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Abstract. Finite-volume schemes, which honor pressure and flux-continuity conditions, is 
developed using double quadrature ሺ𝑞௨భ , 𝑞௨మሻ, referred as double family scheme. The scheme is 
applicable to solve the elliptic pressure equation used in reservoir simulation. Schemes are 
applicable on both regular cartesian and unstructured triangular meshes. The scheme is defined 
over a control-volume distributed formulation. The scheme can be applied to both diagonal and 
full permeability tensor elliptic pressure equation with discontinuous coefficients. The scheme 
removes the first order errors, which are introduced by standard reservoir simulation schemes 
when applied to full tensor flow. The scheme is quantified with help of a quadrature rule. When 
the scheme is applied to highly heterogeneous and anisotropic porous media it does not honor 
maximum principle resulting in unstable solution with oscillatory behavior. The numerical 
solution is termed non-monotonicity for high anisotropy ratios with results showing oscillations 
in the numerical pressure solution. In this paper a double ሺ𝑞௨భ ,𝑞௨మሻ quadrature flux continuous 
schemes is presented, which with specific choice of quadrature ሺ𝑞௨భ , 𝑞௨మሻ helps in improved 
stability of the numerical solutions. Numerical convergence of the scheme is also demonstrated 
with help of a number of numerical test cases and schemes impact on monotonicity behavior is 
also demonstrated with numerical examples.  
Keywords: finite volume, flux and pressure continuity, monotonicity, stability, permeability 
anisotropy, elliptic pressure equation. 

1. Introduction 

Underground porous media reservoirs of hydrogeological flows have complex description in 
terms of both their physical geometry and geology. Rapid variation in permeability with strong 
anisotropy is common occurrence in subsurface reservoir simulation, be it for hydrocarbon flows 
or for underground hydrological studies. Subsurface reservoir simulation requires discretization 
of continuous flux and pressure equation in order to honor correct local physical interface 
conditions between the simulation grid blocks, with strong discontinuities and anisotropy in 
subsurface properties, primarily permeabilities. The derivation of the algebraic flux continuity 
conditions for full permeability tensor discretization operators has lead to an efficient and robust 
locally conservative flux-continuous control volume distributed (CVD) finite-volume schemes for 
determining the discrete pressure and velocity fields in subsurface reservoirs [1-9]. These schemes 
are also known as multi-point flux approximation or MPFA [10]. Further schemes of this type are 
presented in [11-13] and more recently in [14, 15]. These numerical schemes could be applied to 
the diagonal and full tensor elliptic pressure equation with rapid variations in permeability and 
remove the first order error in numerical approximation in typical reservoir simulation results, 
which are often based on two-point flux approximation, when applied to full tensor flow 
approximation. Some other numerical schemes of similar types that also preserve continuity of 
fluxes have also been developed using mixed finite element methods [16-18] and discontinuous 
galerkin finite element methods [19, 20]. Numerical convergence of these numerical scheme on 
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unstructured and structured meshes has also been presented earlier in a number of papers  
[9, 21-23]. 

When these numerical schemes are applied to strongly anisotropic heterogeneous porous 
media they fail to satisfy a maximum principle (similar to finite eminent, mixed finite element and 
other finite-volume methods) and result in loss of solution stability, particularly, for very high 
anisotropy ratios, which often lead to spurious oscillations in the numerical pressure solution. 
Some work has been carried out previously with aim of preserving stability of the numerical 
solutions for highly heterogeneous cases with skewed meshes, please see references [3, 6, 24]. 

Monotonicity conditions were first derived in [1] for an M-matrix and later in [25] for a 
monotone matrix. Numerical treatment based on mesh/grid optimization methods have been used 
to help improve stability of the discrete system [26]. Still, all of the published numerical schemes 
show only a limited impact and their stability is often subject to the order of magnitude of the 
permeability anisotropy ratios. A more promising strategy based on Flux-splitting techniques has 
been presented in [7, 8, 27], which helps in locally imposing maximum principle and resulting 
numerical solutions are oscillation free. Therefore, guaranteeing a more stable numerical pressure 
solution. 

Conditions for the (one parameter) family of flux-continuous schemes to possess symmetric 
positive definite matrices and for such schemes to have M-matrices with diagonal dominance and 
negative off-diagonals are presented in [1, 2]. The discretized system obtained for the schemes in 
the case of a full tensor are shown to be conditionally diagonally dominant and thus the M-matrix 
property is conditional [1, 28]. For very large anisotropic ratios with skewed meshes, the resulting 
numerical system for these schemes can be unstable (as in the case of other numerical techniques 
like FEM & FVM) and the numerical pressure solutions can consequently exhibit oscillatory 
behavior. This paper is focused on seeking the most robust numerical approximation with help of 
double parameter (𝑞௨భ , 𝑞௨మ) scheme. Numerical convergence of the double parameter schemes is 
demonstrated with help of series of numerical test cases. 

This paper is organized as follows: Description of the single phase flow problem encountered 
in reservoir simulation with respect to the general tensor pressure equation is given in Section 2. 
Details of the numerical construction of the double parameter scheme with discretization in 
physical space are presented in Section 3. Section 4 details the precise conditions required to 
obtain a stable numerical solution and shows the performance of the scheme with respect to 
stability conditions. Section 5 presents the numerical convergence results with help of a series of 
test cases. Section 6 presents numerical examples that demonstrate the impact of scheme 
quadrature choice on monotonicity behavior with help of some numerical examples. Finally, 
conclusions are presented in Section 7. 

2. Problem description and governing equations 

The typical formulation of Darcy’s law states that the problem is to find the pressure 𝑝 
satisfying: −නஐ∇ • 𝐊(𝑥,𝑦)∇𝑝𝑑𝜏 = නஐ𝑞𝑑𝜏 = 𝐌, (1)

over a given domain Ω, subjected to a given (Neumann/Dirichlet) boundary conditions on a given 
boundary 𝜕Ω. The right hand side term 𝐌 represents a flow rate and ∇ = (𝜕௫,𝜕௬). The 
permeability Matrix 𝐊 can either be a diagonal or full cartesian tensor, which has the general form: 𝐊 = ൬𝑘ଵଵ 𝑘ଵଶ𝑘ଵଶ 𝑘ଶଶ൰, (2)

The resulting pressure equation with full permeability matrix is assumed to be elliptic such 
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that: 𝐾ଵଶଶ ≤ 𝑘ଵଵ𝑘ଶଶ. (3)

The permeability tensor can be discontinuous across internal boundaries of the domain Ω. The 
boundary conditions, which are imposed here are of Dirichlet and Neumann type. For 
incompressible fluid flow in porous media – pressure need to be specified at at-least at one point 
in the domain to obtain a numerical solutions. For subsurface reservoir simulation, Neumann 
boundary conditions on 𝜕Ω requires no-flux on the domain boundary such that (𝐾∇𝑝) ⋅ 𝑛ො = 0, 
where 𝑛ො is the outward normal vector to 𝜕Ω. 

2.1. Elliptic pressure equation 

The pressure equation presented in the section above is given in the physical space w.r.t the 
classical Cartesian coordinate system. In this section we present the elliptic pressure equation in a 
general curvilinear coordinate system that is defined with respect to a uniform dimensionless 
transform space with a (𝜉, 𝜂) coordinate system. Choosing domain Ω௣ to represent a control 
volume comprised of surfaces that are tangential to constant (𝜉, 𝜂) respectively, Eq. (1) is 
integrated over Ω௣ via the Gauss divergence theorem to yield: 

−රడಈು (𝐊∇𝑝) ⋅ 𝐧ෝ𝑑𝑠 = 𝐌, (4)

where 𝜕Ω௣ is the boundary of Ω௣ and 𝑛ො is the unit outward normal. Spatial derivatives are 
computed using: 𝑝௫ = 𝐽(𝑝,𝑦)/𝐽(𝑥,𝑦),𝑝௬ = 𝐽(𝑥,𝑝)/𝐽(𝑥,𝑦), (5)

where 𝐽(𝑥,𝑦) = 𝑥క𝑦ఎ − 𝑥ఎ𝑦క  is the Jacobian. Resolving the 𝑥, 𝑦 components of velocity along 
the unit normals to the curvilinear coordinates (𝜉, 𝜂), e.g., for 𝜉 = constant, 𝐧ෝ𝑑𝑠 = (𝑦ఎ ,−𝑥ఎ)𝑑𝜂 
gives rise to the general tensor flux components: 𝐹 = −න (𝑇ଵଵ𝑝క + 𝑇ଵଶ𝑝ఎ)𝑑𝜂,    𝐺 = −න (𝑇ଵଶ𝑝క + 𝑇ଶଶ𝑝ఎ)𝑑𝜉, (6)

where general tensor 𝐓 has elements defined by: 

𝑇ଵଵ = 𝑘ଵଵ𝑦ఎଶ + 𝑘ଶଶ𝑥ఎଶ − 2𝑘ଵଶ𝑥ఎ𝑦ఎ𝐽 , 𝑇ଶଶ = 𝑘ଵଵ𝑦కଶ + 𝑘ଶଶ𝑥క − 2𝑘ଵଶ𝑥క𝑦క𝐽 , 𝑇ଵଶ = 𝑘ଵଶ൫𝑥క𝑦ఎ + 𝑥ఎ𝑦క൯ − ൫𝑘ଵଵ𝑦ఎ𝑦క + 𝑘ଶଶ𝑥ఎ𝑥క൯𝐽 , (7)

and the closed integral can be written as: 

න නஐ೛ (𝜕క𝐹෨ + 𝜕ఎ𝐺෨)𝐽 𝐽𝑑𝜉𝑑𝜂 = ∆క𝐹 + ∆ఎ𝐺 = 𝑚, (8)

where e.g. ∆క𝐹 is the difference in net flux with respect to 𝜉 and 𝐹෨ = 𝑇ଵଵ𝑝క + 𝑇ଵଶ𝑝ఎ,  



NUMERICAL CONVERGENCE OF THE FAMILY OF FLUX-CONTINUOUS SCHEMES WITH VARIABLE QUADRATURE (𝑞௨భ , 𝑞௨మ) FOR SINGLE PHASE 
FLOW IN POROUS MEDIA. MAYUR PAL 

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627, KAUNAS, LITHUANIA 29 

𝐺෨ = 𝑇ଵଶ𝑝క + 𝑇ଶଶ𝑝ఎ. This condition demonstrates that any such scheme applicable to a full matrix 
permeability tensor could also be applied to non-K-Orthogonal grids. Note that 𝑇ଵଵ, 𝑇ଶଶ ≥ 0 and 
ellipticity of 𝐓 follows from Eqs. (3 and 7). Full permeability tensors can arise from upscaling, 
and local orientation of the grid and the permeability field. For example, by Eq. (7), a diagonal 
anisotropic Cartesian tensor leads to a full tensor on a curvilinear orthogonal grid [23] (a grid is 
called orthogonal if all grid lines intersect at a right angle). 

3. Flux-continuous finite volume schemes 

Finite volume schemes, which honor local pressure and flux continuity conditions and are 
locally conservative have been presented in [1-6]. The schemes have been developed for different 
grid types structured and unstructured grids in physical space and transform space. Numerical 
convergence for a range of quadrature in physical and transform space have been presented in [5]. 
The schemes have continuity of pressure and flux across primal grid cell control-volume interfaces 
(Control Volume is defined as the volume over which mass can transfer in and out across its 
boundary (Pal 2006)). Here we present a short summary of the structured cell centred quadrilateral 
formulation. The nine point support of the numerical scheme is shown in Fig. 1(a)). The numerical 
scheme has flow and rock variables (porosity, permeability etc.) defined at the cell centre, with 
this definition, the discrete approximation points are at then located at the centres of the primal 
grid cells, which are also the control-volumes. For each group of four nodes, four triangles are 
drawn as in Fig. 1(a). Each group of nodes are defined within a dual-cell (each group of four cell-
centered nodes surrounding a primal grid vertex defines the fundamental corners of a dual cell) 
which is obtained by joining cell centres with cell edge mid-points as indicated by the dashed 
contour in Fig. 1(b). The dual cells partition the primal cells (or control-volumes) into subcells 
(the dual cells partition the primal quadrilateral grid cells (or control volumes) into sub-
quadrilateral cells, which are called subcells). Two faces of each subcell also define sub faces of 
two faces of the parent control-volume. 

 
a) 

 
b) 

Fig. 1. a) Flux-continuity at specific north, south, east and west location (𝑛, 𝑠, 𝑒,𝑤) on the control-volume 
sub-cell faces, b) location of quadrature points (𝑞௨భ , 𝑞௨మ) on the sub-cell face 

3.1. (𝒒𝒖𝟏 ,𝒒𝒖𝟐) quadrature schemes 

Flux continuous schemes are formulated using the principle of pressure and flux continuity 
conditions on the control-volume subcell faces. The continuity conditions are shown conceptually 
with help of the Fig. 1(a). It can be seen in the figure that the continuity conditions is met at the 
four positions (𝑛, 𝑠, 𝑒,𝑤), corresponding to north, south, east and west faces. The area is shown 
with help of shaded triangles and their point of contact in the Fig. 1(b). On each control-volume 
cell sub-face the point of continuity is parameterized with help of the variable quadrature  𝑞 = (𝑞௨భ , 𝑞௨మ) depending on the location of continuity at the sub-face, please see Fig. 1(b)  (0 ൏ 𝑞௨భ ,𝑞௨మ ≤ 1ሿ. For any given control-volume subcell, the points of continuity of flux and 
pressure could be located anywhere in the ranges (0 ൏ 𝑞௨భ , 𝑞௨మ ≤ 1ሿ on the two faces of each 
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subcell. The precise values of (𝑞௨భ ,𝑞௨మ) define the quadrature points, thereby, resulting in the 
formulation corresponding to families schemes, which are flux-continuous. Fig. 1(b) shows a 
conceptual plot for quadrature points located at 𝑞௨భ = 0.01 and 𝑞௨మ = 1. Cell face pressures 𝑃௡, 𝑃௘, 𝑃௦, 𝑃௪ are introduced at 𝑛, 𝑠, 𝑒, 𝑤 locations. Pressure sub-triangles are defined with local 
triangular support imposed within each quarter (sub-cell) of the dual-cell as shown in Fig. 1(b). 
Pressure 𝑝, in local cell coordinates, is piecewise linear over each triangle. The physical space 
flux-continuity conditions for cells 1 to 4, sharing a common grid vertex inside the dual-cell are 
expressed as: 𝐹ே = −12 ൫𝑇ଵଵ𝑝క + 𝑇ଵଶ𝑝ఎ൯|ேଷ = −12 ൫𝑇ଵଵ𝑝క + 𝑇ଵଶ𝑝ఎ൯|ேସ , 𝐹ௌ = −12 (𝑇ଵଵ𝑝క + 𝑇ଵଶ𝑝ఎ)|ௌଵ = −12 (𝑇ଵଵ𝑝క + 𝑇ଵଶ𝑝ఎ)|ௌଶ, 𝐹ா = −12 (𝑇ଵଶ𝑝క + 𝑇ଶଶ𝑝ఎ)|ாଶ = −12 (𝑇ଵଶ𝑝క + 𝑇ଶଶ𝑝ఎ)|ாଷ , 𝐹ௐ = − 12 ൫𝑇ଵଶ𝑝క + 𝑇ଶଶ𝑝ఎ൯|ௐଵ = −12 ൫𝑇ଵଶ𝑝క + 𝑇ଶଶ𝑝ఎ൯|ௐସ . 

(9)

The parametric variation in 𝑞 = (𝑞ଵ,𝑞ଶ) is illustrated further using the sub-cell example of 
Fig. 1(c), with sub-cell containing sub-triangle (1, 𝑆,𝑊). Let 𝑟ଵ = (𝑥ଵ,𝑦ଵ) denote the coordinates 
of the cell-centre and 𝑟ௌ = (𝑥ௌ,𝑦ௌ),𝑟ௐ = (𝑥ௐ,𝑦ௐ) denote the local continuity coordinates. Then 
it is understood that the continuity position is a function of 𝑞 with 𝑟ௌ(𝑞௨భ , 𝑞௨మ) and 𝑟ௐ(𝑞௨భ , 𝑞௨మ). 

Piecewise constant fluxes are then computed on every pressure sub-triangles belonging to the 
sub-cells of the dual-cell as shown in Fig. 1(b). The local linear pressure 𝑝, is expanded in 
sub-triangle coordinates. The Darcy flux approximation for sub-triangle (1, 𝑆,𝑊) is given below: ቀ𝑝క𝑝ఎቁ = ቀ𝑝ௌ − 𝑝ଵ𝑝ௐ − 𝑝ଵቁ, (10)

and: 

ቆ𝑥క(𝑞)𝑥ఎ(𝑞)ቇ = ൬𝑥ௌ(𝑞) − 𝑥ଵ𝑥ௐ(𝑞) − 𝑥ଵ൰ ,     ቆ𝑦క(𝑞)𝑦ఎ(𝑞)ቇ = ൬𝑦ௌ(𝑞) − 𝑦ଵ𝑦௪(𝑞) − 𝑦ଵ൰. (11)

Using Eqs. (10, 11) the discrete Darcy velocity is defined as: 𝑣௛ = −𝐊∇𝑝௛ = −𝐊𝐆(𝑞) ቀ𝑝క𝑝ఎቁ, (12)

where 𝐊 is the local permeability tensor of cell 1 and dependency of ∇𝑝௛ on quadrature point 
arises through: 

𝐆(𝑞) ቀ𝑝క𝑝ఎቁ = ቆ 𝑦ఎ(𝑞) −𝑦క(𝑞)−𝑥ఎ(𝑞) 𝑥క(𝑞) ቇ1𝐽(𝑞) ቀ𝑝ௌ − 𝑝ଵ𝑝ௐ − 𝑝ଵቁ, (13)

where approximate 𝑟క(𝑞) and 𝑟ఎ(𝑞) are defined by Eq. (11). The normal flux at the left hand side 
of 𝑆 (Fig. 1(b)) is resolved along the outward normal vector 𝑑𝐿ௌ = (Δ𝑦௥య,ௌ,−Δ𝑥௥య,ௌ) =ଵଶ (Δ𝑦ଷଶ,−Δ𝑥ଷଶ) (Fig. 1(b) and is defined in terms of the general tensor 𝑇 = 𝑇(𝑞) as: 

𝐹ௌଵ = 𝑣௛ ⋅ 𝑑𝐿ௌ = −12 ൫𝑇ଵଵଵ 𝑝క + 𝑇ଵଶଵ 𝑝ఎ൯|ௌଵ, (14)
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and the resulting coefficients of −ଵଶ (𝑝క ,𝑝ఎ)|ௌଵ denoted by 𝑇ଵଵ|ௌଵ and 𝑇ଵଶ|ௌଶ are sub-cell 
(physical-space) approximations of the general tensor components (Eq. (9)) at the left hand face 
at S, and are functions of 𝑞. A similar expression for flux is obtained at the right hand side of S 
from cell 2 (Fig. 1(b). Similarly sub-cell fluxes are resolved on the two sides of the other faces at 
W, N and E. Flux continuity is then imposed across the four cell interfaces at the four positions 
N, S, E and W (Fig. 1(a) which are specified according to quadrature point 𝐪. The local physical 
space flux continuity conditions are now defined in the dual cell and expressed as follows. 

The above system of Eq. (9) is now expressed as: 𝐹 = 𝐴௅𝑃௙ + 𝐵௅𝑃௩ = 𝐴ோ𝑃௙ + 𝐵ோ𝑃௩, (15)

where 𝐹 = (𝐹ே,𝐹ௌ,𝐹ா ,𝐹ௐ)் are the fluxes defined in the dual-cell and 𝑃௙ = (𝑝ே,𝑝ௌ,𝑝ா ,𝑝ௐ)் are 
the interface pressures. Similarly 𝑃௩ = (𝑝ଵ,𝑝ଶ,𝑝ଷ,𝑝ସ)் are the cell centered pressures. Thus the 
four interface pressures are expressed in terms of the four cell centered pressures. Using Eq. (15), 𝑃௙ is now expressed in terms of 𝑃௩ to obtain the dual-cell flux and coefficient matrix: 𝐹 = (𝐴௅(𝐴௅ − 𝐴ோ)ିଵ(𝐵ோ − 𝐵௅) + 𝐵௅)𝑃௩. (16)

Thus, the cell-face pressures are eliminated from the flux by being determined locally in terms 
of the cell centered pressures in a preprocessing step, avoiding introduction of the interface 
pressure equations into the assembled discretization matrix. The Eq. (16) can also be written as: 𝐴𝐹 = −Δ𝑃௩, (17)

where the entries of matrix 𝐴 are accumulated inverse tensor elements and  Δ𝑃௩ = (𝑝ଶଵ,𝑝ଷଶ,𝑝ଷସ,𝑝ସଵ)் are the differences of vertex pressures. Consistency of the formulation 
follows from Eq. (17) which shows that flux is zero for constant potential. The relationship with 
the mixed method can also be deduced from Eq. (17), [2] from which it also follows that the above 
systems Eqs. (16), (17) represent the generalisation of the standard flux with harmonic coefficients 
to general elements with families of schemes defined by quadrature point 𝑞, see [2, 4, 9, 21-23] 
for details. The physical space formulation does not posses a symmetric discretization matrix for 
arbitrary quadrilaterals, however, transform space (cell and sub-cell) formulations that are 
symmetric positive definite are presented in [1, 4]. Flux continuity in the case of a general-tensor 
is obtained while maintaining the standard single degree of freedom per cell. Since the continuity 
equations depend on both 𝑝క and 𝑝ఎ (unless a diagonal tensor is assumed with cell-face midpoint 
quadrature resulting in a 2-point flux), the interface pressures 𝑝௙ = (𝑝ே,𝑝ௌ,𝑝ா ,𝑝ௐ)் are locally 
coupled and each group of four interface pressures is determined simultaneously in terms of the 
group of four cell centered pressures whose union contains the continuity positions. Finally for a 
structured grid the scheme is defined by: 𝐹௜ାଵ/ଶ,௝ − 𝐹௜ିଵଶ,௝ + 𝐹௜,௝ାଵଶ − 𝐹௜,௝ିଵଶ = 𝑀, (18)

where 𝑖, 𝑗 are the integer coordinates of the central quadrilateral cell, Fig. 1(a)) and: 𝐹௜ାଵ/ଶ,௝ = 𝐹ௌ೔శభ/మ,ೕశభ/మ + 𝐹ே೔శభ/మ,ೕషభ/మ , 𝐹௜,௝ାଵ/ଶ = 𝐹ா೔షభ/మ,ೕశభ/మ + 𝐹ௐ೔శభ/మ,ೕశభ/మ , (19)

where 𝑖 + 1/2, 𝑗 + 1/2 denote the “integer” coordinates of the top right hand side dual-cell, 
Fig. 1(a)). The unstructured formulation is presented in [22, 23].  
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4. Monotonicity 

Flux-continuous schemes results in a discrete matrix which has five to nine diagonals in two 
dimensions and three to twenty-seven diagonals in three dimensions on a structured mesh. The 
discrete matrix can be expressed as: 𝐀𝑝 = 𝑙, (20)

where 𝐀 is the matrix of discrete operator, 𝑝 is the unknown pressure and 𝑙 is the source term. 
Ideally the discrete system obtained in this way should results in an Eq. (20), which should be a 
nonsingular matrix and should satisfy maximum principle that is comparable to the continuous 
counterpart of the discrete problem. The condition ensures that the numerical solution obtained in 
this way is free from any non-physical oscillations. The maximum principle is satisfied for the 
discrete system given in 20 if the discrete matrix operator 𝐀 is a monotone. The matrix operator, 
of the discrete system, 𝐀 is a non-singular monotone matrix if it obeys the following 
condition [29]: 𝐀ି𝟏 ≥ 𝐎, (21)

where 𝐎 is a null matrix. A sufficient condition for a maximum principle that can ensure that 
non-physical oscillations do not occur in the resulting discrete solution is that 𝐀 is an M-matrix, 
i.e. monotone or positive definite with 𝑎௜,௝ ≤ 0, 𝑖 ≠ 𝑗. 
4.1. M-matrix conditions 

The following set of conditions are often easier to verify. 𝐀 is an M-matrix if: 𝑎௜,௜ > 0,∀𝑖, 𝑎௜,௝ ≤ 0,∀𝑖, 𝑗, 𝑖 ≠ 𝑗, Σ௝𝑎௜,௝ ≥ 0,∀𝑖. (22)

In addition, 𝐀 must be either strictly diagonally dominant (strict inequality in the latter of 
Eq. (22) or weakly diagonally dominant with strict inequality for at least one row, 𝐀 must also be 
irreducible. The first M-matrix analysis for schemes of this type is presented in [1], where 
conditions for nine-node flux continuous schemes to be an M-Matrix are: 𝑚𝑖𝑛൫𝑇ଵ,ଵ,𝑇ଶ,ଶ൯ ≥ 𝜂(𝑞)൫𝑇ଵ,ଵ + 𝑇ଶ,ଶ൯ ≥ ห𝑇ଵ,ଶห, (23)

and 𝜂(𝑞) is a function of quadrature point. One of the essential conditions here is that: ห𝑇ଵ,ଶห ≤ 𝑚𝑖𝑛൫𝑇ଵ,ଵ,𝑇ଶ,ଶ൯, (24)

which is only sufficient for ellipticity [1] and therefore quite limiting on the range of tensors that 
are applicable. Tensors that are elliptic with: 𝑇ଵ,ଶଶ ≤ 𝑇ଵ,ଵ𝑇ଶ,ଶ, (25)

and are such that |𝑇ଵ,ଶ| > 𝑚𝑖𝑛(𝑇ଵ,ଵ,𝑇ଶ,ଶ) violate the M-Matrix criteria of Eq. (23) and expose the 
M-Matrix limit. 
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5. Numerical results: numerical convergence study 

While numerical convergence tests for transform and physical space formulations on cartesian 
and triangular unstructured meshes in two-and three dimensions have previously been performed 
by [5, 21-23] for the default member of the family of flux-continuous MPFA schemes i.e. for  𝑞 = 1. 

The aim of the numerical convergence study presented here is to test the effect of variable 
quadrature points 𝑞ଵ, 𝑞ଶ on the numerical convergence of the scheme. Although a number of 
quadrature combinations exist for 𝑞ଵ, 𝑞ଶ, only two specific combination of quadrature points are 
evaluated 𝑞௨భ = 0.5, 𝑞௨మ = 0.1 and 𝑞௨భ = 0.1, 𝑞௨మ = 0.5. 

In this section numerical convergence results are presented cartesian grids in two dimensions. 
In all test cases the permeability field remains unchanged under grid refinement, ensuring that 
each problem is invariant with respect to each grid level for the convergence study. The classical 𝐿ଶ norm is used to measure errors in fluxes and pressure, which is defined for fluxes and pressure 
as: 

||𝑝௛ − 𝑝||௅మ = ቆ∑௜ (𝑉௜(𝑝௛,௜ − 𝑝௜)ଶ)∑௜ 𝑉௜ ቇଵଶ, (26)

||𝑓௛ − 𝑓||௅మ = ቆ∑௝ (𝑄௝(𝑓௛,௝ − 𝑓௝)ଶ)∑௝ 𝑄௝ ቇଵଶ, (27)

where, 𝑓 = −𝐯 ⋅ 𝐧 (where 𝐯 = 𝐊∇𝑝) is the edge normal flow velocity. Subscript ℎ refers to 
numerical solution. Further 𝑉௜ is the volume of the grid cell 𝑖, and 𝑄௝ is the volume associated 
with edge 𝑗 (where two cells are separated by edge 𝑗). The grid refinement levels used for the 𝐿ଶ 
norm calculation where mesh sizes of 16×16, 32×32, 64×64, and 128×128 are used for all test 
cases in 2D. In each case Dirichlet boundary conditions are prescribed via the exact solutions. 

5.1. Numerical test 1: uniformly discontinuous permeability 

In this case the pressure field is piecewise quadratically varying over the domain shown in 
Fig. 2(a). Fig. 2(b) shows analytical pressure results on this test case. Fig. 2(c) shows typical mesh 
used for the numerical convergence in this case. The domain is discontinuous with discontinuity 
aligned along the line 𝑥 = 1/2, and the analytical solution is given as: 

𝑝(𝑥,𝑦) = ൜𝑐௟𝑥ଶ + 𝑑௟𝑦ଶ, 𝑥 < 1/2,𝑎௥ + 𝑏௥𝑥 + 𝑐௥𝑥ଶ + 𝑑௥𝑦ଶ, 𝑥 ≥ 1/2, 𝐾 = ቐቀ50 00 1ቁ , 𝑥 < 1/2,ቀ1 00 10ቁ , 𝑥 ≥ 1/2, 𝛼 = 𝐾ଵଵ|௥𝐾ଵଵ|௟ ,    𝛽 = 𝐾ଶଶ|௟𝐾ଶଶ|௟ ,    𝑎௥ = 1,      𝑓 = 4𝑎௥(𝛼 − 2)𝛽 + 1,      𝑏௥ = (𝛽 − 1)𝑓, 𝑐௥ = 𝑓,      𝑑௥ = −𝑐௥𝐾ଵଵ|௥𝐾ଶଶ|௥ ,      𝑐௟ = 𝛼𝛽𝑐௥ ,      𝑑௟ = 𝑑௥ . 
(28)

The imposed top boundary flux is also discontinuous at 𝑥 = 1/2, resulting in a discontinuous 
tangential flux across the domain. The computed numerical solution and the plots showing 𝐿ଶ 
norm of pressure for the varying quadrature 𝑞ଵ and 𝑞ଶ are shown in Fig. 3(a) and (b), respectively. 𝑂௛భ.బభళవ accuracy is observed in numerical pressure solution for 𝑞௨భ = 0.5 and 𝑞௨మ = 0.1 and 
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𝑂௛భ.బరవల accuracy is observed in numerical pressure solution for 𝑞௨భ = 0.1 and 𝑞௨మ = 0.5. 

 
a) 

 
b) 

 
c) 

Fig. 2. Case 1: a) Discontinuity of the domain under consideration, b) exact analytical  
solution for pressure, c) sample mesh used for numerical convergence 

 
a) 

 
b) 

Fig. 3. Case 1: a) convergence plots for 𝑞௨భ, 𝑞௨మ. b) exact numerical pressure – physical space 

5.2. Numerical test 2: non-uniform discontinuous permeability field 

In this case the medium is divided into two parts as, see Fig. 4(a). The permeability is 
discontinuous and permeability ratio is 1/10 across the medium discontinuity. The discontinuity 
is aligned along the line 𝑟𝑥 + 𝑠𝑦 = 0, where 𝑟 = tan(𝜋/3)/(1 + tan(𝜋/3)) and 𝑠 = 1/(1 +tan(𝜋/3)).The pressure is piecewise linear and varies as: 𝑝(𝑥,𝑦) = ൜𝑟𝑥 + 𝑠𝑦, 𝑟𝑥 + 𝑠𝑦 < 0,10(𝑟𝑥 + 𝑠𝑦), 𝑟𝑥 + 𝑠𝑦 > 0. (29)

The diagonal permeability tensor 𝐊 = 𝑐𝐈, where 𝑐 = 10 for 𝑟𝑥 + 𝑠𝑦 < 0 and 𝑐 = 1 for  𝑟𝑥 + 𝑠𝑦 > 0. The numerical solution shown in Fig. 4(b) was obtained using a grid aligned along 
the discontinuity. Typical mesh used for the numerical convergence is shown in Fig. 4(c). 
Numerical convergence for varying 𝑞௨భ and 𝑞௨మ quadrature is shown in Fig. 5(a) and the 
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numerical pressure Physical space for the varying quadrature is shown in Fig. 5(b). 𝑂௛మ.బమభఴ 
accuracy is observed in numerical pressure solution for 𝑞௨భ = 0.5 and 𝑞௨మ = 0.1 and 𝑂௛భ.వవరవ 
accuracy is observed in numerical pressure solution for 𝑞௨భ = 0.1 and 𝑞௨మ = 0.5. 

 
a) 

 
b) 

 
c) 

Fig. 4. Case 1: a) discontinuity of the domain under consideration, b) exact analytical solution  
for pressure, c) sample mesh used for numerical convergence 

 
a) 

 
b) 

Fig. 5. Case 1: a) convergence plots for 𝑞௨భ, 𝑞௨మ, b) Exact numerical pressure – physical space 

5.3. Numerical test 3: permeability field with internal discontinuity 

This case involves an internal discontinuity. The problem involves a rectangular domain with 
internal discontinuous permeability variation as indicated in Fig. 6(a). The exact solution in each 
case takes the form: 𝑝(𝑟,𝜃) = 𝑟ఈ൫𝑎௜sin(𝛼𝜃) + 𝑏௜cos(𝛼𝜃)൯. (30)

The exact analytical pressure solution is shown in Fig. 6(b) and the cartesian mesh used in this 
case is shown in Fig. 6(c). Numerical convergence for varying 𝑞௨భ and 𝑞௨మ quadrature is shown 
in Fig. 7(a) and the numerical pressure Physical space for the varying quadrature is shown in 
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Fig.7(b). 𝑂௛బ.వవఱఱ accuracy is observed in numerical pressure solution for 𝑞௨భ = 0.5 and  𝑞௨మ = 0.1 and 𝑂௛బ.వఴఱవ accuracy is observed in numerical pressure solution for 𝑞௨భ = 0.1 and 𝑞௨మ = 0.5. 

 
a) 

 
b) 

 
c) 

Fig. 6. a) Internal discontinuity along 𝜃 = 𝜋/2, b) exact analytical pressure,  
c) sample mesh used for numerical convergence 

 
a) 

 
b)  

Fig. 7. Case 1: a) convergence plots for 𝑞ଵ, 𝑞ଶ, b) exact numerical pressure – physical space 

6. Numerical results: test of monotonicity behavior 

In this section a series of numerical test are presented to test the quasi-monotonic property of 
the variable quadrature points 𝑞௨భ, 𝑞௨మ scheme. The test examples involve subsurface 
permeability discontinuity with highly heterogeneous and anisotropic permeability tensor. 

6.1. Test case 1: v shape permeability distribution 

In this test case, a two dimensional domain with a permeability tensor that changes direction 
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in anisotropy halfway across the domain going from 𝐊= [1, 0.99, 0.99, 1] to  𝐊 = [1, –0.99, –0.99, 1], as shown in Fig. 8, is investigated. A point source is placed in the centre 
of the 2D domain (of unit length in 𝑥 and 𝑦 direction) and Dirichlet conditions are applied. In this 
test case due to discontinuity in permeability tensor M-matrix conditions are tested under variable 
coefficient conditions. Fig. 9(a) shows the results with 𝑞௨భ = 𝑞௨మ = 𝑞 = 1 with visible spurious 
oscillations. In the second case using the different choice of quadrature parameter with  𝑞௨భ = 𝑞௨మ = 𝑞 = 0.01 oscillation free results are obtained, see Fig. 9(b). 

 
Fig. 8. Change in direction of anisotropy in Permeability Tensor at 𝑦 = 0.5 

 
a) 

 
b) 

Fig. 9. a) Numerical pressure contours with instabilities like oscillations 𝑞௨భ = 𝑞௨మ = 𝑞 = 1,  
b) numerical pressure contours free of instabilities e.g., no oscillation. 𝑞௨భ = 𝑞௨మ = 𝑞 = 0.01 

Results using the double family with 𝑞௨భ = 0.005025125, 𝑞௨మ = 1 are shown in Fig. 10. In 
these cases the M-matrix conditions are satisfied. Using a reduced support scheme  
(7-point – constant tensor) motivated by the above analysis yields the result in Fig. 11(a). If the 
alternative orientation is selected the scheme still has reduced support and the scheme does not 
posses an M-matrix and the result obtained is shown in Fig. 11(b). There are clear oscillations and 
spread in the solution in this case, which serves as a test of the angled condition. 

6.2. Test case 2: strong anisotropic permeability distribution 

In this case the same boundary conditions apply as in case 2. The permeability tensor changes 
direction in anisotropy halfway across the domain as before, now with stronger tensor field, going 
from 𝐊 = [750.25 432.58 432.58 250.75] to 𝐊 = [750.25 –432.58 –432.58 250.75] as indicated 
in Fig. 8. In this case the tensor has a principal anisotropy ratio of 1/1000, while the tensor is 
elliptic, the sufficient condition for ellipticity, is clearly violated. Consequently, the conditions for 
an M-matrix are also violated. 
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Fig. 10. Numerical pressure contours free of instabilities like oscillations  

for double quadrature 𝑞௨భ = 0.005025125, 𝑞௨మ = 1 

 
a) 

 
b) 

Fig. 11. a) Numerical pressure 7-pt scheme tensor not aligned with scheme stencil,  
b) numerical pressure contours 7-pt scheme tensor aligned with scheme stencil 

 
Fig. 12. a) Numerical pressure contours 9-pt scheme tough tensor, 𝑞 = 1 

Results are presented for 𝑞௨భ = 1 and 𝑞௨మ = 1 Fig. 12 for a 64×64 grid. There are strong 
oscillations in the solution showing clear violation of the maximum principle. Next, we turn to the 
reduced support scheme with angled approximation with orientation of opposite sign to the cross 
terms, results are in Fig. 13(a) which show severe oscillations. Finally, we employ the reduced 
support scheme with angled approximation and orientation that matches the sign of the cross 
terms, consistent with the M-matrix analysis, for the same 64×64 grid Fig. 13(b). While 
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oscillations are present, they are seen to be reduced. The results clearly show a reduction in 
oscillations in each case, however at each grid level and as convergence is approached, the 
consistent reduced support scheme yields almost oscillation free results or quasi-monotonic. 

  
a) 

 
b) 

Fig. 13. a) Numerical pressure contours 7-pt scheme tough tensor not aligned with scheme stencil,  
b) numerical pressure 7-pt scheme tough tensor aligned with scheme stencil 

7. Conclusions 

A two parameter (𝑞௨భ ,𝑞௨మ) scheme is presented, which is locally conservative and grantees 
continuity of flux and pressure. Numerical convergence of the scheme is also presented, which 
shows numerical accuracy of order 𝑂௛ − 𝑂௛మ on the tested examples. 

When a classical scheme is used that violates the governing conditions oscillations appear in 
the solutions. In this paper results are presented for highly anisotropic full-tensor fields that verify 
that double family scheme offers quasi-monotonic behavior. When the governing conditions are 
satisfied the for given choice of quadrature the numerical pressure solution is free oscillations.  

The variable support (𝑞௨భ ,𝑞௨మ) schemes are able to compute numerical pressure solutions with 
minimal or no oscillations and has much improved resolution compared to schemes relying on 
fixed quadrature rules. The scheme also proves effective for high anisotropy ratios. 
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