
 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 269 

Fault feature extraction method for rolling bearing 
based on MVMD and complex Fourier transform 

Chuanjin Huang1, Haijun Song2 
School of Mechatronics and Vehicle Engineering, Zhengzhou Institute of Technology,  
Zhengzhou, 450000, China 
1Corresponding author 
E-mail: 1zzdxhcj@163.com, 2songhaijun2000@163.com 
Received 29 April 2022; received in revised form 9 October 2022; accepted 21 October 2022 
DOI https://doi.org/10.21595/jve.2022.22673 

Copyright © 2022 Chuanjin Huang, et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The vibration signals caused by rolling bearing defects in different directions may be 
different, and the fault diagnosis based on single channel vibration signals may be made 
incorrectly, and the observation results may be understood wrong. To avoid it, a new rolling 
bearing fault feature extraction method based on multivariate variational mode decomposition 
(MVMD) and complex Fourier transform (CFT) were proposed. First, the orthogonally sampled 
vibration signals were combined into a multivariate signal, and the multivariate signal was 
decomposed into several intrinsic mode functions (IMFs) using the MVMD. As per this method, 
a unified mathematical model was used to model vibration signals in two directions, ensuring that 
fault features were decomposed to the same level. Finally, the CFT was applied to fuse the 
envelope signals in two directions in order to obtain a clearer and comprehensive 
amplitude-frequency feature. Simulation and test results verify the feasibility and superiority of 
the proposed method. 
Keywords: multivariate VMD, rolling bearing fault diagnosis, complex Fourier transform. 

1. Introduction 

Rolling bearing is an important component of rotating machinery. However, because of 
complex working environments, wear, fatigue, corrosion, overloading and many other factors, 
local defects can occur in rolling bearing. If left unchecked, these defects may damage the whole 
system. Therefore, it is very important to monitor and diagnose the condition of the rolling bearing 
[1-3].  

Since the vibration signals collected by sensors installed in rolling bearing housings contain a 
wealth of information about the machine functionality, the vibration analysis is the preferred 
method for diagnosing local defects in rolling bearings. When a local defect occurs in a rolling 
bearing, the periodic impact caused by the defect will excite the resonance frequency of the 
bearing and adjacent components [4]. However, there are various types of rolling bearing defects, 
such as rolling element defects, outer race defects, inner race defects and their composite defects. 
Therefore, the frequency distribution of the vibration signals caused by rolling defects is more 
complicated. Some are in high-frequency bands, some are in mid-frequency bands, and some are 
even in low-frequency bands, or in the combinations of two or even three bands. However, there 
is a problem of correct determination of the frequency band to locate the fault signal. In addition, 
the energy of the vibration signals caused by a weak defect is low, and the signals collected by 
sensors inevitably contain noise components, which makes the analysis of the vibration signals 
more difficult [5]. 

The usage of the wavelet transform (WT) to analyze vibration signals is one of the main ways 
to monitor rolling bearings in an early stage [6]. Because the detection effect based on WT is not 
only restricted by the Heisenberg uncertainty principle but also depends on the selection of the 
basis function and the decomposition scale, this technique cannot guarantee an optimal detection 
result. With the development of digital signal analysis and processing technology, some 
data-driven signal analysis methods with good adaptability have been proposed, such as empirical 
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mode decomposition (EMD) [7], local mean decomposition (LMD) [8], and local 
characteristic-scale decomposition (LCD) [9], etc.  

When a defect occurs in a rolling bearing, periodic shock signals are excited, and the interval 
frequency of the shock is related to the type of the defect. The interval frequency can be easily 
obtained by demodulating the impulse signals using the Hilbert transform (HT). Yu used EMD 
and HT to diagnose rolling bearing defects [10]. Cheng proposed fault diagnosis methods for 
rolling bearings based on the LMD [11], LCD and HT [12]. Although data-driven algorithms have 
good adaptability, these methods lack a mathematical foundation, and the analysis results are 
greatly affected by noise. Based on the variational theory, Zosso proposed the variational mode 
decomposition (VMD) [13]. Compared with the recursive shifting mode of EMD and LMD, VMD 
converts the signal decomposition into non-recursive operation with a solid theoretical foundation. 
The essence of this technique consists in multiple adaptive Wiener filtering groups, which show 
better noise robustness and can also separate signals with similar frequencies [14]. 

Due to factors such as load, friction, stiffness, abundant defect types, and complex force 
transmission paths, the intensity and spectral structure of vibration signals in different directions 
are different. Monitoring the defect status based on vibration signal characteristics in a single 
direction may cause misjudgement or omission [15]. Cheng reported a case where the outer race 
fault feature could not be extracted based on only a single channel signal [12]. Subsequent 
experiments also found significant differences in the characteristics of the vibration signals in two 
directions. With the development of sensor technology, it became very common to use one sensor 
to collect vibration signals in multiple directions, however, the corresponding multi-channel signal 
analysis technology was relatively insufficient to explain the whole process. However, it is simple 
to process multiple signals using the traditional univariate signal analysis method. The unary 
signal analysis method can be used to analyze signals from multiple channels separately. However, 
this method cannot guarantee that the signal of each channel has the same decomposition scale, 
which causes the information fusion to become increasingly challenging [16]. 

In recent years, the interest in researching the multi-channel non-stationary signal processing 
technology gradually increased. Such as, Rilling extended the EMD to the binary field and 
proposed a bivariate EMD (BEMD) method to deal with ocean float signals [17]. Danilo proposed 
a complex LMD (CLMD) method based on LMD to process multi-channel 
electroencephalography [18]. In addition to multivariate data-driven methods, the multivariate 
multi-scale entropy [19] and multivariable time-frequency analysis methods [20] were proposed 
to deal with multi-channel signals often encountered in modern engineering.  

In the field of rotating machinery fault diagnosis, the fault features contained in the multi-
channel signals are more comprehensive [21]. In order to improve the accuracy of fault diagnosis, 
fault diagnosis methods for rotating machinery based on multivariate signal analysis were 
proposed. Zheng used multivariate multi-scale fuzzy entropy [22] to diagnoze gear faults for more 
accurate diagnosis. Huang proposed a new method for time-frequency analysis of rotating 
machinery faults based on multivariable synchrosqueezing to fuse the time-frequency information 
of multi-channel signals [23]. Wang applied the BEMD to detect mechanical and electrical defects 
of wind turbines [24]. Zuo used the multivariate EMD (MEMD) and a full spectrum to monitor 
the condition of rotating machinery [25]. Lu proposed a new method for the fault feature extraction 
of rolling bearings based on MEMD and correlation analysis to calculate fault correlation factors 
to select effective intrinsic mode functions (IMFs) [26]. Huang applied the BEMD, CLMD and 
HT to extract rotor fault features [27-28]. BEMD or CLMD ensures that the signals of two 
channels have the same decomposition scale. However, BEMD and CLMD are developed from 
EMD and LMD, they also exhibit some problems such as modal aliasing and modal splitting [29].  

In rotor monitoring, the motion track of rotor is an ellipse. The vibration signals are collected 
orthogonally by displacement sensors, and the ellipse information is extracted by the holographic 
spectrum or the full vector spectrum (FVS) [28] to improve the accuracy of fault diagnosis. 
However, the rotating speed of rolling bearings is high, and the fault features are hidden in the 
high-frequency signal. Acceleration sensors are commonly used to collect vibration signals. 
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Different from displacement signals, the track formed by acceleration signals does not have 
rotation characteristics. The analysis of acceleration signals with FVS lost its physical 
significance. The integration method of the signal characteristics in the orthogonal direction of 
rolling bearings needs further discussion. 

Based on the definition of multivariate modulation oscillation signals, Rehan proposed a 
multivariate VMD (MVMD) method to extract the set of bandwidth modes that contain inherent 
multivariate modulation oscillations in multivariate input signals, and the sum of the bandwidths 
of all signal modes residing in input data channels is the smallest [30]. In the MVMD, the same 
mathematical model is used to model multi-channel signals to ensure that fault features are 
decomposed to the same layer. The MVMD was originally used to analyse the EEG signals. 
Unlike the Fourier transform, the CFT no longer satisfies the conjugate symmetry. From the 
characteristic frequency and conjugate characteristic frequency, the one with the larger amplitude 
is selected to characterize fault features, so that the obtained fault features are clearer. A new 
method for the fault feature extraction of rolling bearings based on MVMD and CFT is proposed. 

The main contributions of this paper can be summarized as follows: 
1) There is no mode aliasing and mode splitting phenomena when applying MVMD to 

decompose the muti-channel vibration signals. 
2) The fault features in the multi-channel vibration signals are decomposed by MVMD into 

the multiple modulated oscillation signals of the same layer to facilitate the subsequent feature 
information fusion. 

3) The fault features of the vibration signals of the two channels can be effectively fused from 
the feature layer by CFT. 

4) Selection of the fault characteristic frequency or the conjugate fault characteristic frequency 
from the complex Fourier spectrum according to the phase difference can highlight the fault 
feature. 

The remainder of this paper is organized as follows: Section 2 introduces the theoretical 
background of the method, including MVMD and CFT. Section 3 describes the wholediagnostic 
process of the proposed method for roll bearing. Section 4 consists of two parts: experimental 
setup and experimental data analysis. The method feasibility is verified by two real cases and 
compared with other methods. Section 5 contains discussion, which mainly involves the influence 
on the decomposition results when the parameters of MVMD take different values. Section 6 
contains the conclusions and prospects for future works. 

2. Introduction to MVMD and complex Fourier transform (CFT) 

2.1. Multivariate modulated oscillations 

To express conveniently a multi-oscillation signal, the amplitude modulation and frequency 
modulation signal is defined in the form of vector {𝑢௜(𝑡)}୧ୀଵ஼  in the real number field: 

𝑢(𝑡) = ൦𝑢ଵ(𝑡)𝑢ଶ(𝑡)⋮𝑢େ(𝑡)൪ = ⎣⎢⎢
⎡𝑎ଵ(𝑡)cos (𝜙ଵ(𝑡))𝑎ଶ(𝑡) cos൫𝜙ଶ(𝑡)൯⋮𝑎஼(𝑡) cos൫𝜙஼(𝑡)൯⎦⎥⎥

⎤, (1)

where 𝑎௜(𝑡) and ∅௜(𝑡) are the amplitude function and the phase function, respectively, and 𝐶 is 
the number of channels. Hilbert operator is applied to Eq. (1), and the corresponding analytic 
vector of 𝑢(𝑡) is obtained. The analytic vector 𝑢ା(𝑡) is as follows [30]: 
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𝑢ା(𝑡) = 𝑢(𝑡) + jℋ𝑢(𝑡) = ൦𝑢ାଵ (𝑡)𝑢ାଶ(𝑡)⋮𝑢ା஼(𝑡)൪ = ⎣⎢⎢
⎡𝑎ଵ(𝑡)𝑒୨థభ(௧)𝑎ଶ(𝑡)𝑒୨థమ(௧)⋮𝑎஼(𝑡)𝑒୨థ಴(௧)⎦⎥⎥

⎤ ,     jଶ = −1. (2)

The amplitude function 𝑎௜(𝑡) and the phase function ∅௜(𝑡) can be obtained by the following 
modulo and phase operations: 𝑎௜(𝑡) = ห𝑢ା௜ (𝑡)ห, (3)𝜙௜(𝑡) = arg{𝑢ା௜ (𝑡)}. (4)

The original real-value signal vector 𝑢(𝑡) can be obtained from the real part of 𝑢ା(𝑡): 𝑢(𝑡) = ℛ{𝑢ା(𝑡)}. (5)

For vibration signals of rolling bearing defects collected by 2D or 3D sensors, so one or more 
components with the same frequency may be present. Therefore, a simple multivariate analytic 
signal model for 𝑢ା(𝑡) that assumes a single common component among all data channels is 
proposed: 𝑢ା(𝑡) = ‖𝑢ା(𝑡)‖𝑒୨థ(௧). (6)

2.2. Multivariate VMD 

MVMD is an extension of the VMD method. For more details regarding the VMD, see [11]. 
As a generalization of the VMD algorithm in multidimensional space, the main goal of MVMD is 
to extract the predefined 𝐾 multivariate modulation oscillation signals 𝑢௞(𝑡) containing C 
channel data from the input data 𝑢(𝑡). MVMD is used to decompose a multivariate signal 𝑢(𝑡) 
into the sum of multiple modulated oscillation signals 𝑢௞(𝑡): 

𝑢(𝑡) = ෍𝑢௞(𝑡)௄
௞ୀଵ , (7)

where 𝑢௞(𝑡) = [𝑢௞ଵ(𝑡),𝑢௞ଶ(𝑡), … ,𝑢௞஼(𝑡)]. 𝐾 is the number of multivariable modulated 
oscillation signals. 

The purpose of MVMD is to extract a set of multivariable modulation oscillations {𝑢௞(𝑡)}௞ୀଵ௄  
from the input data. Additionally, the sum of bandwidths of the extracted sets is the smallest, and 
the original signals can be reconstructed accurately. To this end, Eq. (2) is used to represent an 
analytical vector, and the bandwidth of 𝑢௞(𝑡) can be estimated by the L2 norm of the gradient 
function of 𝑢ା௞(𝑡). Therefore, the multivariable function that needs to be optimized in MVMD is 
expressed by the following formula [30]: 𝑓 = ෍ฮ𝜕௧[𝑒ି௝ఠೖ௧𝑢ା௞(𝑡)]ฮଶଶ௞ . (8)

The symbol 𝜕௧ represents the partial derivative operation on time. 
Another characteristic of Eq. (8) is that a single frequency component 𝜔௞ is used for harmonic 

mixing of the entire vector 𝑢ା௞(𝑡). Therefore, the design provides the possibility to find the 
multivariate oscillation with a single common frequency component 𝜔௞ in all channels in 𝑢௞(𝑡), 
and this causes a multivariate modulation oscillation model defined in Eq. (6). The bandwidth of 
the modulation multivariable oscillation is estimated by shifting the single-side spectrum of all 
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channels of 𝑢ା௞(𝑡) to 𝜔௞ and taking the Frobenius norm of the matrix. It is convenient to express 𝑓 as follows: 𝑓 = ෍෍ฮ𝜕௧[𝑢ା௞,௖(𝑡)]ฮଶଶ௖௞ , (9)

where 𝑢ା௞,௖(𝑡) represents an analytical modulation signal corresponding to channel number 𝐶 and 
mode number 𝑘. In contrast to the vector signal in Eq. (8), 𝑢ା௞,௖(𝑡) is a single component complex 
value signal. The constrained optimization problem of MVMD is as follows: min൛௨ೖ,೎ൟ,{ఠೖ}෍෍ฮ𝜕௧[𝑢ା௞,௖(𝑡)𝑒ି௝ఠೖ௧]ฮଶଶ௖௞ , (10)

where ∑ 𝑢௞,௖(𝑡)௞ = 𝑥௖(𝑡), 𝑐 = 1,2,⋯ ,𝐶, {𝑢௞,௖(𝑡)} and {𝜔௞} represent the set of all 𝑘 modes and 
their central frequencies, respectively. 

The corresponding augmented Lagrangian function becomes: 

ℒ൫൛𝑢௞,௖ൟ, {𝜔௞}, 𝜆௖൯ = 𝛼෍෍ฮ𝜕௧ൣ𝑒ି௝ఠೖ௧𝑢ା௞,௖(𝑡)൧ฮଶଶ௖௞ + ะ𝑥௖(𝑡) −෍𝑢௞,௖(𝑡)௞ ะଶ
ଶ 

      +෍〈𝜆௖(𝑡), 𝑥௖(𝑡) −෍𝑢௞,௖(𝑡)௞ 〉 ,௖  (11)

where 𝛼 is the penalty factor. 
In the MVMD, the alternating direction multiplier (ADMM) is used to solve the above 

unconstrained optimization problem. The ADMM method transforms the complex optimization 
problem in Eq. (11) into several simpler sub-optimization problems through Eq. (12-14): 𝑢௞,௖௡ାଵ ⟵ 𝑎𝑟𝑔𝑚𝑖𝑛௨ೖ,௖ ℒ൫൛𝑢௜ழ௞,௖௡ାଵ ൟ, ൛𝑢௜ஹ௞,௖௡ ൟ, {𝜔௜௡}, {𝜆௖௡}൯, (12)𝜔௞௡ାଵ ⟵ 𝑎𝑟𝑔𝑚𝑖𝑛ఠೖ ℒ൫൛𝑢௜,௖௡ାଵൟ, {𝜔௜ழ௞௡ାଵ}, {𝜔௜௡ ≥ 𝑘}, {𝜆௖௡}൯, (13)𝜆௖௡ାଵ = 𝜆௖௡ + 𝜏 ൭𝑥௖ −෍𝑢௞,௖௡ାଵ௞ ൱, (14)

where 𝜏 is the time step. 
Eq. (12) can be equivalent to the following formula: 

𝑢௞,௖௡ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛௨ೖ,೎ ቐ𝛼ฮ𝜕௧ൣ𝑢ା௞,௖(𝑡)𝑒ି௝ఠೖ௧൧ฮଶଶ + ะ𝑥௖(𝑡) −෍𝑢௜,௖(𝑡) + 𝜆௖(𝑡)2௜ ะଶ
ଶቑ .   (15)

One of these sub-problems is depicted in the updated diagram of the original VMD. In the 
MVMD, the relationship is updated using the following pattern [12] in the Fourier domain: 

𝑢௞,௖௡ାଵ(𝜔) = 𝑥௖(𝜔) −∑ 𝑢௜,௖(𝜔)௜ஷ௞ + 𝜆௖(𝜔)21 + 2𝛼(𝜔 −𝜔௞)ଶ . (16)

For the renewal of the central frequency of Eq. (13), considering that the last two terms of the 
Lagrangian function Eq. (11) do not depend on 𝜔௞, the related problems are simplified as follows: 
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𝜔௞௡ାଵ = 𝑎𝑟𝑔𝑚𝑖𝑛ఠೖ {෍ฮ𝜕௧ൣ𝑢ା௞,௖(𝑡)𝑒ି௝ఠೖ௧൧ฮଶଶ௖ . (17)

By using Plancherel’s theorem of the inner product of the function in the time domain and 
frequency domain, the optimization process can be carried out more easily in the frequency 
domain. In the Fourier domain, the equivalence problem of Eq. (17) becomes: 

𝜔௞௡ାଵ = arg minఠೖ {෍න (𝜔 − 𝜔௞)ଶห𝑢௞,௖௡ (𝜔)หଶ𝑑ஶ
଴௖ 𝜔}. (18)

By setting the first derivative of the quadratic function to zero and then performing some 
simple algebraic operations, the above sum of the quadratic function is minimized, and the 
following relations are obtained: 

𝜔௞௡ାଵ = ∑ ׬ 𝜔ห𝑢௞,௖௡ (𝜔)หଶ𝑑𝜔ஶ଴௖∑ ׬ ห𝑢௞,௖௡ (𝜔)หଶ𝑑𝜔ஶ଴௖ . (19)

It can be seen from Eq. (19) that when updating 𝜔௞ of each mode during MVMD, the power 
spectrum contribution of all channels is considered. 

2.3. Complex Fourier transform 

Fourier transform is performed on the basis of a complex sequence signal 𝑧(𝑖) = 𝑥(𝑖) + j𝑦(𝑖) 
(𝑖 is an integer and 𝑖 ∈ [1,𝑁], 𝑁 is the sequence length, jଶ = −1) to obtain 𝑍(𝐼): 𝑍(𝐼) = 𝐹𝐹𝑇[𝑧(𝑖)] = 𝐹𝐹𝑇[𝑥(𝑖) + 𝑗𝑦(𝑖)], (20)

where FFT stands for fast Fourier transform. 
Using the Fourier transform in the finite-length sequence of real and even functions on the 𝑁/2 

symmetry and the Fourier transform of the pure imaginary odd-function finite-length sequence on 
the 𝑁/2 anti-symmetric and the linear properties of the Fourier transform, it is possible to get: 

൝𝑍(𝐼) = 𝑋(𝐼) + 𝑌(𝐼),𝑍 ൬𝑁2 + 𝐼൰ = 𝑋 ൬𝑁2 + 𝐼൰ − 𝑌 ൬𝑁2 + 𝐼൰ , (21)

where 𝑋(𝐼) and 𝑌(𝐼) are the Fourier transforms of the cosine signals 𝑥(𝑡) and 𝑦(𝑡) respectively, 𝐼 = 1, 2,…, 𝑁/2.  
Because the amplitude of the Fourier transform of the complex sequence 𝑧(𝑖) is related to |𝑧(𝑖)|, if it is represented by a trigonometric function, it can be found that |𝑧(𝑖)| is related to the 

initial phases of 𝑥 and 𝑦.  
In order to study the relationship between CFT and FVS when the initial phase changes, let: 𝑥(𝑡) = cos2𝜋𝑓𝑡, (22)𝑦(𝑡) = 0.5 cos(2𝜋𝑓𝑡 + 𝜑), (23)𝑧(𝑡) = 𝑥(𝑡) + j𝑦(𝑡),    jଶ = −1, (24)

where 𝑓 = 50 Hz, 𝜑 = 𝑘𝜋/8, (𝑘 = –8, –7,…, 0,…, 7, 8). 
The sampling frequency 𝑓௦ is equal to 800 Hz. The characteristic frequency amplitude obtained 

by analyzing 𝑧(𝑡) with the phase difference of its imaginary and real parts based on the CFT and 
FVS methods, respectively, is shown in Fig. 1. In Fig. 1, when 𝜑 ∈ (−𝜋, 0), the amplitude of the 
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characteristic frequency based on CFT is larger. When 𝜑 ∈ (0,𝜋), the amplitude of the conjugate 
characteristic frequency (𝑓௦ − 𝑓) based on CFT is larger. Therefore, the characteristic frequency 
of the complex signal can be selected according to the phase difference to characterize the fault. 

 
Fig. 1. Characteristic frequency amplitude obtained by analyzing 𝑧(𝑡) with phase difference  

of its imaginary and real parts based on CFT and FVS methods 

2.4. Proposed feature extraction method for determining rolling bearing defects 

1) First, a 3D accelerometer mounted at rolling bearing housing is used to collect vibration 
signals from two channels. The collected horizontal signal 𝑥(𝑡) is used as the signal 𝑢ଵ(𝑡) of the 
first channel, and the collected vertical signal 𝑦(𝑡) is used as the signal 𝑢ଶ(𝑡) of the second 
channel. Then, a binary modulated vibration signal 𝑢(𝑡) is formed, where 𝑢(𝑡) = ቂ௨భ(௧)௨మ(௧)ቃ. 

2) MVMD is applied to decompose 𝑢(𝑡) into the sum of binary oscillation signals {𝑢௞(𝑡)}, 𝑘 = 1, 2,⋯𝐾. where 𝑢௞(𝑡) = [𝑢௞ଵ(𝑡),𝑢௞ଶ(𝑡)]. 
3) Hilbert operations are respectively performed on 𝑢௞ଵ and 𝑢௞ଶ, and the envelope function 𝑎௞ଵ of 𝑢௞ଵ and the envelope function 𝑎௞ଶ of 𝑢௞ଶ are obtained respectively. 
4) Let 𝑎௞ = 𝑎௞ଵ + j𝑎௞ଶ, jଶ = −1. Then, Eq. (21) is applied to 𝑎௞ to obtain a complex Fourier 

spectrum, and to select the fault feature frequency according to the phase difference between the 
imaginary part and the real part of 𝑎௞. 

The key point of the whole procedure is 𝐾 selection. Generally, the vibration signals caused 
by rolling bearing defects have four components: fundamental frequencies, defect frequencies, 
natural vibration frequencies and ultrasonic frequency. Therefore, when the MVMD method is 
used to analyze vibration signals caused by rolling bearing defects, 𝐾 is set to 4. 

3. Test case analysis 

3.1. Experimental Setup 

In this paper, the test bench shown in [31] is used. As described in [31], the experiment rig 
consists of a rotor-bearings system driven by a 1 HP triple-phase asynchronous motor, as shown 
in Fig. 2(a). Multiple rotating speeds, which fluctuation range is almost 60 rpm, can be monitored 
by a motor speed controller. The vibration data were obtained from 3D-accelerometer mounted 
on a rotor-bearing system. Different kinds of bearing faults are simulated by replacing bearing 1 
with a rolling element defective bearing or compound defective bearing having roller defect and 
outer race defect. The defect on the outer race and ball of bearings is shown in Fig. 2(c) and (d). 
All channels of vibration data from the 3D-accelerometer were acquired simultaneously using a 
LMS SCADAS Mobile data acquisition system in Fig. 2(b) at a sampling rate of 25.6 KHz. The 
bearing model is MB ER-16K, which has 9 rollers, 38.5 mm pitch diameter, 7.9 mm rolling body 
diameter, and 0 deg. contact angle. Ball pass frequency outer (BPFO) is 3.572. Ball Spin 
Frequency (BSF) is 2.322. The motor speed is 2700 rpm, and the rotation frequency 𝑓௡ = 45 Hz. 
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So, the ball fault frequency 𝑓௕ is 104 Hz, and the outer race fault frequency 𝑓௢ is 161 Hz. Ball 
defect of 1.2 mm wide and 0.5 mm deep was made by wire cutting method. Outer race defect of 
1.2 mm wide and 1.75 mm deep was made by wire cutting method. 

 
a) Machine fault simulator (MFS) 

 
b) Data acquisition system 

 
c) Oter race defect 

 
d) Ball defect 

Fig. 2. View of experimental setup of rotor-bearing system: 1 – variable speed controller;  
2 – motor; 3 – coupling; 4 – 3D-accelerometer; 5 – bearing 1; 6 – rotor disk; 7 – shaft;  
8 – healthy bearing; 9 – ball defect; 10 – outer race defect; 11 – LMS SCADAS mobile 

3.2. Rolling element defect 

In Fig. 2, rolling bearings are mainly under the action of the radial force excited by the 
movement of rotor disk and the motor, so this paper only analyzes the radial vibration signals. If 
the collected vibration signal in the horizontal direction is x and the vibration signal in the vertical 
direction is 𝑦, then a binary modulation signal 𝑢 is equal to 𝑢 = ቂ௫௬ቃ. Let 𝐾 = 4, 𝛼 = 2000 and  𝜏 = 0, the MVMD method is used to decompose 𝑢 into the sum of a series of IMFs 𝑢௞ (𝑘 = 1, 2, 
3, 4), where 𝑢௞ = [𝑢௞ଵ,𝑢௞ଶ]. 𝑢௞ଵ represents the horizontal component of the vibration signal 𝑥, 
and 𝑢௞ଶ represents the vertical component of the vibration signal 𝑦. The time-domain waveforms 
of 𝑥, 𝑦 and 𝑢௞ are shown in Fig. 3. The evolution of IMFs center-frequencies is shown in Fig. 4. 

 
Fig. 3. Time-domain waveforms of rolling element defect signals 𝑥, 𝑦 and 𝑢௞ obtained by MVMD 
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In Fig. 3(a) and (b), the original vibration signals 𝑥 and 𝑦 have no obvious amplitude 
modulation characteristics, and the fault feature information is submerged by noise. In Fig. 3(g) 
and Fig. 3(h), the 𝑢ଷଵ and 𝑢ଷଶ contain very obvious modulation characteristics, but the amplitude 
of 𝑢ଷଶ is larger than that of 𝑢ଷଵ. In Fig. 4, the central frequency of IMFs fluctuated greatly at the 
early stage of evolution, but it entered a stable state after 24 evolutions. 

 
Fig. 4. Evolution of IMFk center-frequencies 𝜔௞ 

To illustrate the frequency band structure of a vibration signal excited due to the bearing defect, 
the reason for taking 𝐾 = 4, and the advantage of using the MVMD to analyze multi-channel 
signals, the Fourier spectrums of the original signals and the Fourier spectrums of their 
decomposition results based on MVMD are shown in Fig. 5. As generally accepted, the Fourier 
spectrums of the rolling bearing fault vibration signals contain four subbands. Therefore, it is 
appropriate to set 𝐾 to 4 when using MVMD to decompose the rolling bearing fault vibration 
signals. In addition, 𝑢௞ଵ and 𝑢௞ଶ have similar spectral structures and are arranged in order of 
frequency from low to high, and there are no modal aliasing and modal splitting between the 
subbands of 𝑢௞ଵ and the subbands of 𝑢௞ଶ. The fault features obtained by using the MVMD method 
are decomposed into the same layer, which is beneficial to the subsequent fault feature fusion. 
Hilbert operations are respectively performed on 𝑢௞ଵ and 𝑢௞ଶ, and the envelope functions 𝑎௞ଵ and 𝑎௞ଶ are obtained. The Fourier spectrums of 𝑎௞ଵ and 𝑎௞ଶ are shown in Fig. 6. 

 
Fig. 5. Fourier spectrums of rolling element defect signals 𝑥, 𝑦 and 𝑢௞ obtained by MVMD 

In Fig. 6, the rolling element fault feature frequency 𝑓௕ = 101 Hz is in the mid-frequency 
subband 3. In addition, the amplitude of 𝑎ଷଵ is much larger than that of 𝑎ଷଶ.  

Let 𝑎ଷ = 𝑎ଷଵ + j𝑎ଷଶ, then the phase difference spectrum will be between 𝑎ଷଶ and 𝑎ଷଵ. So it is 
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possible to depict the complex Fourier spectrum of 𝑎ଷ and full vector spectrum of 𝑎ଷ as shown in 
Fig. 7. Because the phase difference between 𝑎ଷଶ and 𝑎ଷଵ is between –𝜋 and 0, the amplitude of 
the feature frequency 𝑓௕, which is 3.563, in the complex Fourier spectrum of 𝑎ଷ is larger than that 
of the conjugate frequency (𝑓௦-𝑓௕), which is 3.456. According to Fig. 6 and Fig. 7, it can be seen 
that the amplitude of 𝑓௕ is the largest in the complex Fourier spectrums, i.e. 0.3563, followed by 
0.3506 in the full vector spectrum, and it is the smallest in the Fourier spectrum of 𝑎ଷଶ, i.e. 0.3223. 

 
Fig. 6. Fourier spectrums of 𝑎௞ଵ and 𝑎௞ଶ 

 
Fig. 7. Phase difference spectrum, complex Fourier spectrum and full vector spectrum of 𝑎ଷ 

The Fourier spectrums of the first three-order IMFs 𝑐௞ଵ and 𝑐௞ଶ obtained by the BEMD 
method are shown in Fig. 8. The Fourier spectrums of first three-order product functions (PFs) 𝑝𝑓௞ଵ and 𝑝𝑓௞ଶ obtained by the CLMD method are shown in Fig. 9. The envelope spectrums of the 
IMFs and PFs are shown in Fig. 10 and Fig. 11, respectively. 

Obviously, the IMFs obtained by the BEMD method or the PFs obtained by the CLMD method 
induce modal aliasing and mode splitting, which will cause the extracted fault features to be 
indistinct. For example, Fig. 8(a) shows that the mid-frequency subband is almost submerged by 
the dominant high-frequency subband, and mode splitting occurs in the mid-frequency subband. 
As a result, the amplitude of the rolling element fault feature frequency 2𝑓௕ in Fig. 10(a) is very 
small and almost submerged. Fig. 8(b) demonstrates mode aliasing in 𝑐ଵଶ, and the mid-frequency 
subbands containing fault features are decomposed into 𝑐ଵଶ and 𝑐ଶଶ, obviously the mode splitting 
occurs. As a result, the amplitude of the fault feature frequency 𝑓௕ in Fig. 10(b) and Fig. 10(d) is 
reduced. when applying the CLMD method to analyze rolling element defects, the similar situation 
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as described above occurs, as shown in Fig. 11. 

 
Fig. 8. Fourier spectrum of first three-order IMFs 𝑐௞ଵ and 𝑐௞ଶ obtained by BEMD method 

 
Fig. 9. Fourier spectrum of first three-order PFs 𝑝𝑓௞ଵ and 𝑝𝑓௞ଶ obtained by CLMD method 

In Fig. 10 and Fig. 11, the fault features on the same layer are inconsistent. This means the 
information fusion becomes increasingly challenging. Comparing the envelope spectrums of IMFs 
and PFs, the amplitude of the fault characteristic frequency of the vibration signal in the vertical 
direction is obviously larger than that in the horizontal direction. It is very likely to make a wrong 
diagnosis based on only the signal feature in the horizontal direction. 

 
Fig. 10. Envelope spectrums of 𝑐௞ଵ and 𝑐௞ଶ based on BEMD 
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The full vector envelope spectrums of 𝑐ଵ and 𝑐ଶ are obtained by applying the FVS to fuse the 
envelope signals of 𝑐௞ଵ and 𝑐௞ଶ (𝑘 = 1, 2) as shown in Fig. 12. The complex envelope spectrums 
of 𝑝𝑓ଵ are obtained by applying the CFT to fuse the envelope signals of 𝑝𝑓ଵଵ and 𝑝𝑓ଵଶ as shown 
in Fig. 13. The maximum amplitudes of the rolling element fault feature frequency 𝑓௕ obtained by 
the above methods are shown in Table 1. The amplitude of 𝑓௕ obtained by the MVMD method is 
much larger than that obtained by the BEMD or CLMD methods. The amplitude obtained by the 
proposed MVMD+CFT method is larger than that obtained by the MVMD+FVS method. 

 
Fig. 11. Envelope spectrums of 𝑝𝑓௞ଵ and 𝑝𝑓௞ଶ based on CLMD 

Table 1. Maximum amplitudes of rolling element fault feature frequency 𝑓௕ 
Methods MVMD+CFT MVMD+FVS BEMD+FVS CLMD+CFT 

Amplitude / mm.s-2 0.3565 0.3509 0.1735 0.2122 

 
Fig. 12. Full vector envelope spectrums of 𝑐ଵ and 𝑐ଶ based on BEMD 

 
Fig. 13. Complex Fourier spectrum of envelope signal of 𝑝𝑓ଵ based on CLMD 

3.3. Composite defects 

The time-domain waveform and Fourier spectrum of the composite fault vibration signals with 
rolling element defects and outer race defects are shown in Fig. 14. Similar to rolling element 
defects, the spectrums of composite fault vibration signals mainly contain 4 subbands. 

Let 𝐾 = 4, 𝛼 = 2000 and 𝜏 = 0. Then the MVMD is applied to decompose the composite fault 
signals into a series of 𝑢௞ଵ and 𝑢௞ଶ (𝑘 = 1, 2, 3, 4). Their Fourier spectrums are shown in Fig. 15. 

It is clearly seen from Fig. 14 and Fig. 15 that 𝑢ଵଵ-𝑢ସଵ and 𝑢ଵଶ-𝑢ସଶ come from subband 1, 
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subband 2, subband 3 and subband 4 in the spectrum of signals 𝑥 and 𝑦, respectively, bearing no 
modal aliasing or modal splitting in the spectrums of 𝑢௞ଵ and 𝑢௞ଶ. This property of MVMD 
provides the possibility to determine where the fault signature is located. In Fig. 15, the frequency 
centers of the subbands in the spectrums of 𝑢௞ଵ and 𝑢௞ଶ are approximately the same that is very 
beneficial to the subsequent fault feature information fusion. 

 
Fig. 14. Time-domain waveform and Fourier spectrum of composite fault vibration signal 

 
Fig. 15. Fourier spectrums of 𝑢௞ଵ and 𝑢௞ଶ obtained by MVMD 

The HT is applied to 𝑢௞ଵ and 𝑢௞ଶ respectively, and the envelope spectrums of 𝑢௞ଵ and 𝑢௞ଶ are 
shown in Fig. 16. The rolling element defect feature frequency 𝑓௕ = 101 Hz is still in the 
mid-frequency subband 3. The outer race defect feature frequency 𝑓௢ = 160 Hz is in low-
frequency subband 1, subband 2 and in high-frequency subband 4. Compared with Fig. 6, it can 
be seen that when only the rolling element defect occurs, the fault feature amplitude in the vertical 
direction is larger than that in the horizontal direction. But when a composite defect occurs, the 
situation changes cardinally to the reverse. 

Let 𝑎௞ = 𝑎௞ଵ + 𝑗𝑎௞ଶ, where 𝑎௞ଵ and 𝑎௞ଶ are the envelope signals of 𝑢௞ଵ and 𝑢௞ଶ respectively. 
Then the phase difference spectrums of 𝑎௞ଵ and 𝑎௞ଶ shown in Fig. 17, and the complex Fourier 
spectrums and the full vector spectrums of 𝑎௞ shown in Fig. 18 and in Fig. 19 are actual. 

In Fig. 18, the larger amplitude is selected from the characteristic frequency and conjugate 
characteristic frequency to reveal the characteristics of composite defects according to the phase 
difference between 𝑎௞ଵ and 𝑎௞ଶ. Taking 𝑎ଷ and 𝑎ସ as two examples, In Fig. 17(c) and (d), the 
phase difference 𝜑ଷ between 𝑎ଷଶ and 𝑎ଷଵ at the ball defect characteristic frequency 𝑓௕ is 6.481° 
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and the phase difference 𝜑ସ between 𝑎ସଶ and 𝑎ସଵ at the outer race defect characteristic frequency 𝑓௢ is 82.31°, which belongs to (0, 𝜋). According to 2.3, when the phase difference is between  
(0, 𝜋), the magnitude of the conjugate characteristic frequency is larger than that of the 
characteristic frequency. In Fig. 18, the magnitude of the ball defect characteristic frequency 𝑓௕ is 
0.2053, while the magnitude of the conjugate characteristic frequency 𝑓௕ is 0.2228. The magnitude 
of the outer race fault characteristic frequency 𝑓௢ is 0.238, while the magnitude of the conjugate 
characteristic frequency (𝑓௦-𝑓௢) is 0.5825. In Fig. 19, the amplitude of 𝑓௢ in the full vector spectrum 
of 𝑎ସ is only 0.4102. In Fig. 16, the amplitude of 𝑓௢ in the envelope spectrum of 𝑢ସଶ is larger than 
that of 𝑢ସଵ, i.e. 0.4094, but much smaller than that in the full vector spectrums or in the complex 
Fourier spectrums. 

 
Fig. 16. Envelope spectrums of 𝑢௞ଵ and 𝑢௞ଶ 

 
Fig. 17. Phase difference spectrums of 𝑎௞ଵ and 𝑎௞ଶ 

The BEMD is used to decompose the composite defect signals into a series of IMFs 𝑐௞ଵ and 𝑐௞ଶ, where 𝑘 = 1, 2, 3, 4. The Fourier specturms of the first four 𝑐௞ଵ and 𝑐௞ଶ are shown in Fig. 20. 
Their envelope specturms are shown in Fig. 21. Obviously, there are modal aliasing and modal 
splitting in the spectrum of IMFs shown in Fig. 20. The envelope spectrums of 𝑐௞ଵ and 𝑐௞ଶ have 
significant differences as shown in Fig. 21. The outer race fault feature frequency 𝑓௢ is in the 
envelope spectrums of 𝑐ଵଵ and 𝑐ସଵ, and the rolling element fault feature frequency 𝑓௕ is in 𝑐ଶଵ. In 
the envelope spectrum of 𝑐௞ଶ, each of them has an outer race fault feature frequency 𝑓௢, but 
without rolling element fault feature frequency 𝑓௕. Obviously, the diagnosis based only on the 
envelope spectrum of 𝑐௞ଶ is easy to induce errors and inaccuracies. 
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Fig. 18. Complex Fourier spectrums of 𝑎௞ based on MVMD 

 
Fig. 19. Full vector spectrums of 𝑎௞ based on MVMD 

 
Fig. 20. Fourier spectrums of first four 𝑐௞ଵ and 𝑐௞ଶ obtained by BEMD 
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Fig. 21. Envelope spectrums of first four 𝑐௞ଵ and 𝑐௞ଶ obtained by BEMD 

The full vector envelope spectrums of the IMFs 𝑐௞ obtained by BEMD are shown in Fig. 22. 
The complex envelope spectrums of 𝑝𝑓௞ obtained by CLMD are shown in Fig. 23. In Fig. 22 and 
Fig. 23, the rolling element fault features are small and difficult to be identified. 

The maximum amplitudes of the compound defect feature frequencies 𝑓௕ and 𝑓௢ obtained by 
the above methods are shown in Table 2. It can be seen from Table 2 that even if compound defects 
are analyzed, the amplitude of defect features extracted by the proposed method is clearer. 

Table 2. Maximum amplitudes of compound defect feature frequencies 𝑓௕ and 𝑓௢ 
Methods MVMD+CFT MVMD+FVS BEMD+FVS CLMD+CFT 

Amplitude of 𝑓௕ / mm.s-2 0.2228 0.214 0.1031 0.1305 
Amplitude of 𝑓௢ / mm.s-2 0.5825 0.4102 0.4184 0.5095 

 
Fig. 22. Full vector envelope spectrums of IMFs ck obtained by BEMD 

Using fast spectral kurtosis based on 4th order statistics, it is possible demodulate the rolling 
element defect feature frequency 𝑓௕ and its frequency multiplication from the signal 𝑥, and the 
outer race defect feature frequency 𝑓௢ and its frequency multiplication from the signal 𝑦. The 
demodulation result is shown in Fig. 24. Obviously, only the rolling element defect is diagnosed 
according to the envelope spectrum of 𝑥, and the only outer race defect is diagnosed according to 
the envelope spectrum of 𝑦. 
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Fig. 23. Complex envelope spectrums of first two 𝑝𝑓 obtained by CLMD 

4. Discussion 

Similar to BEMD and CLMD, the MVMD separates multi-channel signals into a series of 
IMFs in the order of frequency. However, the IMFs obtained by the BEMD or CLMD methods 
are arranged in order of frequency from the highest to the lowest, while the IMFs obtained by the 
MVMD method are the opposite. In the envelope spectrum of high-order IMFs, the amplitude of 
the fault feature frequencies is created as per the selected signal decomposition method with the 
distribution of the original fault signals in the frequency band. When the fault signals exist only 
in one frequency band, as shown in section 4.2, the rolling element defect signals are located only 
in the mid-frequency band. The amplitude of the fault feature frequency obtained by the MVMD 
method is much higher than that of the BEMD method or the CLMD method. The reason is that 
the mode splitting occurs when the fault signals are decomposed by the BEMD method or the 
CLMD method, which causes the fault signals to be decomposed into different layers, resulting in 
a reduction in amplitude. When the fault signals are distributed in different frequency bands, such 
as composite defect signals mentioned in section 4.3, the MVMD can decompose this type of 
signals into the corresponding frequency bands, while the BEMD has modal aliasing, and the 
separated high-order IMF contains fault signals in almost all frequency bands, so the amplitude of 
fault feature frequency obtained by the BEMD is relatively higher. 

 
Fig. 24. Fast kurtosis based on 4th order statistics and its corresponding  

envelope spectrum of composite defect signal 
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The MVMD has a solid mathematical foundation. Because a unified mathematical model is 
used for multi-channel signals. In the MVMD, it ensures that the same fault features residing in 
multi-channel signals are decomposed to the same layer to lay a good foundation for subsequent 
multi-channel information fusion. The test proves that the vibration signals excited by rolling 
bearing defects are more complicated. Vibration signals from different directions may inform 
about different defects. The diagnosis based on the information of vibration signals which come 
from a single direction can induce wrong conclusions and misunderstanding. The distribution of 
fault vibration signals is also quite different. For example, the rolling element fault feature 
frequencies are distributed in the mid-frequency band, and the outer race fault feature frequencies 
are widely distributed, and almost all frequency bands exist. 

There are three benefits of analyzing multi-channel rolling bearing fault signals with the 
MVMD and CFT. Firstly, the signals in the same central frequencies band are decomposed into 
the same layer, which is conducive to information fusion. Secondly, compared with the BEMD or 
CLMD method, there is no mode splitting or mode aliasing in the decomposition results based on 
the MVMD. Thirdly, the amplitude of fault feature frequency obtained by the CFT is larger than 
that obtained by the FVS. The fault characteristics obtained by using the proposed method are 
more obvious, especially when analyzing composite faults. 

As a newly emerging algorithm, the MVMD also has some shortcomings. For example, the 
decomposition levels and end conditions of MVMD need to be determined in advance, thus 
reducing the adaptability of the MVMD. Additionally, as demonstrated by this paper, 𝐾 is 
determined based on the Fourier spectrum of original signals. The 𝛼 affects the decomposition 
effect of the MVMD. 𝛼 is lager, so the tightness of the decomposition result is better, but the fault 
information is easy to lose. With a smaller 𝛼, the tightness of the decomposition result is worse, 
and the modal aliasing is prone to occur, although the fault information will not be lost. 
Experiments have revealed that when 𝛼 is between 200 and 2000, the decomposition results are 
roughly the same. 

5. Conclusions 

The MVMD is introduced into the field of rolling bearing fault diagnosis. The multi-channel 
data analysis method based on the MVMD and the multi-channel data fusion method based on the 
CFT are investigated. The main conclusions are as follows: 

1) The same fault features are decomposed into the same layer, which facilitates the 
information fusion of multi-channel signals. 

2) There are no mode aliasing and mode splitting which is easy to occur when using the BEMD 
or CLMD to analyze vibration signals. 

3) By using the CFT to fuse the envelope characteristics of multi-channel vibration signals, 
the obtained spectrum characteristics are clearer and more comprehensive. 

4) When 𝜑 ∈ (−𝜋, 0), the amplitude of the characteristic frequency 𝑓 based on CFT is larger. 
When 𝜑 ∈ (0,𝜋), the amplitude of the conjugate characteristic frequency (𝑓௦-𝑓) based on CFT is 
larger. 

In a future work, the following situations should be well addressed: (1) Research on the 
distribution law of rolling bearing defect features; (2) Explaining the reasons for the signal 
difference from different rolling channels in terms of rolling bearing defects; (3) Adaptive 
determination of the number of MVMD layers and end conditions. 
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