches the strength limit of the pipeline, the pipeline is easy to be destroyed. Therefore, 
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the impact load calculated by Eq. (6-12) is reasonable. 3. It is assumed that the ground plane of 
the project chimney collapse is a horizontal semi-infinite space elastomer. 

Table 6. Comparison of theoretical and measured data 
Type of dynamic 

response parameter 
Theoretical 
calculation 

Actual 
monitoring 

Error / 
% 

Theoretical 
calculation 

Numerical 
simulation 

Error / 
% 𝑉ோଵ / (cm/s) 0.451 0.377 19.6 0.451 0.41 9.09 𝑉ோଶ / (cm/s) 0.178 0.152 17.1 0.178 0.172 3.37 𝑃௠௔௫ / MPa 684.8 590.3 16.0 684.8 659 3.76 

5. Assessment of pipeline safety  

Since it is not convenient to monitor the pipeline directly in the actual project, the vibration 
velocity can only be monitored on the surface. Combined with the above monitoring data, it can 
be seen that the vibration velocity of the pipeline is much higher than that of the ground. Therefore, 
before the actual project starts, the safety of the pipeline needs to be evaluated. If the critical value 
of the pipeline strength is reached, the damping facilities should be added in time to ensure the 
safety of the pipeline around the project. 

The HDPE pipe monitored by blasting demolition test has good impact resistance. Since the 
pipeline under impact load is more likely to be damaged in the annular direction, the maximum 
allowable circumferential strain of the pipeline can be determined according to rule 4.4.6 [21]. 
That is, under the combined action of polyethylene pipe, the calculation of the maximum vertical 
deformation should meet the following conditions: 𝜔ௗ,୫ୟ୶ ≤ 0.05𝐷଴, (5)

where: 𝜔ௗ,௠௔௫ is the maximum vertical deformation of polyethylene pipe under the combined 
action; 𝐷଴ is the calculated diameter of the pipe.  

Then, the maximum allowable annular compression and tensile strain are both [𝜀௛] = 5 %. 
Compared with other material pipeline, it is obvious that the permissible strain of HDPE 

pipeline is bigger than others. As mentioned above, the strength limit of the pipeline is only  𝜎௨ = 31.6 MPa, that is, when the pipeline reaches the maximum allowable strain, the stress has 
exceeded the strength limit, so it is unreasonable to judge the safety state of the pipeline by the 
strain alone. Considering that the failure mode of HDPE pipe is yield failure, the failure behavior 
of HDPE pipe is determined by the Von Mises yield criterion. According to the Mises yield 
criterion, Mises equivalent stress 𝜎௘௤ shall not exceed yield stress 𝜎௬, as shown in Eq. (15) [22]: 

𝜎௘௤ = ඨ12 [(𝜎ଵ − 𝜎ଶ)ଶ + (𝜎ଶ − 𝜎ଷ)ଶ + (𝜎ଵ − 𝜎ଷ)ଶ] ≤ 𝜎௬, (6)

where: 𝜎௘௤ is Mises equivalent stress, 𝜎ଵ is the first principal stress, 𝜎ଶ is the second principal 
stress, 𝜎ଷ is the third principal stress, 𝜎௬ is the yield stress. 

The relationship between yield stress and strain rate of HDPE pipe satisfies the Eyring equation 
[23], that is, the relationship between yield stress and logarithmic strain rate satisfies the following 
equation: 𝜎௬ = 30.195 + 1.246ln𝜀ሶ, (7)

where: 𝜀ሶ is the strain rate. 
The annular strain and axial strain at strain measuring point 2 were differentiated once to obtain 

the strain rate of the pipeline. The maximum strain rate is 0.04 s, and the yield stress  
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𝜎௬ = 26.18 mPa is obtained by applying Eq. (16). 
According to the values of the three stresses and shear stresses on the top of the pipe calculated 

above, the shear stress is much smaller than the stress in the three directions. Therefore, it can be 
considered that the first principal stress at the top of the pipe is radial stress 𝜎௭, the second principal 
stress is axial stress 𝜎ఏ, and the third principal stress is tangential stress 𝜎௥. The equivalent stress 
is 0.51 MPa. The yield stress of HDPE pipe is much less than that of HDPE pipe, so the pipe under 
impact load generated by demolition blasting engineering is safe. 

It needs to be explained that: a) The calculation assumes that the soil is linearly elastic and 
homogeneous, and there is no relative slip of the pipe soil under the action of blasting seismic 
waves. The pipeline material is nonlinear viscoelastic and satisfies isotropy; b) The calculation 
object is the pipe location of the directly buried pipeline, without considering the interface, bend 
and so on. According to the requirements of the specification, the weak links such as interface and 
bend are processed by means of flange, sleeve and hot melt, so that the strength is greater than 
that of the pipe body. Therefore, it is reasonable to take the tube body as the research subject to 
calculate its control vibration velocity. 

6. Conclusions 

Through field monitoring of demolition blasting engineering and theoretical analysis and 
numerical simulation, the influence of vibration load on HDPE bellows is studied. The main 
conclusions are as follows: 

1) The impact load frequency of collapse vibration ranges from 5 Hz to 20 Hz, which is 
between the natural earthquake and the blasting vibration frequency. The surface vibration 
velocity above the pipeline is much lower than the surface vibration velocity inside the pipeline, 
and the surface vibration velocity waveform consists of obvious initial vibration phase, main 
vibration phase and residual vibration phase. 

2) The vibration shock wave mainly propagates in the form of surface wave and in the form of 
body wave under the surface. The strain on the blasting side of pipeline is greater than that on the 
top of pipeline. 

3) The maximum impact load obtained by theoretical calculation is close to the actual vibration 
velocity on the surface of the pipeline, and the dynamic response calculation of the pipeline based 
on the theory is basically reliable. 

4) Combined with Von Mises yield criteria, it is safe to dismantle pipelines under blast impact 
load. At the same time, the method proposed in this paper is based on the Theory of Semi-infinite 
space Elastomer, which has certain limitations in the stochastic calculation of the load form. If the 
load form can be extended to the actual random wave model, the reliability of the obtained data 
will be clearer.  
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