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Abstract. Most of the existing acoustic imaging studies in reverberant field ignore the influence 
of signal-to-noise ratio. As a result, commonly used beamforming algorithms in reverberant 
backgrounds have poor imaging accuracy for low signal-to-noise ratio sound sources. In response 
to that problem, an improved adaptive beamforming algorithm called SC-DAMAS is put forward 
in this paper. The algorithm replaces the free-field Green's function with the impulse response 
function, making the algorithm more suitable for acoustic imaging of low signal-to-noise ratio in 
a reverberant environment. Besides, the comparative simulation results with the conventional 
beamforming method and orthogonal matching pursuit algorithm-based DAMAS, as well as 
sound source acoustic imaging experiments are carried out to analyze its effectiveness. It is 
indicated that, in the reverberation field, the SC-DAMAS has no obvious sidelobes and achieves 
higher positioning accuracy for acoustic imaging of low signal-to-noise ratio sound source than 
the abovementioned counterparts, and its imaging test result is consistent with the actual situation, 
which verifies the effectiveness of the algorithm. 
Keywords: reverberant, low signal-to-noise ratio, beamforming, sound source localisation. 

1. Introduction 

A reverberant sound field is formed when sound waves propagate in a closed indoor 
environment, as they will continuously be reflected and absorbed while encountering walls or 
other obstacles. In reverberant field, in addition to the direct sound wave from the sound source, 
the reflected sound after reflections of the original sound wave and external noise is also collected 
by the sensor array. Therefore, sound source localisation in a reverberant environment is far more 
complicated than that in the free field, which brings a challenge to the sound source localisation 
work [1]. 

In general, signal processing and acoustic imaging are two main parts of sound sources 
localisation in a reverberation field. For the signal processing part, compressive sensing (CS) is a 
widely adopted technology. In the CS technique, signals are acquired by sub-Nyquist rates of 
traditional signal processing [2]. It gets rid of the limitation that the sampling frequency needs to 
be at least twice the highest frequency of the original signal to accurately recover the information 
in the signal [3]. For instance, based on sparse recovery in CS, a multi-channel deconvolution 
algorithm was proposed to enhance the source signal by Ping et al. [4]. Besides, on the basis of 
sparse representation, Wang et al. [5] combined the variational Bayesian expectation-
maximization method to solve the equation and studied the sound source localisation in the 
reverberant environment. Thanks to the previous valuable investigations, more CS reconstruction 
algorithms have been developed for acoustic beamforming, like Orthogonal Matching Pursuit [6], 
Regularized OMP [7], Compressive Sampling Matching Pursuit (CoSaMP) [8], Variable step-size 
Gradient Matching Pursuit [9], Stochastic Gradient Matching Pursuit [10] and sparsity adaptive 
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matching pursuit (SAMP) [11]. Among them, the SAMP algorithm is adaptive to its sparsity value 
but has unstable reconstruction accuracy and sensitive running speed to the iteration step size. 
More specifically, too small a step size can lead to insufficient sparsity estimation, which increases 
the number of algorithm iterations and thereby reduces the algorithm efficiency. On the other 
hand, sparse overestimation problem is generated with too large a step size, and further negatively 
affects the reconstruction accuracy of the signal. As for the CoSaMP algorithm, it owns a speed 
advantage with predetermined sparsity. Therefore, it is inspired that hybrid algorithm combining 
SAMP and CoSaMP can maintain the speed advantage and adaptive searching ability for sparsity.  

As for specific acoustic imaging in a reverberation field, it generally involves the beamforming 
solution and interference suppression. For instance, combined with the array signal processing 
technology, Peled et al. [12] studied the reverberation suppression algorithm in the circular sensor 
array, which decreases the negative effects of the reflected sound waves. Aiming at acoustic 
imaging after long reverberation time, a general cross-correlation classification algorithm was 
proposed by Sun et al. [13] to improve robustness to reverberation environmental changes. 
Meanwhile, based on the principle of matrix low-rank characteristics, Xu et al. [14] reported an 
improved method, and based on dithering technology, Hao et al. [15] proposed a GCC-IWF 
algorithm for underwater reverberation environment. All of them contributed to improving the 
accuracy of acoustic imaging in a reverberant field. For the interference suppression, Nahma et al. 
[16] proposed a robust beamforming algorithm based on the room impulse response, which 
improved the algorithm's robustness in different reverberant environments. Rajan et al. [17] used 
the wavelet denoising method for time delay estimation, which effectively reduced the influence 
of underwater reverberation on sound source localisation. Jiang et al. [18] proposed a new 
algorithm combining deep fusion and Convolutional Neural Network in response to the problem 
of inaccurate sound source localisation in a reverberant environment. Combining double-wide 
matching pursuit method, Fang et al. [19] proposed a multi-sound source localisation counting 
technique. The sound source location accuracy and absolute error analysis results show that this 
methodology has better accuracy in the conditions of strong reverberation and multiple sound 
sources. Kilis et al. [20] proposed a new speech de-reverberation algorithm and carried out 
experimental verification in the actual reverberation environment. Fischer et al. [21] modified the 
cross-correlation matrix of the array sound pressure signal to effectively improve the beamforming 
accuracy in the reverberant environment. Based on the statistical characteristics of binaural signals 
and the difference in amplitude spectrum, Ghamdan et al. [22] proposed a new algorithm. This 
algorithm can be applied to different reverberation rooms and weaken the dependence on relevant 
environmental parameters.  

In the real environment, the actual ship cabin generally belongs to a narrow and closed space 
with unavoidable indoor reverberation, which further aggravates the difficulty of locating the 
target sound source. Therefore, it is very necessary to carry out acoustic imaging research in 
reverberation field under low signal-to-noise ratio condition. For that purpose, we analyzed the 
propagation law of sound waves in the reverberation field, and construct the room impulse 
response function to reconstruct the connection between the sound source and the array. Replacing 
the free-field Green's function with the newly constructed room impulse response function results 
in an improved beamforming algorithm for acoustic imaging in reverberant field. To demonstrate 
its accuracy, we perform comparative simulation analysis with the conventional beamforming 
method (CBF), as well as orthogonal matching pursuit algorithm-based deconvolution approach 
(OMP-DAMAS) in different frequencies. It is indicated that among the three techniques, 
SC-DAMAS owns the best positioning accuracy of sound in reverberant field. 

The rest of the article is organised as follows. Section 2 describes the theoretical background 
and our adaptive beamforming algorithms. Section 3 introduces the simulation model and 
contrastive analysis of sound source localisation. Section 4 presents the experimental results that 
prove the superiority of our adaptive beamforming algorithms. Lastly, Section 5 discusses this 
study’s conclusions. 
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2. Material and methods 

2.1. Sound radiation model of reverberation field 

In the actual working cabin or room, the sound waves radiated by the sound source will 
encounter obstacles such as walls, ceilings, tables, and chairs when propagating. These obstacles 
will reflect and absorb the sound waves to a certain extent. As the number of collisions increases, 
the amount of sonic energy attenuated also increases. In this case, the sound wave is reflected back 
and forth in all directions and gradually attenuated, which forms the reverberation field. Therefore, 
the signals received by the sensor array are not all direct sound waves from the sound source, but 
also contain a large number of reflected sound waves. 

Similar to the free-field Green's function, there is also a transfer function in the reverberation 
field to connect the sound source signal and the sensor array receiving signal. This transfer 
function is called the room impulse response function. In the indoor reverberation environment, 
the acoustic signal received by the array is: 

𝑦ሺ𝑡ሻ = න ℎሺ𝜏ሻ𝑥ሺ𝑡 − 𝜏ሻ𝑑𝜏 +  𝑛ሺ𝑡ሻ =  ℎሺ𝑡ሻ ∗ 𝑥ሺ𝑡ሻାஶ
 + 𝑛ሺ𝑡ሻ, (1)

where 𝑦ሺ𝑡ሻ is the signal received by the sensor array, ℎሺ𝑡ሻ is the indoor impulse response function, 𝑥ሺ𝑡ሻ is the sound source signal, 𝑛ሺ𝑡ሻ is the noise signal, 𝜏 is the delay caused by the sound wave 
reflection, and ∗ is the convolution operation. Then perform Fourier transform to the frequency 
domain, it can be described as follows: 𝑌ሺ𝜔ሻ = 𝑋ሺ𝜔ሻ𝐻ሺ𝜔ሻ + 𝑁ሺ𝜔ሻ, (2)

where 𝑌ሺ𝑤ሻ, 𝑋ሺ𝑤ሻ, 𝐻ሺ𝑤ሻ, and 𝑁ሺ𝑤ሻ in Eq. (2) are obtained by Fourier transform of 𝑦ሺ𝑡ሻ, 𝑥ሺ𝑡ሻ, ℎሺ𝑡ሻ, and 𝑛ሺ𝑡ሻ in Eq. (1), respectively. It can be seen that the indoor impulse response function 
plays a role in the connection between the sound source and the signal received by the sensor 
array, so accurate acquisition of the indoor impulse response function is very important for the 
reproduction of the sound field. 

2.2. Indoor impulse response calculation 

The mirror source method employs related acoustic software to simulate and obtain the 
impulse response function. It has good convenience and practicability and is a widely used 
computer simulation method. The core idea of this technique is to treat the reflected sound wave 
as a direct sound wave from the mirror sound source to the sensor, and then use the position 
relationship between the mirror sound source and the sensor to calculate the sound path. At the 
same time, considering the reflection coefficient of each wall, calculate the energy attenuation of 
the sound wave in the reflection process, thereby constructing the indoor impulse response 
function: 

ℎሺ𝑡ሻ =   𝛽௫,ଵ|ೣି|𝛽௫,ଶ|ೣ|𝛽௬,ଵหିห𝛽௬,ଶหห𝛽௭,ଵ|ି|𝛽௭,ଶ|| 𝛿 ቈ𝑡 − ห𝑅 + 𝑅ห𝑐 4πห𝑅 + 𝑅หஶ
ୀିஶ

଼
ୀଵ . (3)

Further convert Eq. (3) to frequency domain: 
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𝐻ሺ𝜔ሻ =   𝛽௫,ଵ|ೣି|𝛽௫,ଶ|ೣ|𝛽௬,ଵหିห𝛽௬,ଶหห𝛽௭,ଵ|ି|𝛽௭,ଶ|| 𝑒ఠ หோାோೝห4πห𝑅 + 𝑅หஶ
ୀିஶ

଼
ୀଵ 𝑒ିఠ௧. (4)

Assuming that the actual sound source point coordinates are ሺ𝑥,𝑦, 𝑧ሻ, the sensor array element 
coordinates are ሺ𝑥′,𝑦′, 𝑧′ሻ, and the room size are ൫𝐿௫, 𝐿௬, 𝐿௭൯, then: 𝑅 = ሺ𝑥 − 𝑥′ + 2𝑞𝑥′,𝑦 − 𝑦′ + 2𝑗𝑦′, 𝑧 − 𝑧′ + 2𝑘𝑧′ሻ, (5)𝑅 = 2൫𝑛௫𝐿௫,𝑛௬𝐿௬,𝑛௭𝐿௭൯, (6)

where 𝑅 represents the distance from the actual sound source or mirror image source to each 
array element. 𝑅 represents the virtual space size corresponding to the multi-order reflection. 𝑐 
is the speed of sound. 𝛽௫,ଵ, 𝛽௬,ଵ, and 𝛽௭,ଵ represent the reflection coefficient of the wall close to 
the origin of the coordinate in three directions, respectively. 𝛽௫,ଶ, 𝛽௬,ଶ, and 𝛽௭,ଶ represent the 
reflection coefficients of walls far from the origin of the coordinates in three directions, 
respectively. The acoustic characteristics of each wall are often expressed by the sound absorption 
coefficient, and the reflection coefficient is calculated by 𝛽 = ±ඥ1 − 𝛾, in which 𝛾 is the sound 
absorption coefficient of the wall. ൫𝑛௫,𝑛௬,𝑛௭൯ is the value range of each element, which forms an 
integer set related to the reflection order. It is worth mentioning that, as parameters 𝑞, 𝑗, 𝑘 can be 
0 or 1, there exists 8 possible analytical solutions. 

2.3. Adaptive beamforming method 

In general, the sensor array receiving signal and the sound source signal is connected by a 
transfer function, and different sound field environments correspond to different transfer 
functions. In the free field, the transfer function is the free field Green’s function, while in the 
reverberation scenarios, the transfer function becomes the room impulse response function. 
Therefore, for sound source localisation in the background of reverberation, the free-field Green’s 
function is firstly replaced with the indoor impulse response function. Then as shown in Fig. 1, 
combining the advantages of the classic CoSaMP and SAMP algorithms, an improved 
beamforming algorithm can be obtained. 
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Fig. 1. Flow chart of the improved algorithm 
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In the previous study, a hybrid compressive sensing reconstruction algorithm called SAMP-
CoSamp was proposed. For sound source imaging, combines the speed advantage of CoSaMP 
algorithm and the adaptive sparsity searching ability from the SAMP algorithm. It enhances the 
acoustic imaging performance in free-field condition since a good balance between running 
efficiency and reconstruction error is stroke. Details about this part of modeling can be found in 
the authors’ previous research work [23]. Its naive beamforming mechanism can be described in 
Table 1. 

Table 1. Algorithm 1 for SAMP-CoSamp 
1: Input the initial parameters 𝐾, 𝐿, and 𝐹 as 𝐾 = 1, 𝐿 = 𝑠, and 𝐹 = Ф, respectively 
2: Calculate the correlation coefficient by 𝑢 = ൛𝑢ห𝑢 = หൻ𝑟,𝜙ൿห, 𝑗 = 1,2, …𝑁ൟ, extract the index value 

with respect to the 𝐾 maximum values and store them in set 𝐹 
3: If ฮΦி்𝑦ฮଶ ≤ ଵିఋ಼ඥଵାఋ಼ ‖𝑦‖ଶ

 4:      𝐾 = 𝐾 + 𝐿 
5: else 
6:      continue step 2 
7: end 
8: Calculate the initiate margin by 𝑟 = 𝑦 − ΦிΦା𝑦 
9: Set the initial parameters as 𝑥 = 0, stage = 1, and 𝑘 = 1 
10: Calculate the correlation coefficient by 𝑢 = ൛𝑢ห𝑢 = หൻ𝑟,𝜙ൿห, 𝑗 = 1,2, …𝑁ൟ and then store the 

corresponding index value in the index set if𝑢 ≥ 0.5𝑚𝑎𝑥|𝑢| 
11: Calculate the correlation coefficient by 𝑢 = ൛𝑢ห𝑢 = หൻ𝑟,𝜙ൿห, 𝑗 = 1,2, …𝑁ൟ, Then extract the index 

values with respect to the k maximum values and store them in the new set 𝐹௪ 
12: Calculate the estimated signal by 𝑥௪ = 𝑎𝑟𝑔𝑚𝑖𝑛ฮ𝑦 − 𝛷௸෩𝑥ฮଶ and update the margin 𝑟௪ = 𝑦 −Φி𝑥. 
13: If ‖𝑥௪ − 𝑥‖ଶ ≤ 𝜀 
14:      stop the iteration  
15: else 
16:      skip to step 18 
17: end  
18 : If ‖𝑟௪‖ଶ ≥ ‖𝑟‖ଶ 
19:      stage = stage + 1, 𝐿 = stage*s 
20: else 
21:     𝐹 = 𝐹௪, 𝑟 = 𝑟௪𝑘 = 𝑘 + 1, Afterwards, return to step 10 
22: end 
Parameters description: 𝑦 → measured sound pressure, 𝐹 → Final value set corresponding to the index, 𝑥 → Estimated sound source signal data, 𝑘 → Iterations number, 𝑠 → Step size, 𝑢 → Correlation 
coefficient, ⟨•,•⟩ → Operator of vector’s inner product, Φ→𝑗th column measurement matrix 

3. Simulation analysis 

3.1. Simulation model building 

Simulation is conducted to demonstrate the effectiveness of SC-DAMAS for sound source 
localisation issues. At first, a reverberation field area with a size of 3 m×4 m×3 m, is constructed 
in the COMSOL multiphysics simulation environment. Considering the different properties and 
characteristics of the reverberation field and the free field, we choose the ray acoustics module for 
modeling and simulation. A monopole source surrounded by air is set as the sound source at  
(1.5 m, 3 m, 1.5 m), and its power intensity is set to 10e-5 W. In order to better simulate the sound 
propagation process in the actual environment, the fluid model is set to atmospheric attenuation 
with the relative humidity of 50 % and the initial ray number of 10e5. When sound waves 
propagate to each wall surface, reflection and absorption will occur. The amount of reflection and 
absorption varies with the sound absorption coefficient of each wall surface. The measurement 
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surface of sensor array is set at 1m from the sound source surface, whose array element spacing is 
0.1 m, surface size is 1 m×1 m and array elements number is 11×11. The mesh division of the 
reverberation field and the schematic diagram of the sensor array position are shown in Fig. 2. 
Besides, it is worth mentioning that During the modeling process, we carefully consider the 
absorption coefficient of each wall. According to our investigation, the sound absorption 
coefficient of each wall at different frequencies is also shown in the Table 2.  

 
a) Mesh division 

 
b) Schematic diagram of measurement array 

Fig. 2. Simulation model of the sound source in reverberant field 

Table 2. Sound absorption coefficient of each wall of the room 
Frequency (Hz) 125 250 500 1000 2000 4000 

Front and left side 0.18 0.06 0.04 0.03 0.02 0.02 
Right side and ceiling 0.1 0.05 0.06 0.07 0.09 0.08 

Ground 0.01 0.01 0.01 0.01 0.02 0.02 
Back side 0.35 0.25 0.18 0.12 0.07 0.04 

To further study the applicability of the algorithm in the complex sound field background, the 
low signal-to-noise ratio factor is added to the reverberation background. More specifically, 
gaussian white noise with a relative amplitude of 0.01 times, 0.1 times, and 0.3 times is added to 
the obtained sound pressure data from measurement surface to simulate the noisy environment of 
SNR = 10 dB, respectively. Taking the collected sound pressure data under the frequency of 
2000 Hz and the time of 0.1 s as an instance, Fig. 3 shows the sound pressure distribution in the 
measurement surface while Gaussian white noise with different relative amplitudes is added. 

 
a) Noise-free 

 
b) SNR = 10 dB 

Fig. 3. Sound pressure distribution of different SNR conditions 

It can be seen from Fig. 3, under no-noise conditions, the sound pressure distribution on the 
measuring surface is relatively concentrated, and the approximate position of the sound source 



AN IMPROVED DECONVOLUTION BEAMFORMING ALGORITHM FOR ACOUSTIC IMAGING OF LOW SIGNAL-TO-NOISE RATIO SOUND SOURCES IN 
REVERBERANT FIELD. WENYONG GUO, HANTAO CHEN, JING XIA, XIAOFENG LI, CHENGHAO CAO 

600 JOURNAL OF VIBROENGINEERING. MAY 2023, VOLUME 25, ISSUE 3  

can be judged. After adding noise, the sound pressure distribution on the measuring surface 
gradually becomes fuzzy or even chaotic with increasing noise, and it is no longer possible to 
judge the position of the sound source through the sound pressure level distribution on the 
measuring surface. In the following text, the SC-DAMAS are applied for sound source localisation 
with the effects of white noise. 

3.2. Acoustic imaging result  

In a practice environment, the target sound source signal could be submerged by noise, 
especially for low SNR cases, which negatively affects the information extraction and imaging of 
the target sound source. Therefore, the sound source localisation issues under low SNR conditions 
is an urgent problem in engineering practice. In the study, the CBF [24], OMP-DAMAS [6], and 
SC-DAMAS are used to process the measured sound field data with SNR = 10 dB under different 
frequencies. The comparative pressure distributions of different frequency sounds are described 
in Fig. 4-6. 

 
a) CBF 

 
b) OMP-DAMAS  

 
c) SC-DAMAS 

Fig. 4. Comparative imaging results under the frequency of 1000 Hz 

 
a) CBF 

 
b) OMP-DAMAS 

 
c) SC-DAMAS 

Fig. 5. Comparative imaging results under the frequency of 2000 Hz 

 
a) CBF 

 
b) OMP-DAMAS 

 
c) SC-DAMAS 

Fig. 6. Comparative imaging results under the frequency of 4000 Hz 

It can be seen from Figs. 4-6 that in the reverberation field, for CBF, only an approximate 
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range can be obtained at low frequencies. At medium and high frequencies, the acoustic imaging 
is chaotic, and there is obvious interference with greater intensity, which makes the localisation 
fail. As for the OMP-DAMAS method, in the reverberation field, the algorithm can maintain a 
certain degree of accuracy except for the low-frequency conditions. Although the imaging results 
have no sidelobes in the mid- and high-frequency conditions, they are seriously inconsistent with 
the actual sound source position. Superior to the CBF and OMP-DAMAS, the SC-DAMAS 
method has good localisation accuracy in a wide frequency range without sidelobe interference. 
The specific sound source localisation results by three methods are shown in Table 3. 

Table 3. Sound source localisation and algorithm efficiency comparison 
Algorithm CBF OMP-DAMAS SC-DAMAS 
1000 Hz (1.55 m, 1.5 m) (1.5 m, 1.45 m) (1.5 m, 1.5 m) 
2000 Hz (1.7 m, 1.95 m) (1.8 m, 1.75 m) (1.5 m, 1.55 m) 
4000 Hz (1.6 m, 1.75 m) (1.15 m, 1.6 m) (1.5 m, 1.45 m) 

In summary, under the conditions of the same signal-to-noise ratio and the same sound source 
frequency, the sound source localisation result of the CBF method is far from the actual sound 
source position, and a certain intensity of interference sound source would appear. Although there 
are no interfering sound sources in the imaging results of the OMP-DAMAS method, there is a 
poor localisation accuracy at mid and high frequencies cases (𝑓 = 2000 or 4000 Hz). As the 
frequency increases, although the OMP-DAMAS imaging results have no obvious sidelobes, there 
is also the problem of reduced accuracy. The change of frequency has little effect on the 
SC-DAMAS method, and its imaging results achieve high accuracy, featuring no sidelobe effects, 
good stability, and reliability. 

4. Test verification 

In order to verify the acoustic imaging effectiveness of the proposed SC-DAMAS for the sound 
source of low signal-to-noise ratio in reverberant field, acoustic imaging experiments are carried out. 
An actual ship engine cabin with a size of 17.3 m×8.6 m×2.2 m is selected as the experimental site. 
As shown in Fig. 7(a), the main noise sources in the cabin are diesel generators and diesel engine. It 
is worth mentioning that the cabin is confined, and there is other equipment thus environmental noise 
is unavoidable. Therefore, the cabin forms a reverberation field, and its sound source features low 
signal-to-noise ratio. During the start of the ship, the main noise sources in the engine room are near 
the piston cylinder, the intake pipe, and the exhaust pipe. As for the stop phase, the main noise source 
is near the piston cylinder. In our experiment, both of the ship’s start and stop stages are considered 
to conduct acoustic imaging experiments. As shown in Fig. 7(b) and (c), the surveyor uses a handheld 
acoustic imaging test system to collect the sound source data 1.5 meters away. 

After the experiment, the measured real-time sound pressure data by the sensor array are 
exported to the host computer and taken as the input of SC-DAMAS, and the obtained imaging 
results are shown in Fig. 8. It can be seen that the calculated noise position of the diesel generator 
during the ship’s start and stop stage is not the same. The main noise source during the start phase 
appears near the diesel engine piston cylinder, intake pipe, exhaust pipe, etc. As for the case of the 
stop stage, the main noise comes from the piston cylinder. Similar with the measurement results 
of diesel generator, the acoustic imaging of diesel engine by SC-DAMAS can locate the noise 
sources in the two stages. In the start up stage, the main noise source is located around the piston 
cylinder, intake and exhaust pipe. As for that of stop stage, the main noise is generated by piston 
cylinder. The Sound source localisation experiment of diesel generator and diesel engine in 
reverberant field is highly consistent with the actual situation. It is worth mentioning that there is 
more complex on-site interference than simulation environment, and the positioning accuracy 
needs to be improved. However, it can be seen in Fig.8 that a sufficiently precise position of noise 
source has been obtained, which is meaningful since it can give good guidance to engineers and 
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technicians. In summary, the applicability of the reported algorithm for sound source localisation 
in reverberation is verified. 

 
a) Ship engine cabin 

 
b) Diesel generator noise measurement 

 
c) Diesel engine noise measurement 

Fig. 7. Sound source localisation experiment in reverberant field 

 
a) Star up of diesel generator 

 
b) Stop of diesel generator 

 
c) Star up of diesel engine 

 
d) Stop of diesel engine 

Fig. 8. Experimental result of sound source imaging 

5. Conclusions 

In this paper, an adaptive beamforming algorithm based on impulse response function is 
proposed in this paper, which can effectively reduce the interference caused by reverberation and 
low signal-to-noise ratio factors on acoustic imaging. For its adaptive feature, a hybrid 
compressive sensing reconstruction algorithm called SAMP-CoSaMP is proposed first. This 
hybrid algorithm not only gets rid of the dependence of the original CoSaMP on the sparsity but 
also alleviated the problem of inefficiency of the SAMP. Then combined with the DAMAS, the 
adaptive sound source localisation approach called SC-DAMAS is further put forward. Compared 
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with the CBF and OMP-DAMAS, this method has better imaging accuracy under the background 
of low signal-to-noise ratio and reverberation, besides it is suitable for a wider frequency range. 
In the end, taking common marine machinery and equipment as the research object, an acoustic 
imaging experiment under the background of the relevant reverberation sound field is designed 
and carried out, which verifies the effectiveness of the algorithm in this paper. 

Acknowledgements 

The authors have not disclosed any funding. 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 

Author contributions 

Wenyong Guo provided the idea for this paper. Hantao Chen made original draft preparation. 
Jing Xia provided supervision for the whole research. Xiaofeng Li completed critical review of 
the whole paper. Chenghao Cao helped proofreading the paper. 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] M. Jia, Y. Jia, S. Gao, J. Wang, and S. Wang, “Multi-source DOA estimation in reverberant 
environments using potential single-source points enhancement,” Applied Acoustics, Vol. 174, 
p. 107782, Mar. 2021, https://doi.org/10.1016/j.apacoust.2020.107782 

[2] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, Vol. 52, No. 4, 
pp. 1289–1306, Apr. 2006, https://doi.org/10.1109/tit.2006.871582 

[3] E. Sejdić, I. Orović, and S. Stanković, “Compressive sensing meets time-frequency: An overview of 
recent advances in time-frequency processing of sparse signals,” Digital Signal Processing, Vol. 77, 
pp. 22–35, Jun. 2018, https://doi.org/10.1016/j.dsp.2017.07.016 

[4] P. K. T. Wu, N. Epain, and C. Jin, “A dereverberation algorithm for spherical microphone arrays using 
compressed sensing techniques,” in ICASSP 2012 – 2012 IEEE International Conference on Acoustics, 
Speech and Signal Processing, pp. 4053–4056, Mar. 2012, 
https://doi.org/10.1109/icassp.2012.6288808 

[5] L. Wang, Y. Liu, L. Zhao, Q. Wang, X. Zeng, and K. Chen, “Acoustic source localization in strong 
reverberant environment by parametric Bayesian dictionary learning,” Signal Processing, Vol. 143, 
pp. 232–240, Feb. 2018, https://doi.org/10.1016/j.sigpro.2017.09.005 

[6] S. K. Sahoo and A. Makur, “Signal recovery from random measurements via extended orthogonal 
matching pursuit,” IEEE Transactions on Signal Processing, Vol. 63, No. 10, pp. 2572–2581, May 
2015, https://doi.org/10.1109/tsp.2015.2413384 

[7] D. Needell and R. Vershynin, “Signal recovery from incomplete and inaccurate measurements via 
regularized orthogonal matching pursuit,” IEEE Journal of Selected Topics in Signal Processing, 
Vol. 4, No. 2, pp. 310–316, Apr. 2010, https://doi.org/10.1109/jstsp.2010.2042412 

[8] M. A. Davenport, D. Needell, and M. B. Wakin, “Signal space CoSaMP for sparse recovery with 
redundant dictionaries,” IEEE Transactions on Information Theory, Vol. 59, No. 10, pp. 6820–6829, 
Oct. 2013, https://doi.org/10.1109/tit.2013.2273491 

[9] S. Bonettini, M. Prato, and S. Rebegoldi, “A block coordinate variable metric linesearch based 
proximal gradient method,” Computational Optimization and Applications, Vol. 71, No. 1, pp. 5–52, 
Sep. 2018, https://doi.org/10.1007/s10589-018-0011-5 



AN IMPROVED DECONVOLUTION BEAMFORMING ALGORITHM FOR ACOUSTIC IMAGING OF LOW SIGNAL-TO-NOISE RATIO SOUND SOURCES IN 
REVERBERANT FIELD. WENYONG GUO, HANTAO CHEN, JING XIA, XIAOFENG LI, CHENGHAO CAO 

604 JOURNAL OF VIBROENGINEERING. MAY 2023, VOLUME 25, ISSUE 3  

[10] N. Nguyen, D. Needell, and T. Woolf, “Linear convergence of stochastic iterative greedy algorithms 
with sparse constraints,” IEEE Transactions on Information Theory, Vol. 63, No. 11, pp. 6869–6895, 
Nov. 2017, https://doi.org/10.1109/tit.2017.2749330 

[11] T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, “Sparsity adaptive matching pursuit algorithm for 
practical compressed sensing,” in 2008 42nd Asilomar Conference on Signals, Systems and Computers, 
pp. 581–587, Oct. 2008, https://doi.org/10.1109/acssc.2008.5074472 

[12] Y. Peled and B. Rafaely, “Linearly-Constrained minimum-variance method for spherical microphone 
arrays based on plane-wave decomposition of the sound field,” IEEE Transactions on Audio, Speech, 
and Language Processing, Vol. 21, No. 12, pp. 2532–2540, Dec. 2013, 
https://doi.org/10.1109/tasl.2013.2277939 

[13] Y. Sun, J. Chen, C. Yuen, and S. Rahardja, “Indoor sound source localization with probabilistic neural 
network,” IEEE Transactions on Industrial Electronics, Vol. 65, No. 8, pp. 6403–6413, Aug. 2018, 
https://doi.org/10.1109/tie.2017.2786219 

[14] L.-Y. Xu, B. Liao, H. Zhang, P. Xiao, and J.-J. Huang, “Acoustic localization in ocean reverberation 
via matrix completion with sensor failure,” Applied Acoustics, Vol. 173, p. 107681, Feb. 2021, 
https://doi.org/10.1016/j.apacoust.2020.107681 

[15] X. Hao, X. Zhang, J. He, and X. Yan, “An improved underwater acoustic positioning algorithm based 
on dithering technology,” Journal of Coastal Research, Vol. 99, No. sp1, pp. 79–84, May 2020, 
https://doi.org/10.2112/si99-012.1 

[16] L. Nahma, H. H. Dam, C. K. F. Yiu, and S. Nordholm, “Robust broadband beamformer design for 
noise reduction and dereverberation,” Multidimensional Systems and Signal Processing, Vol. 31, No. 1, 
pp. 135–155, Jan. 2020, https://doi.org/10.1007/s11045-019-00649-4 

[17] M. R. B. Boopathi Rajan and A. R. Mohanty, “Time delay estimation using wavelet denoising 
maximum likelihood method for underwater reverberant environment,” IET Radar, Sonar and 
Navigation, Vol. 14, No. 8, pp. 1183–1191, Aug. 2020, https://doi.org/10.1049/iet-rsn.2020.0079 

[18] S. Jiang, L. Wu, P. Yuan, Y. Sun, and H. Liu, “Deep and CNN fusion method for binaural sound source 
localisation,” The Journal of Engineering, Vol. 2020, No. 13, pp. 511–516, Jul. 2020, 
https://doi.org/10.1049/joe.2019.1207 

[19] Y. Fang and Z. Xu, “Multiple sound source localization and counting using one pair of microphones 
in noisy and reverberant environments,” Mathematical Problems in Engineering, Vol. 2020, pp. 1–12, 
Sep. 2020, https://doi.org/10.1155/2020/8937829 

[20] N. Kilis and N. Mitianoudis, “A novel scheme for single-channel speech dereverberation,” Acoustics, 
Vol. 1, No. 3, pp. 711–725, Sep. 2019, https://doi.org/10.3390/acoustics1030042 

[21] J. Fischer and C. Doolan, “Improving acoustic beamforming maps in a reverberant environment by 
modifying the cross-correlation matrix,” Journal of Sound and Vibration, Vol. 411, pp. 129–147, Dec. 
2017, https://doi.org/10.1016/j.jsv.2017.09.006 

[22] L. Ghamdan, M. A. Ismail Shoman, R. A. Elwahab, and N. A. El-Hadid Ghamry, “Position estimation 
of binaural sound source in reverberant environments,” Egyptian Informatics Journal, Vol. 18, No. 2, 
pp. 87–93, Jul. 2017, https://doi.org/10.1016/j.eij.2016.05.002 

[23] W. Guo, J. Han, H. Chen, L. Yu, and Z. Wu, “An adaptive beamforming algorithm for sound source 
localisation via hybrid compressive sensing reconstruction,” (in Press), Journal of Vibroengineering, 
Vol. 24, No. 3, pp. 591–603, May 2022, https://doi.org/10.21595/jve.2022.22232 

[24] T. F. Brooks and W. M. Humphreys, “A deconvolution approach for the mapping of acoustic sources 
(DAMAS) determined from phased microphone arrays,” Journal of Sound and Vibration, Vol. 294, 
No. 4-5, pp. 856–879, Jul. 2006, https://doi.org/10.1016/j.jsv.2005.12.046 

 

Guo Wenyong received Ph.D. degree in marine engineering from Naval University of 
Engineering, Wuhan, China, in 2002. Now he works in Naval University of Engineering. 
His current research interests include dynamics and fault diagnosis. Guo provided the idea 
for this paper. 



AN IMPROVED DECONVOLUTION BEAMFORMING ALGORITHM FOR ACOUSTIC IMAGING OF LOW SIGNAL-TO-NOISE RATIO SOUND SOURCES IN 
REVERBERANT FIELD. WENYONG GUO, HANTAO CHEN, JING XIA, XIAOFENG LI, CHENGHAO CAO 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 605 

 

Chen Hantao received Master degree in marine engineering from Naval University of 
Engineering, Wuhan, China, in 2018. Now he works in Naval University of Engineering. 
His current research interests include dynamic and fault diagnosis. Chen made original 
draft preparation. 

 

Xia Jing received Master degree in mechanical engineering from Naval University of 
Engineering, Wuhan, China, in 2021. Now he works in Military Representative Bureau of 
the Naval Armament Department. His current research interests include noise and vibration 
control. Xia provided supervision for the whole research. 

 

Li Xiaofeng received Ph.D. degree in mechanical fault diagnosis from Wuhan University, 
Wuhan, China, in 2021. Now he works in Naval University of Engineering. His current 
research interests include underwater sound source localization. Li completed critical 
review of the whole paper. 

 

Cao Chenghao received Master degree in mechanical engineering from Wuhan Institute 
of Technology, Wuhan, China, in 2018. Now he works in Naval University of Engineering. 
His current research interests include structural health monitoring. Wu helped proofreading 
the paper. 

 




