
 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 21 

Research on fault diagnosis method of deep transfer 
learning driven by simulation data 

Zicheng Xiong1, Mengwei Li2, Yaohong Tang3, Shungen Xiao4, Mengmeng Song5 
1, 4College of Mechanical Engineering and Automation, Fuzhou University,  
Fuzhou, People’s Republic of China 
2, 3, 4, 5College of information, Mechanical and Electrical Engineering, Ningde Normal University,  
Ningde, People’s Republic of China 
2, 4College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University,  
Fuzhou, People’s Republic of China 
4, 5Corresponding author 
E-mail: 12814210225@qq.com, 21620200241@qq.com, 3264572049@qq.com, 
4xiaoshungen022@163.com, 5544824964@qq.com 
Received 30 April 2022; received in revised form 20 May 2022; accepted 30 May 2022 
DOI https://doi.org/10.21595/vp.2022.22674 

Copyright © 2022 Zicheng Xiong, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. Sufficient labeled fault samples are the key to ensuring the performance of deep 
learning diagnostic models. However, in practical engineering applications, machinery and 
equipment operate normally most of the time, and it is difficult to collect enough fault data. In 
contrast, through the kinetics analysis method, simulation data sets of various fault types can be 
easily obtained. However, there is a difference in distribution between simulation data and real 
data. The deep learning diagnosis model trained directly with simulation data lacks versatility and 
cannot be applied to fault diagnosis of real data. To this end, this paper proposes a simulation data-
driven deep transfer learning fault diagnosis method, which applies the fault diagnosis knowledge 
in the simulation data to the real data fault diagnosis task. The effectiveness of the method is 
verified by experiments on the two-stage planetary gearbox in the Drivetrain Diagnostics 
Simulator (DDS) test bench. 
Keywords: kinetics analysis, transfer learning, fault diagnosis. 

1. Introduction 

When applying deep learning methods for fault diagnosis, sufficient labeled training samples 
are an important condition to ensure the performance of deep learning models. However, in 
practical engineering applications, mechanical equipment usually stops immediately after failure, 
and it is impossible to operate with failure for a long time. Therefore, most of the monitoring data 
obtained from mechanical equipment is the data during healthy operation, and there is a lack of 
labeled fault data. How to train an effective deep learning fault diagnosis model in the absence of 
labeled fault data is a challenge for intelligent fault diagnosis technology.  

Through the fault diagnosis method based on dynamic analysis, a large amount of labeled fault 
data can be obtained to solve the problem of lack of fault data. This method usually establishes 
the dynamic model of mechanical equipment first, so as to simulate the dynamic response of 
mechanical equipment under various health conditions, and carry out fault diagnosis through the 
analysis of dynamic response [1]. Assaad et al. [2] proposed a technology combining 
cyclostationary signal and autoregressive signal modeling for wear detection of multistage 
planetary gears, and extracted the residual signal containing relevant fault features. Li et al. [3] 
established the transverse and torsional coupling dynamic model to predict the modulation 
sideband of two-stage composite planetary gear, calculated the time-varying meshing stiffness of 
gear pair by using the improved potential energy method, and analyzed the influence of crack 
propagation on meshing stiffness. Yang et al. [4] proposed an improved rigid multi-body model 
for the kinetic analysis of planetary gearbox, introduced the element assembly method to establish 
the model, proposed the time-varying grid stiffness model, and carried out the modal analysis and 
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transient analysis considering the time-varying grid stiffness. Xu et al. [5] proposed a dynamic 
gearbox model considering the structural flexibility of shaft and bearing seat based on lumped 
parameters and finite element method. Compared with lumped parameter and finite element 
model, this model has higher computational efficiency. Fan et al. [6] considered the nonlinear 
factors such as time-varying meshing stiffness, backlash and viscous damping, established the 
dynamic model of torsional vibration of planetary gear train with planetary carrier crack fault, and 
revealed the corresponding relationship between the vibration characteristics of planetary carrier 
crack and the crack condition from the fault characteristics extracted from the model. 

Due to the difference between the simulation data obtained by the dynamic analysis and the 
actual data collected from the mechanical equipment, the intelligent diagnosis model trained with 
the simulation data set cannot achieve the expected performance in the fault diagnosis of the real 
mechanical equipment. Transfer learning is an effective method to solve the problem of data 
distribution differences. It can apply the knowledge learned from a diagnostic task to different 
tasks related to the task. Cao et al. [7] used a large amount of image data to pre-train the deep 
convolutional neural network, then converted the planetary gearbox fault data into grayscale 
images, and used these grayscale images to fine-tune the parameters of the last three layers of the 
deep convolutional neural network, so that the It is capable of classifying fault data. Jiao et al. [8] 
directly processed raw mechanical signals for adaptive feature learning through a one-dimensional 
residual network, in which a joint maximum mean difference and an adversarial adaptive 
discriminator were introduced to simultaneously reduce the skewness of joint and marginal 
distributions across different domains. He et al. [9] used enough auxiliary data in the source 
domain to pre-train the deep auto-encoder, and passed its parameters to the target model, and 
trained the deep transfer algorithm with small samples to adapt to the characteristics of the 
remaining test data. Chen et al. [10] proposed a domain adversarial transfer network, which uses 
an asymmetric encoding network fused with deep convolutional neural networks to learn feature 
representations, and uses weight value transfer and domain adversarial strategies to reduce the 
difference between source domains and target domains. Shao et al. [11] proposed a deep transfer 
learning method based on sub-domain adaptation, by introducing sub-domain adaptation and 
adversarial learning, while aligning the local and global feature distributions.  

In view of the above problems, this paper takes the two-stage planetary gearbox as the research 
object, and proposes a simulation data-driven deep transfer learning fault diagnosis method. The 
simulation data of different health conditions are obtained by establishing the dynamic simulation 
model of the planetary gearbox. The features of simulation data and real data are extracted through 
a one-dimensional convolutional neural network, and local maximum mean discrepancy (LMMD) 
[12] is introduced to align the global distribution and class local distribution of simulation data 
and real data. The effectiveness of the method is verified by the DDS test bench, and the results 
show that the method can effectively overcome the problem of scarcity of labeled fault data. 

2. Experiment 

2.1. Dynamics simulation 

This paper takes the two-stage planetary gearbox in the DDS test bench designed by American 
SpectraQuest company as the research object. The physical model of the DDS test bench is shown 
in Fig. 1. By adjusting the speed, changing the load, and replacing the faulty sun gear, the test 
bench can simulate various failures under different working conditions. The two-stage planetary 
gearbox in the test bench is mainly composed of a box body, an input shaft, two sun gears, seven 
planetary gears, two inner gears and two planet carriers. The number of the first stage planetary 
gear is 3 and the number of the second stage planetary gear is 4, and the basic parameters of the 
gear are shown in Table 1.  

The rigid-flexible coupling model of the secondary planetary gearbox is established by 
ADAMS, as shown in Fig. 2, in which the primary planet carrier and the secondary sun gear are 
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flexible bodies, and the rest of the parts are rigid bodies. Set the termination time to 10s and the 
number of simulation steps to 128000 for simulation. After the simulation, the centroid angular 
acceleration of secondary planet carrier is derived as the simulation data. The time domain 
diagram of the simulation data of secondary sun gear broken tooth fault and secondary sun gear 
missing tooth fault is shown in Fig. 3. 

 
Fig. 1. DDS test bench physical model 

 
Fig. 2. Rigid-flexible coupling model of two-stage planetary gearbox 

 
a) Broken tooth fault 

 
a) Missing tooth fault 

Fig. 3. Time domain diagram of secondary sun gear fault simulation data 

3. Deep transfer learning 

Build the deep transfer learning network model shown in Fig. 4. The network model consists 
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of three parts: feature extractor, health status classifier, and LMMD. The feature extractor contains 
four convolutional layers and two fully connected layers to extract features from the source and 
target domain datasets. The health classifier is used to predict the labels of the source and target 
domain features. LMMD is used to measure the global distribution and class local distribution 
differences between source and target domains. There are two optimization goals in the training 
process of this network model: 1) Minimize the classification loss of the source domain dataset 
and guide the health state classifier to output correctly predicted labels. 2) Minimize the domain 
loss between the source domain dataset and the target domain dataset, and guide the feature 
extractor to output domain-invariant features. 

Table 1. Basic parameters of gear 
Spare parts Number of teeth Modulus Pressure angle Tooth width 

Primary sun gear 20 1 20° 10 mm 
Primary planetary gear 40 1 20° 10 mm 

Primary ring gear 100 1 20° 10 mm 
Secondary sun gear 28 1 20° 10 mm 

Secondary planetary gear 36 1 20° 10 mm 
Secondary ring gear 100 1 20° 10 mm 

The real data is the vibration signal collected from the DDS test bench, including two health 
conditions: broken teeth of secondary sun gear and missing teeth of secondary sun gear. When 
collecting the signal, the sampling frequency is 12.8 kHz, the rotation frequency of the input shaft 
of the planetary gearbox is 30 Hz, and the current on the magnetic brake is 0.8 A. 

 
Fig. 4. Deep transfer learning network model structure  

The experiment adopts the method of overlapping sampling to generate the data set, sampling 
2048 points every 100 points, that is, each sample has 2048 data points, and the number of samples 
is shown in Table 2. All samples in the simulation data set are used for training. 2000 samples in 
the real data set are used for training, and the remaining 400 samples are used for testing. In order 
to verify the effectiveness of the proposed method, the simulation data set A is used as the source 
domain, and the unlabeled real data set B is the target domain for transfer learning, and DeepCoral 
[13], DDC [14], DANN [15], JAN [16] are selected for comparison experiment. 
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Table 2. Dataset description 
Name Dataset Health condition Number of samples Load 

A Simulation data Broken tooth 1000 0.8 
Missing tooth 1000 0.8 

B Real data Broken tooth 1200 0.4 
Missing tooth 1200 0.4 

The experimental results are shown in Table 3. It can be seen from Table 3 that several transfer 
learning methods have taken higher diagnosis accuracy, and the accuracy rate of the method 
proposed in this paper is 87 %, which is better than other methods, which shows that it is feasible 
to apply the diagnosis knowledge in the simulation data to the fault diagnosis of the real planetary 
gearbox, and verifies the effectiveness of the simulation data-driven deep transfer learning fault 
diagnosis method. 

Table 3. Diagnostic accuracy 
Method Accuracy 

DeepCoral 84.5 
DDC 85.75 

DANN 82.25 
JAN 84.25 

Proposed 87 

4. Conclusions 

Aiming at the scarcity of labeled fault data, this paper implements a simulation data-driven 
deep transfer learning fault diagnosis method, which transfer fault diagnosis knowledge from 
simulation data to real data. The dynamic simulation model of the two-stage planetary gearbox of 
the DDS test bench is established by ADASM, and the simulation data of different fault types are 
obtained through the model. On this basis, a deep transfer learning network model is constructed, 
through which the domain-invariant features are learned from the simulation data, and then the 
fault diagnosis of the real data is realized. The effectiveness of the method is verified by 
experiments on the two-stage planetary gearbox in the DDS test bench. In the future, we plan to 
perform transfer learning on simulation datasets of more health conditions and real datasets of 
more health conditions. 
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