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Abstract. The geological effects of rock blasting in silt-rock strata are complex, and the vibrations 
caused by the blasting threaten the safety of inhabitable areas. Based on measured data for the 
vibrations at the site and dynamic finite element simulations, the propagation characteristics of 
vibrations in silt-rock strata were studied. The propagation of the vibrations of the surface, the 
propagation characteristics of the vertical vibration velocities from the surface to the tunnel, and 
the attenuation of the blasting vibrations along the tunnel’s axis were analyzed. The results of this 
study are as followings: in the direction of the tunnel’s axis and in the direction vertical to the 
tunnel’s axis, the peak particle velocities (PPVs) of the surface decreases with increasing 
horizontal distance from the explosion source. The magnitudes of the PPVs of the surface under 
five working conditions are the same when the surface particle is right above the center of the 
explosion source and 10 m away from the center. In the vertical direction from the surface to the 
explosion source, the vertical direction of the silt-rock strata and the vertical direction of the silt 
stratum, the PPVs increases gradually with the increasing distance from the surface in the vertical 
direction. The change in the thickness of the artificial fill and silt in the shield interval strata has 
little effect on the PPVs along the tunnel’s axis. The results of this study provide a reference for 
identifying the safety distance around the inhabitable areas of rock blasting under similar 
geological conditions. 
Keywords: rock blasting, silt-rock strata, propagation characteristics, thickness of stratum. 

1. Introduction 

With the fast economic growth in China, the demand for urban underground space engineering 
is growing rapidly. In 2020, 33 cities had 177 subway lines in China [1]. In the construction of 
metro-tunnels using the shield method, mixed strata are often encountered within the tunnel’s 
cross-section, such as in the Guangzhou Metro Line 7 [2], the 2.3-km-long C line and the  
4-km-long S line of the Oporto Metro [3], the Tabriz metro line 1 [4], the Kranji tunnel in 
Singapore [5], the Shenzhen Metro Line 11 [6], the Xiamen Metro Line 2 [7], the power tunnel in 
Shenzhen [8], and the Fuzhou Metro Line 6 [9]. When the shield machine bores through silt-rock 
strata, the rock stratum in the lower part of the cross-section is too hard to bore, while the silt 
stratum in the upper part of the cross-section easily enters the soil chamber, especially for silt 
stratum that is rich in groundwater. When the soil pressure in the sealed soil chamber is 
unbalanced, soil loss, large amounts of settlement and collapse accidents easily occur. Many 
scientists have attempted to solve this problem [6-7]. They concluded that if the rock stratum is 
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blasted into blocks in advance, with a maximum diameter of the blocks is less than 30 cm, then 
the blocks can smoothly enter the soil chamber through the opening of the tunnel boring machine’s 
(TBM) cutter head and can finally be discharged through the screw conveyor. However, the 
vibrations caused by the blasting will inevitably affect the surrounding environment. The 
geological effects of rock blasting in silt-rock strata are complex. Many researchers have studied 
the propagation characteristics of vibrations passing through different strata. For example, R. 
Nategh [10] studied the attenuation of PPVs on the surface for different types of explosives, 
detonators, and rocks. Y. L. Gui et al. [11] researched the propagation of blasting vibrations in 
rock stratum and rock-soil strata through field tests and finite element simulations. U. Ozer [12] 
fitted the PPVs and the distance from the explosion source under different rocks. Y. K. Wu et al. 
[13] investigated the propagation of blast waves under different joint strike angles. Z. L. Wang et 
al. [14] studied the propagation of blast waves in a rock plate and rock wall through numerical 
simulations. X. B. Zhao et al. [15] simulated the propagation of P-waves in multiple nonlinear 
deformation fractures using the universal distinct element code (UDEC). B.C. Lin et al. [16] 
studied the attenuation of blast waves near the interface between a soil stratum and rock stratum 
through numerical simulations. Z. T. Li et al. [17] researched the vibration response and cavity 
effect of the surrounding rock under a blasting load in upper-soft and lower-hard strata through 
numerical simulations. Based on previous research in China and abroad, few studies have been 
conducted on the propagation characteristics of vibrations caused by rock blasting in silt-rock 
strata.  

In this study, based on the rock blasting engineering in the silt-rock strata of the shield section 
of the Zhuhai metro line, the propagation of vibrations of the surface, the propagation of vibrations 
from the shield section to the surface, and the attenuation of the vibrations along the tunnel’s axis 
were investigated using a combination of field tests and finite element numerical simulations. The 
conclusions of this study provide a reference for determining the safety distance around the blast 
area of rock blasting under similar geological conditions. 

2. Geological conditions and blasting vibration tests 

2.1. Geological conditions and blasting parameters 

The shield section between Hengqinbei Railway Station and Hengqin Railway Station on the 
Zhuhai-Zhuhai Airport Intercity Railway is located in the economic development zone of Hengqin 
Island, Zhuhai City (Fig. 1). It runs along the coastline of the South China Sea, with a total length 
of 2.656 km. 

 
Fig. 1. Layout of the Zhuhai-Zhuhai Airport Intercity Railway 
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Because the shield section passes through the silt-rock strata, the rock stratum in the tunnel 
section has to be blasted into blocks in advance, and the maximum diameter of the blocks should 
be less than 30 cm after breaking so that the blocks can smoothly enter the soil chamber through 
the opening of the cutter head, and can finally be discharged through the screw machine. A 
diagram of the charging at the blast site is shown in Fig. 2, Rock cores obtained before blasting 
and after blasting are shown in Fig. 3. 

 
Fig. 2. Diagram showing the charging at the blast site 

 
a) Rock cores obtained before blasting 

 
b) Rock cores obtained after blasting 

Fig. 3. Rock cores obtained before blasting and after blasting  

The blast area was located in the reclamation area, there were three strata from the ground 
surface to the subway tunnel. (1) The first stratum was composed of artificial fill. It was yellowish 
brown, slightly wet, mainly in a saturated loose state, slightly compacted, and was mostly 
composed of pavement concrete with a thickness of 20-35 cm. The thickness of this stratum was 
0.30-15.10 m, with an average thickness of 2.82 m. (2) The second stratum was composed of silt. 
It was gray to dark gray, saturated, in a flowing plastic state, was composed of uniform and fine 
soil, and was locally enriched with shell debris and sand. The thickness of this stratum was 
0.50-30.30 m. (3) The third stratum was composed of weakly weathered granitic rock. It was 
brown yellow, gray brown, and gray white, medium-coarse grained, and had a massive structure. 
The joint fissures were relatively well developed. The rock quality was hard. The burial depth of 
the stratum fluctuated greatly, and the distribution was discontinuous. 

The length of the blast area was 960 cm and the width of the blast area was 160 cm. The casing 
while drilling method was used to drill the blastholes. Polyvinyl chloride (PVC) casing with a 
diameter of 7.5 cm was used to protect the blasthole wall and was installed immediately after the 
blasthole was drilled. The spacing and the row spacing of the blastholes were both 80 cm, the 
diameter of the blastholes was 14.6 cm, and the depth of the blastholes was 3400 cm. Three rows 
of blastholes were detonated each time, 13 blastholes were arranged in a row, and a millisecond 
blasting network was adopted in the blasthole. The millisecond sections of the three rows of 
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blastholes were 6, 7 and 8 sections in turn, and the delay time was 50 ms. The layout of the 
blastholes is shown in Fig. 4. 

After drilling the blastholes, the blastholes were immediately filled with underground water, 
and they were water-couple charged. The diameter of the explosive roll was 6 cm, and the density 
of the explosive was 1 061 kg/m3. The continuous charge scheme was adopted, the charge length 
was the thickness of the rock stratum at the tunnel section, and the thickness of the rock to be 
blasted was 1-8 m. The blastholes were stemmed with 1-1.5-cm-diameter gravel, and the length 
of the stemming was 10 m. 

 
a) Planar graph 

 
b) Cross section of A-A 

 
c) Cross section of B-B 

Fig. 4. Sketch map of the blastholes (cm) 

2.2. Test points of blasting vibrations 

The TC-4850 self-recording instrument (Zhongke (Chengdu) Instruments Company Limited) 
was used to measure the blasting vibrations during the blasting. Each instrument had three 
channels and the collection was conducted in parallel. The arrangement of the blasting vibration 
meters is shown in Fig. 5. 

 
Fig. 5. Arrangement of blasting vibration meters 

Three acceleration measuring points and six velocity measuring points were arranged in total. 
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The measuring points were arranged along the ray with the explosion source as the center. A 
schematic diagram of the explosion source and measuring points is shown in Fig. 6. 

 
Fig. 6. Schematic diagram showing the explosion source and measuring points (m) 

3. Numerical model and verification 

The physical and mechanical properties of the materials involved in blasting engineering were 
verified through field tests and dynamic finite element simulations, which provided the parameters 
for the numerical simulations in the following section. 

3.1. Calculation model and boundary conditions 

In order to analyze and verify the physical and mechanical properties of the explosive, silt, 
rock, etc during the actual blasting engineering, a numerical model of the rock blasting of the 
silt-rock strata were established. Since the model was symmetric, a half model was established to 
simulate the computation. The model is shown in Fig. 7. 

According to the characteristics of the blasthole layout, the model was established using the 
maximum charge in one section. Since the radius of the crushing zone was between 10 and 
15 times of the radius of the charge, the distance between the model boundary and the center line 
of the blasthole needed to be greater than 15 times of the radius of the blasthole [18], but if the 
model is larger, the calculation time is longer. Considering these factors comprehensively, a cube 
model was established with a length of 7 580 cm (𝑋 direction), a width of 1 200 cm (𝑌 direction), 
and a height of 4 150 cm (𝑍 direction). 

The blastholes were arranged in the left part of the model, 500 cm away from the left free 
surface. The blasthole radius was 7.3 cm. Because the blasthole radius was too small relative to 
the model size, it was easy to produce an abnormal grid; so, the equivalent charge was established 
to enlarge the blasthole radius to 30 cm [19]. The height of blastholes was 50 cm, the number of 
blastholes was six, and the spacing was 80 cm. The height of the charging was 50 cm, the height 
of the rock stratum was 550 cm, and the height of the silt stratum was 3 000 cm. The height of the 
artificial fill stratum was 300 cm and the height of the air was 300 cm. 

 
Fig. 7. Calculation model of rock blasting in silt-rock strata(cm)  

According to the characteristics of the rock blasting of the silt-rock strata, the boundary 
conditions of the calculation model were set as follows: the front face of the model was a 
symmetric boundary, the upper surface was a free boundary, and the other surfaces were non-
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reflecting boundaries. The length of the element should be less than 1/10-1/8 of the length of the 
explosive shock wave [20], but the calculation time is too long if the mesh is too small. 
Considering these factors comprehensively, the maximum length of the element was set to 1 m. 
The entire model was divided into 34 290 nodes and 30 272 elements. The ALE grid was used to 
divide the explosive element and the air element; and the Lagrange grid was used to divide the 
rock element, the silt element, and the artificial fill element. A fluid-solid coupling algorithm was 
used to define the connection between the ALE grid element and the Lagrange grid element, and 
the cm-g-μs unit system was adopted. 

3.2. Numerical model and parameters of material  

The materials in the numerical model included the explosive, rock, silt, artificial fill and air. 
The No. 2 rock emulsion explosive was used in the engineering, and the highly explosive material 
*MAT_HIGH_EXPLOSIVE_BURN in the ANSYS/LS-DYNA software was used to simulate it 
[21, 22]. The rock was weakly weathered granite, and *MAT_PLASTIC_KINEMATIC was 
selected to simulate it [23, 24]. The silt was an ideal incompressible fluid, and the viscous effect 
could be ignored. The *MAT_PLASTIC_KINEMATIC was also used to simulate the silt [25]; 
The artificial fill was simulated using *MAT_DRUCKER_PRAGER [12]. The air was simulated 
using *MAT_NULL [26]. The physical and mechanical properties of the explosive, rock, silt [27], 
artificial fill [28], and air were obtained through field tests and laboratory tests (Table 1-5). 

Table 1. Physical and mechanical properties of the explosive 
Density 
(g.cm-3) 

Detonation velocity  
(cm.μs-1) 𝐴 (GPa) 𝐵 (GPa) 𝑅ଵ 𝑅ଶ 𝜔 𝐸଴ (GPa) 

1.06 0.5 216.4 0.182 4.2 0.9 0.15 4.192 

In the calculations, the equation of state of the detonation of the explosive material could be 
described by the Jones-Wilkins-Lee (JWL) equation: 𝑃 = 𝐴 ൬1 − 𝜔𝑅ଵ𝑉൰ 𝑒ିோభ௏ + 𝐵 ൬1 − 𝜔𝑅ଶ𝑉൰ 𝑒ିோమ௏ + 𝜔𝐸଴𝑉 , (1)

where 𝑃 is the pressure determined by the JWL equation of state; 𝐴, 𝐵, 𝑅ଵ, 𝑅ଶ, and 𝜔 are material 
constants related to the explosive; 𝑉 is the relative volume; and 𝐸଴ is the initial specific internal 
energy. 

According to G. Zhao’s experimental results on the decrease in the detonation velocity of 
common industrial emulsion explosives under water pressure in deep water [29], the relationship 
between the detonation velocity of the emulsion explosive 𝐷 and the water depth ℎ଴ can be 
obtained. Then, the relationship between the detonation pressure and the water depth can be 
obtained by combining the relationship (Eq. (2)) between the detonation pressure, explosive 
density, and detonation velocity, which are presented in Table 2: 𝑃஼௃ = 1𝑘 + 1 𝜌ଶ𝐷ଶ, (2)

where 𝑃஼௃ is the average initial detonation pressure of the explosive (GPa); 𝜌ଶ is the density of the 
explosive (kg/m3); 𝐷 is the detonation velocity of the explosive (m/s); and 𝑘 is the isentropic index 
of the explosive. The isentropic index of the general industrial explosive is 3. 

In the numerical model, the height of the charging was 0.5 m and the charging was located at 
a water depth of 34 m; so, the detonation velocity of the explosive was 2 733 m/s, and the 
detonation pressure of the explosive was 1.98 GPa. 

The null material model was adopted for the air, which satisfied the Gruneisen equation of 
state: 
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𝑃 = 𝜌଴𝑐ଶ𝜇 ቂ1 + ቀ1 − 𝛾଴2 ቁ 𝜇 − 𝛼2 𝜇ଶቃ൤1 − ሺ𝑆ଵ − 1ሻ𝜇 − 𝑆ଶ 𝜇ଶ𝜇 + 1 − 𝑆ଷ 𝜇ଷ(𝜇 + 1)ଶ൨ + (𝛾଴ + 𝛼𝜇)𝑒଴, (3)

where 𝑐 is the intercept of the shear-compression wave velocity curve; 𝑃 is the pressure; 𝑒଴ is the 
initial specific internal energy; 𝜇 = 𝜌 𝜌଴⁄ − 1; 𝜌 is the density of the material; and 𝑆ଵ, 𝑆ଶ and 𝑆ଷ 
are the slope factors of the shear-compression wave velocity curve; 𝛾଴ is the Uneisen constant; 𝛼 
is the initial volume correction factor; and 𝜌଴ is the initial density of the material. 

Table 2. Relationship between the detonation velocity of the explosive 𝐷,  
the detonation pressure of the explosive 𝑃஼௃ and the water depth ℎ଴ 

Water depth ℎ଴ (m) 0 26 27 28 29 30 31 32 33 34 
Detonation velocity 𝐷 (m/s) 5000 3267 3200 3133 3067 3000 2933 2867 2800 2733 

Detonation pressure of 
explosive 𝑃஼௃ (GPa) 6.63 2.83 2.72 2.60 2.50 2.39 2.28 2.18 2.08 1.98 

Table 3. Physical and mechanical properties of the rock and silt 

 
Density 𝜌  
(g·cm-3) 

Elastic 
modulus 𝐸 

(GPa) 

Poisson’s 
ratio u 

P-wave 
velocity 

(m/s) 

Yield 
strength 
(MPa) 

ETAN 
(GPa) BETA 

Strain rate 
parameter 

C 
Rock 2.5 0.74 0.25 5357 3.0e-5 0.042 1.0 0.06 
Silt 1.63 3.3e-5 0.45 1250 4.0e-9 0.0 – – 

Table 4. Physical and mechanical properties of the air 
 𝜌 (g·cm-3) 𝑐 (m·s-1) 𝑆ଵ 𝑆ଶ 𝑆ଷ 𝛾଴ 𝛼 𝑒଴ (GPa) 

Air 1.29E-03 344 0 0 0 1.40 0 0 

Table 5. Physical and mechanical properties of the artificial fill 
Density 𝜌 
(g/cm3) 

Poisson’s ratio 𝑢 
Cohesion 

(KPa) 
Shear modulus 

(MPa) 
Angle of internal friction 

(rad) 
1.98 0.35 100 150 0.31 

3.3. Reliability analysis of numerical simulation 

The vibrations of the ground surface were tested at the blasting sites, and the monitoring points 
#1 and #2 were located at 30 m and 60 m to the right of the explosion source. The location of the 
numerical simulation points is shown in Fig. 5. The results of numerical calculations and field 
tests were listed in Table 6. The results show that the data are close, and the errors are between 
5.88 % and 19.64 %. Therefore, it is feasible to study the propagation characteristics of rock 
blasting in silt-rock strata using the numerical calculation model and parameters.  

Table 6. Comparison of PPVs at each monitoring point 

Monitoring point  #1 (4871) #2 (5812) 
X Y X Y 

Field tests (cm/s) 2.13 0.68 0.56 0.68 
Numerical calculations (cm/s) 1.76 0.64 0.45 0.56 

Error rate (%) 17.37 5.88 19.64 17.65 

Fig. 8 shows the measured horizontal (𝑋) vibration velocity waveforms of monitoring point 
#2, and Fig. 9 shows the simulated waveform of the corresponding points. 
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Fig. 8. Measured horizontal transverse velocity (𝑋)  

of waveform at measuring point #2 

 
Fig. 9. Simulated horizontal transverse velocity (𝑋) 

of waveform at measuring point #2 

4. Numerical calculation model  

4.1. Numerical model 

There are a large number of land reclamation areas in the world including in Hong Kong, 
Singapore, the Netherlands, Japan, and much of the coastlines of mainland China [30]. The 
thickness of the silt stratum and the thickness of the artificial fill are different in these areas. In 
order to research the propagation characteristics of blasting vibrations in silt-rock strata, a 
numerical model (Fig. 10) was established. Due to the symmetry of the model, a half model was 
established to simplify the computation. The model was cubic, with a length of 8 080 cm (𝑋 
direction), a width of 4 600 cm (𝑌 direction) and a height of 4 150 cm (𝑍 direction). The height of 
the blasthole, the spacing of the blasthole, the height of the rock, and the height of the air were 
consistent with the model parameters described in Section 3. By modifying the key words of the 
K file in ANSYS/LS-DYNA, the thickness of the silt stratum and the thickness of the artificial fill 
were varied. The five different thicknesses of silt and artificial fill are listed in Table 7. 

 
Fig. 10. Numerical calculation model of rock blasting in silt-rock strata (cm) 

Table 7. Five different thicknesses of silt and artificial fill  

 Working 
condition 1 

Working 
condition 2 

Working 
condition 3 

Working 
condition 4 

Working 
condition 5 

Thickness of 
artificial fill (m) 3 9 15 21 27 

Thickness of silt 
(m) 30 24 18 12 6 

4.2. Boundary conditions and material parameters 

The boundary conditions of the model were set as follows: the front surface of the model was 
a symmetric boundary, the upper surface was a free boundary, and the other surfaces were non-
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reflecting boundaries. One hundred and sixty-four 3-D solid elements were used for the mesh 
generation. The entire model was divided into 173 700 nodes and 164 384 elements. The ALE 
grid was used to divide the elements of the explosive and air, and a Lagrange grid was used to 
divide the elements of the rock, silt, and artificial fill. A fluid-solid coupling algorithm was used 
to define the connection between the ALE grid elements and the Lagrange mesh elements, and a 
cm-g-μs unit system was adopted. The material models and parameters were verified through field 
tests and laboratory experiments (see Section 3).  

5. Analysis of calculation results  

5.1. Propagation of vibration velocity on the surface 

5.1.1. Propagation of vibration velocity along the tunnel’s axis on the surface 

Taking the particle in the surface directly above the center of the explosion source as the origin, 
monitoring points were arranged outwards on sides of the tunnel’s axis on the surface. The PPVs 
of the vector superposition are shown in Fig. 11. In Fig. 11, the negative axis of the coordinate 
axis is the silt stratum, and the positive axis of the coordinate axis is the silt-rock strata. 

It can be seen from Fig. 11 that the PPVs of the vector superposition exhibit increased 
attenuation trend with increasing horizontal distance from the explosion source under the five sets 
of working conditions, among which the attenuation speed of the PPVs is the fastest under working 
condition 1, and the attenuation speed of the PPVs is relatively slow under the other four sets of 
working conditions. The PPVs are larger under working condition 1 than under the other four sets 
of working conditions. Within in the range of –6 to 6 m from the explosion source, the PPVs under 
working condition 3 are greater than those under working condition 2, followed by working 
condition 4, and those under working condition 5 are the smallest. 

The PPVs under working condition 1 increase from –4 to –7 m, from –13 to –15 m, from –16 
to –18 m, from 9 to 11 m and from 15 to 17 m away from the explosion source. The PPVs under 
working condition 2 increases from –11 to –15 m, from –16 to –19 m, from 13 to 15 m and from 
18 to 20 m away from the explosion source. The PPVs under working condition 3 increases from 
–12 to –17 m, from –18 to –20 m, from 12 to 16 m and from 19 to 21 m away from the explosion 
source. The PPVs under working condition 4 increases from –13 m to –17 m and from 12 m to 
17 m from the explosion source. The PPVs under working condition 5 increases from –7 to –11 m, 
from –15 to –18 m, and from 8 to 12 m from the explosion source. 

  
Fig. 11. PPVs along the tunnel’s axis  

on the surface 

  
Fig. 12. Velocity propagation of surface vibrations 

vertical to the tunnel’s axis 
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5.1.2. Propagation of velocity of surface vibrations vertical to the tunnel’s axis 

Taking the surface particle directly above the center of the explosion source as the origin, the 
monitoring points were arranged in the direction of the surface vertical to the tunnel’s axis, and 
the vector superposition of each of the PPVs is shown in Fig. 12. 

It can be seen from Fig. 12 that the PPVs of the vector superposition of the surface exhibit 
increasing attenuation with increasing horizontal distance from the explosion source under the 
five sets of working conditions, among which the attenuation speed of the PPVs under working 
condition 1 is the fastest, and the attenuation speeds of the PPVs under the other four working 
conditions are relatively slow. The PPVs under working condition 1 are larger than those under 
the other four sets of working conditions. Within in the range of 0–6 m from the explosion source, 
the PPVs under working condition 3 are larger than those under working condition 2, followed by 
working condition 4, and those under working condition 5 are the smallest. The PPVs under the 
five sets of working conditions tend to be similar at distances of greater than 23 m from the 
explosion source.  

The PPVs under working condition 2 increase from 18 to 20 m. The PPVs under working 
condition 3 increases from 13 to 16 m and from 18 to 20 m. The PPVs under working condition 4 
increases from 14 to 17 m and from 20 to 22 m. The PPVs under working condition 5 increases 
from 8 to 12 m.  

5.1.3. Comparison of vibration velocity at equal horizontal distance from explosion source 
in surface  

Because the model is symmetrical about the tunnel’s axis, only the PPVs between 0° and 180° 
of the tunnel’s axis on the silt-rock strata side are discussed. Taking the surface particle directly 
above the explosion source as the center, the radius was 10 m, the central axis of the tunnel on the 
silt-rock strata side was a 0° line, and the monitoring points were arranged by rotating 30° 
counterclockwise. The vector superposition of the peak velocity of each particle is shown in 
Fig. 13. 

It can be seen from Fig. 13 that the magnitudes of the PPVs of the surface 10 m from the center 
of the circle under the five sets of working conditions are the same, but the values are different. 
The PPVs under working condition 1 are the largest, and the PPVs under the other four sets of 
working conditions are similar. The largest PPV occurs at 180° to the tunnel’s axis on the silt-rock 
strata side, the second largest PPV occurs at 150°, and the smallest PPV occurs at 90° under 
working condition 1. There is little difference on the silt-rock strata side of the tunnel’s axis at 
different angles under working condition 2. Under working condition 3, the largest PPV occurs at 
180° to the tunnel’s axis on the silt-rock strata side, followed by those at 0° and 150°, and the 
smallest PPV occurs at 60°. Under working condition 4, the largest PPV occurs at 180° to the 
tunnel’s axis on the silt-rock strata side, followed by those at 0° and 150°, and the smallest PPV 
occurs at 60°. Under working condition 5, the largest PPV occurs at 180° to the tunnel’s axis on 
the silt-rock strata side, followed by that at 90°, and the smallest PPV occurs at 60°. 

Taking the surface particle directly above the explosion source as the center, the radius was 
15 m, the central axis of the tunnel on the silt-rock strata side was a 0° line, and the monitoring 
points were arranged by rotating 30° counterclockwise. The vector superposition of the peak 
velocity of each particle is shown in Fig. 14. 

It can be seen from Fig. 14 that the magnitudes of the PPVs of the surface 10 m from the center 
of the circle under the five sets of working conditions are the same, but the values are different. 
The PPVs under working condition 1 are the largest, and the PPVs under the other four sets of 
working conditions are similar. Under working condition 1, the largest PPV occurs at 180° to the 
tunnel’s axis on the silt-rock strata side, the second largest PPV occurs at 0°, and the smallest PPV 
occurs at 90°. Under working condition 2, the largest PPV occurs at 180° to the tunnel’s axis on 
the silt-rock strata side, the second largest PPV occurs at 0°, and the smallest PPV occurs at 90°. 
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Under working condition 3, the largest PPV occurs at 180° to the tunnel’s axis on the silt-rock 
strata side, the second largest PPV occurs at 150°, and the smallest PPV occurs at 90°. Under 
working condition 4, the largest PPV occurs at 180° to the tunnel’s axis on the silt-rock strata side, 
the second largest PPV occurs at 150°, and the smallest PPV occurs at 90°, Under working 
condition 5, the largest PPV occurs at 0° to the tunnel’s axis on the silt-rock strata side, the second 
largest PPV occurs at 180°, and the smallest PPV occurs at 60°. 

  
Fig. 13. Comparison of vibration velocity 10 m away 

from the explosion source in the surface 

  
Fig. 14. Comparison of the vibration velocity 15 m 

away from the explosion source in the surface 

5.2. Propagation characteristics of the vibration velocity of the surface along the vertical 
direction of the tunnel 

5.2.1. Propagation characteristics of the vibration velocity of the surface along the vertical 
direction from the explosion source 

There are numerous pipelines and building foundations underground, so, it is of great 
engineering significance to study the vibration propagation characteristics of the blasting shock 
wave in the vertical direction from the center of explosion source. Taking the surface particle 
directly above the center of the explosion source as the origin, the monitoring points were arranged 
in the direction perpendicular to the surface in the form of rays from the explosion source, and the 
vector superposition of each PPV is shown in Fig. 15. 

It can be seen from Fig. 15 that the PPVs increase with increasing vertical distance from the 
surface. The PPVs under working condition 1 are the largest and those under the other four sets 
of working conditions are basically the same within 0–3 m from the surface in the vertical 
direction. The PPVs under the five sets of working conditions are basically the same within 30-33 
m from the surface in the vertical direction. 

The PPVs under working conditions 1, 2, 3, 4, and 5 suddenly increase after vertical distances 
of 3, 9, 15, 21, and 27 m from the ground, respectively. The PPVs decrease within 2-3 m from the 
explosion source in the vertical direction and then increase slowly with decreasing distance from 
the explosion source in the vertical direction. 

5.2.2. Propagation of vibration velocity in the vertical direction in the silt-rock strata 

According to the distance between the surface particle 10 m directly above the explosion 
source in the silt-rock strata on the tunnel side, the monitoring points were arranged in the direction 
perpendicular to the surface in a radial sequence from the explosion source. The vector 
superposition of the peak velocity of each particle is shown in Fig. 14. 

It can be seen from Fig. 16 that the PPVs increases with increasing distance from the surface 
in the vertical direction. The PPVs under working condition 1 are the largest and those under the 
other four sets of working conditions are basically the same within 0-3 m from the surface in the 
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vertical direction. The PPVs under working conditions 1-4 are basically the same and are slightly 
larger than those under working condition 5 within 30-33 m from the surface in the vertical 
distance. 

The PPVs under working conditions 1, 2, 3, 4, and 5 suddenly increase after vertical distances 
of 3, 9, 15, 21, and 27 m from the ground, respectively. The PPVs decrease within 3-4 m from the 
explosion source in the vertical direction, and then, they increase slowly with decreasing distance 
from the explosion source in the vertical direction. 

  
Fig. 15. Propagation of vibration velocity of the 

surface from the explosion source  
in the vertical direction  

  
Fig. 16. Propagation of vibration velocity in the 

vertical direction on the silt-rock strata side 
 

5.2.3. Propagation characteristics of vibration velocity in the vertical direction in the silt 
stratum 

According to the distance between the surface particle 10 m directly above the explosion 
source of the silt stratum on the tunnel side, the monitoring points were arranged in the direction 
perpendicular to the surface in a radial sequence from the explosion source. The vector 
superposition of the peak velocity of each particle is shown in Fig. 17. 

It can be seen from Fig. 17 that the PPVs increase with increasing distance from the surface in 
the vertical direction. The PPVs under working condition 1 are the largest and those under the 
other four sets of working conditions are basically the same within 0-3 m from the surface in the 
vertical direction. The PPVs under working conditions 1-4 m are basically the same, and are 
slightly larger than those under working condition 5 within 30-33 m from the surface in the vertical 
direction.  

The PPVs under working conditions 1, 2, 3, 4, and 5 suddenly increase after vertical distances 
of 3, 9, 25, 21, and 27 m from the ground, respectively. The PPVs decrease within 2-4 m from the 
explosion source in the vertical direction, and then, they increase slowly with decreasing distance 
from the explosion source in the vertical direction. 

5.3. Attenuation of blasting vibrations in the direction along the tunnel’s axis 

Taking the center of the explosion source as the origin, the monitoring points were arranged 
in the direction along the tunnel’s axis on both sides of the tunnel in the form of rays, and the 
vector superposition of the peak velocity of each particle is shown in Fig. 18. In Fig. 18, the 
direction of the negative axis of the coordinate axis is the silt stratum, and the direction of the 
positive axis of the coordinate axis is the silt-rock strata. 

It can be seen from Fig. 18 that the attenuation of the PPVs is basically the same under the five 
sets of working conditions, which indicates that the change in the thicknesses of the artificial fill 
and silt in the shield interval strata has little effect on the PPVs along the tunnel’s axis. As the 
horizontal distance from the explosion source increases, the PPVs basically exhibit increased 
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attenuation. The PPVs increase suddenly at −1.8 m from the blasting source (i.e., at –1 m from the 
vertical interface between the silt and rock) and then decrease sharply.  

  
Fig. 17. Propagation of vibration velocity  
in the vertical direction in the silt stratum 

  
Fig. 18. Attenuation of blasting vibrations  

in the direction along the tunnel’s axis 

6. Discussions 

The propagation characteristics of the vibrations caused by the rock blasting in the silt-rock 
strata were analyzed using a combination of field tests and simulations. The following discussions 
were obtained. 

1) According to the propagation of the vibration velocity of the surface, the thickness of the 
artificial fill under working condition 1 is 3 m. The explosion shock waves reflect and transmit 
constantly at the interface between the silt and artificial fill and the interface between the artificial 
fill and air. The reflected shock waves overlap with the incident shock waves, resulting in the 
PPVs under working condition 1 being much larger than those under the other four sets of working 
conditions. The thicknesses of the artificial fill under working conditions 2, 3, and 4 are greater 
than 9 m, and the superposition of the reflected shock waves and the incident shock waves is weak. 
The explosion shock wave is reflected when it reaches the interface between the artificial fill and 
air. The superposition of the reflected shock wave and the incident shock wave leads to an 
increased peak velocity of some of the particles and a decrease of the peak velocity of other 
particles. 

2) According to the propagation characteristics of the vibration velocity from the ground along 
the direction vertical to the tunnel, the explosion shock wave is reflected and transmitted when it 
passes through the interface between the silt and artificial fill. The superposition of the reflected 
shock wave and the incident shock wave causes the peak velocity to increase suddenly. The 
influence in the vertical direction from the center of the explosion source on the peak velocity 
occurs 2-4 m from the interface between the silt and artificial fill. 

3) According to the attenuation of the blasting vibrations in the direction along the tunnel’s 
axis, the PPVs transmitted from the rock into the silt stress wave will increase sharply because the 
density and P-wave velocity of the silt are smaller than those of the rock. The PPVs decay rapidly 
in the silt-rock strata 1-2 m away from the interface between the silt and rock in the vertical 
direction, and then they slow down. The PPVs decay rapidly at a distance of 1-4 m from the 
interface between the silt and rock in the silt stratum in the vertical direction, and then they slow 
down. At the same horizontal distance from the center of the explosion source, the PPVs are 
greater in the silt stratum than in the silt -rock strata. 

4) The theoretical analysis of the propagation of P waves, SV waves, and SH waves in the 
rock, silt, and artificial fill; the transmission and reflection of P waves, SV waves, and SH waves 
at the geological interface; and the propagation of Rayleigh waves, Love waves, and Stoneley 
waves will be discussed in our next paper. 
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7. Conclusions 

The propagation characteristics of vibrations caused by rock blasting in silt-rock strata were 
analyzed using a combination of field tests and simulations. The following results were obtained. 

1) In the directions along the tunnel’s axis and vertical to the tunnel’s axis, the PPVs of the 
surface decrease with increasing horizontal distance from the explosion source. The PPVs are 
larger under in working condition 1 than under the other four sets of working conditions, and the 
decrease in the speed is the fastest. Under working condition 1, it is necessary to strengthen the 
field tests of blasting vibrations.  

2) For the surface particle right above the center of the explosion source and 10 m away from 
the center, the magnitudes of the PPVs of the surface under the five sets of working conditions are 
the same. The maximum number of times occurs at 180° from the tunnel’s axis on the silt-rock 
side, and the minimum number of times occurs at 60° from the tunnel’s axis on the silt-rock side. 
At 15 m away from the center, the magnitudes of the PPVs of the surface under the five sets of 
working conditions are the same too. The maximum number of times occurs at 180° from the 
tunnel’s axis on the silt-rock side, and the minimum number of times occurs at 90° from the 
tunnel’s axis on the silt-rock side; so the focus should be on 180° from the tunnel’s axis on the 
silt-rock side. This provides a basis for safety protection of surface buildings. 

3) In the vertical direction from the surface to the explosion source, in the vertical direction in 
the silt-rock strata, and in the vertical direction in the silt stratum, the PPVs increases gradually 
with increasing vertical distance from the surface under the five sets of working conditions. This 
provides a basis for safety protection of buried pipelines. 

4) The attenuation of the PPVs is basically the same along the tunnel’s axis under the five sets 
of working conditions, which indicates that the change in the thicknesses of the artificial fill and 
silt in the shield interval of strata has little effect on the PPVs along the tunnel’s axis. This provides 
a basis for the safety protection of the shield tunnel and the shield machine during construction. 
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