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Abstract. The dual-phase-lag (DPL) model is applied to study the influence of rotation on a two-
dimensional micro-elongated thermoelastic medium problem. Mechanical force along with the 
layer of the elastic half-space interface and micro-elongated thermoelastic half-space is applied. 
The analytic expressions for displacement component, temperature distribution, micro-
elongational scalar and stress components have been derived and represented graphically. The 
rotation has been studied in the presence DPL model and Lord-Shulman theory. 
Keywords: thermoelasticity, micro-elongation, rotation, normal mode, elastic solid. 

Nomenclature 𝜎௜௝ Component of stress tensor for micro-elongated medium 𝜌 Density in micro-elongated medium 𝑢 Displacement vector in micro-elongated medium   Ω Angular velocity 𝑎଴, 𝜆଴, 𝜆ଵ Micro-elongational constants 𝛼௧భ, 𝛼௧మ  Coefficient of linear thermal expansion where 𝛽଴ ൌ ሺ3𝜆 ൅ 2𝜇ሻ𝛼௧భ, 𝛽ଵ ൌ ሺ3𝜆 ൅ 2𝜇ሻ𝛼௧మ 𝑗଴ Microinertia 𝜑 Micro-elongational scalar 𝑇 Absolute temperature 𝑇଴ Reference temperature 𝑘 Thermal conductivity in micro-elongated medium 𝑐௘ Specific heat at constant strain in micro-elongated medium 𝜏ఏ Temperature gradient parameter 𝜏௤ Heat flux parameter 𝜆, 𝜇 Lame’s constants in micro-elongated medium 𝑢௘ Displacement vector in elastic medium 𝜌௘ Density in elastic medium 𝜆௘, 𝜇௘ Lame’s constants in elastic medium 𝑘௘ Thermal conductivity in elastic medium 𝑐௘௘ Specific heat at constant strain in elastic medium 

1. Introduction 

A microelongated elastic solid possesses four degrees of freedom: three for translation and 
micro-elongation. In micro-elongation theory, the material particles can perform only volumetric 
micro-elongation in addition to classical deformation of the medium. The material points of such 
a medium can stretch and contract independently of their translations. Solid-liquid crystals, 
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composite materials reinforced with chopped elastic fibres porous media with pores filled with 
non-viscous fluid or gas can be categorized as micro-elongated medium. The variation of 
periodical heat source response in a functionally graded micro-elongated medium was discussed 
by [1, 2]. The plane strain problem in a thermoelastic micro-elongated solid with an overlying 
infinite non-viscous fluid was discussed by [3]. More interesting problems have been studied 
about the thermoelastic micro-elongated solid in different cases [4-9].  

In the generalized theories, the governing equations involve thermal relaxation times and they 
are of a hyperbolic type. The extended thermoelasticity theory by [10-14] which introduces one 
relaxation time in the thermoelastic process and the temperature-rate dependent theory of 
thermoelasticity by [15], which takes into account two relaxation times are two well-established 
generalized theories of thermoelasticity. 

A new model called the dual-phase-lag model for the heat transport mechanism in which 
Fourier’s law is replaced by an approximation to the modification of Fourier’s law with two 
different time translations for the heat flux and the temperature gradient was investigated by 
[16-20]. The effect of thermal loading due to laser pulse in generalized thermoelastic medium with 
voids in the dual-phase-lag model was studied by [21]. A dynamic problem in thermoelastic solid 
using a dual-phase-lag model with an internal heat source was explained by [22]. The effect of 
rotation on micropolar generalized thermoelasticity with two-temperatures and the thermal laser 
pulse using a DPL model has been discussed by [23, 24]. 

In this paper, the effect of rotation on a two-dimensional micro-elongated thermoelastic 
medium problem has been discussed. The normal mode analysis is used to derive the expressions 
for the considered variables for a DPL model of thermoelasticity and the variances of the 
considered variables are represented graphically. 

2. Formulation of the problem 

The system of prevailing equations of a microelongated thermoelastic solid with rotation, in 
the DPL model, as [4, 7] (Fig. 1): 𝜎௜௝,௝ = 𝜌 [𝑢௜,௧௧ + {Ω × (Ω × 𝑢)}௜ + (2Ω × 𝑢,௧)௜], (1)𝑎଴ 𝜑,௜௜ + 𝛽ଵ𝑇 − 𝜆ଵ𝜑 − 𝜆଴𝑢௝,௝ = 12𝜌𝑗଴ 𝜑,௧௧, (2)𝑘 ൬1 + 𝜏ఏ 𝜕𝜕𝑡൰ 𝑇,௜௜ = ൬1 + 𝜏௤ 𝜕𝜕𝑡൰ ൬𝜌 𝑐௘ 𝜕𝑇𝜕𝑡 + 𝛽଴𝑇𝑢௞,௞௧൰ + 𝛽ଵ𝑇଴𝜑,௧ , (3)𝜎௜௝ = 2 𝜇 𝜀௜௝ + (𝜆 𝑒 − 𝛽଴ 𝑇 + 𝜆଴ 𝜑) 𝛿௜௝ . (4)

where the displacement vector 𝑢 (𝑥, 𝑧, 𝑡) = 𝑢 (𝑢ଵ, 0,𝑢ଷ), and the rotation Ω =  (0,Ω, 0) then the 
equations of motion are given by: 𝜇 ∇ଶ 𝑢ଵ + (𝜆 + 𝜇)𝑒,௫ − 𝛽଴ 𝑇,௫ + 𝜆଴𝜑,௫ = 𝜌 (𝑢ଵ,௧௧ − Ωଶ𝑢ଵ + 2Ω𝑢ଷ,௧), (5)𝜇 ∇ଶ 𝑢ଷ + (𝜆 + 𝜇)𝑒,௭ − 𝛽଴ 𝑇,௭ + 𝜆଴𝜑,௭ = 𝜌 (𝑢ଷ,௧௧ − Ωଶ𝑢ଷ + 2Ω𝑢ଵ,௧). (6)

For simplification, we shall use the following non-dimensional variables: 

𝑥′௜ = 𝑤∗𝑐ଵ  𝑥௜ ,     𝑧ᇱ = 𝑤∗𝑐ଵ  𝑧,     𝑢′௜ = 𝑤∗ 𝜌 𝑐ଵ𝛽଴ 𝑇଴  𝑢௜ ,     𝑢௜௘ᇱ = 𝑤∗ 𝜌 𝑐ଵ𝛽଴ 𝑇଴  𝑢௜௘ ,      𝑡ᇱ = 𝑤∗ 𝑡,     𝜏ᇱఏ = 𝑤∗ 𝜏ఏ,     𝜏ᇱ௤ = 𝑤∗ 𝜏௤,      𝜎′௜௝ = 𝜎௜௝𝛽଴ 𝑇଴ ,     𝜎௜௝௘ᇱ = 𝜎௜௝௘𝛽଴ 𝑇଴, 𝜑ᇱ = 𝜆଴𝛽଴ 𝑇଴ 𝜑,     𝑇ᇱ = 𝑇𝑇଴ ,     Ωᇱ = Ω𝑤∗ ,     𝑃ᇱଵ = 𝑃ଵ𝛽଴ 𝑇଴ ,       𝑤∗ = 𝜌 𝑐ଵଶ 𝑐௘𝑘 ,       𝑐ଵଶ = 𝜆 + 2 𝜇𝜌 . (7)
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Fig. 1. Geometry of the problem 

The displacement potentials Φ(𝑥, 𝑧, 𝑡) and Ψ(𝑥, 𝑧, 𝑡) which relate to displacement 
components have been introduced, we obtain: 𝑢ଵ = Φ,௫ + 𝜓,௭,      𝑢ଷ = Φ,௭ − 𝜓,௫. (8)

From Eqs. (7) and (8) into Eqs. (2), (3), (5) and (6), we obtain: 

ቈ(𝑎ଵ + 𝑎ଶ) ∇ଶ + Ωଶ − 𝜕ଶ𝜕𝑡ଶ቉Φ + 2Ω𝜓,௧ − 𝑇 + 𝜑 = 0, (9)−2ΩΦ,௧ + ቆ𝑎ଵ∇ଶ + Ωଶ − 𝜕ଶ𝜕𝑡ଶቇ𝜓 = 0, (10)−𝑎ହ∇ଶΦ + 𝑎ଷ𝑇 + ቆ∇ଶ − 𝑎ସ − 𝑎଺ 𝜕ଶ𝜕𝑡ଶቇ𝜑 = 0, (11)−𝑎଼ ൬1 + 𝜏௤  𝜕𝜕𝑡൰  ∇ଶΦ,௧ + ൬1 + 𝜏ఏ 𝜕𝜕𝑡൰ ∇ଶ𝑇 − 𝑎଻ ൬1 + 𝜏௤ 𝜕𝜕𝑡൰ 𝑇,௧ − 𝑎ଽ𝜑 = 0. (12)

3. Normal mode analysis 

The solution of the considered physical variable can be decomposed in terms of normal modes 
as the following form: ൣ 𝑢௜ ,𝜑,𝑇,𝜓,𝛷,𝜎௜௝ ,𝑢௜௘ ,𝜎௜௝௘  ൧(𝑥, 𝑧, 𝑡) = ൣ 𝑢௜∗,𝜑∗,𝑇∗,𝜓∗,𝛷∗,𝜎௜௝∗ ,𝑢௜௘∗,𝜎௜௝௘∗ ൧(𝑧)𝑒( ఠ ௧ା௜ ௕ ௫ ), (13)

where, 𝜔 is a complex constant, 𝑖 = √ −1, 𝑏 is the wave number in the 𝑥 direction. 
Using Eq. (13) into Eqs. (9)-(12), then we have: (𝑎ଵ଴𝐷ଶ + 𝑎ଵଵ) Φ∗ + 2Ω𝜔𝜓∗ − 𝑇∗ + 𝜑∗ = 0, (14)−2Ω𝜔Φ∗ + (𝑎ଵ𝐷ଶ + 𝑎ଵଶ) 𝜓∗ = 0, (15)(−𝑎ହ𝐷ଶ + 𝑎ଵଷ)Φ∗ + 𝑎ଷ𝑇∗ + (𝐷ଶ − 𝑎ଵସ)𝜑∗ = 0, (16)(− 𝑎ଵ଻𝐷ଶ + 𝑎ଵ଼)Φ∗ + (𝑎ଵ଺𝐷ଶ − 𝑎ଵଽ) 𝑇∗ − 𝑎ଽ𝑤𝜑∗ = 0. (17)

Eqs. (14-17) have a non-trivial solution if the determinant coefficients of the physical 
quantities equal to zero, then we get: (𝐷଼ − 𝐴𝐷଺ + 𝐵𝐷ସ − 𝐶𝐷ଶ + 𝐸) {Φ∗(𝑧) ,𝜓∗(𝑧) ,𝑇∗(𝑧) ,𝜑∗(𝑧)} = 0. (18)

The coefficients 𝑎௜, 𝐴, 𝐵, 𝐶, 𝐸 and 𝐻௜௡ are given in Appendix A1. 
Eq. (18) can be factorized as: (𝐷ଶ − 𝑘ଵଶ)(𝐷ଶ − 𝑘ଶଶ)(𝐷ଶ − 𝑘ଷଶ)(𝐷ଶ − 𝑘ସଶ){Φ∗(𝑧) ,𝜓∗(𝑧),𝑇∗(𝑧),𝜑∗(𝑧)} = 0, (19)
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where, 𝑘௡ଶ, (𝑛 = 1, 2, 3, 4) are roots of the characteristic equation of Eq. (19). 
The general solutions of Eq. (19) bound as (𝑧 → ∞) is given by: 

(Φ∗,𝜓∗,𝑇∗,𝜑∗)(𝑧) = ෍ (1 ,𝐻ଵ௡ ,𝐻ଶ௡ ,𝐻ଷ௡) 𝑀௡𝑒ି௞೙ ௭ସ௡ୀଵ . (20)

Substituting from Eq. (20) into Eq. (8) we obtain the components of displacements: 

𝑢ଵ∗(𝑧) = ෍(𝑖𝑏 − 𝑘௡𝐻ଵ௡)𝑀௡𝑒ି௞೙ ௭ସ
௡ୀଵ , (21)

𝑢ଷ∗(𝑧) = ෍− (𝑘௡ + 𝑖𝑏𝐻ଵ௡)𝑀௡𝑒ି௞೙ ௭.  ସ
௡ୀଵ  (22)

Substituting Eqs. (7) and (13) into (4) and by using of Eqs. (20)-(22) we get: 

(𝜎௫௫∗ ,𝜎௭௭∗ ,𝜎௫௭∗ )(𝑧) = ෍  (𝐻ସ௡ ,𝐻ହ௡ ,𝐻଺௡)𝑀௡𝑒ି௞೙ ௭ସ
௡ୀଵ . (23)

The equations of motion and stress components in an elastic medium are given by [7]: 𝜎௜௝,௝௘ = 𝜌௘ 𝑢௜,௧௧௘ , (24)𝜎௜௝௘ = 𝜆௘𝑢௞,௞௘ 𝛿௜௝ + 𝜇௘ (𝑢௜,௝௘ + 𝑢௝,௜௘ ). (25)

Substituting from Eqs. (7) and (13) into Eq. (24): (𝑙ଷ𝐷ଶ − 𝛿ଵ)𝑢ଵ௘∗ + 𝑖 𝑏 𝑙ଶ𝐷 𝑢ଷ௘∗ = 0, (26)𝑖𝑏𝑙ଶ𝐷𝑢ଵ௘∗ + (𝑙ଵ𝐷ଶ − 𝛿ଶ) 𝑢ଷ௘∗ = 0. (27)

Eliminating 𝑢ଵ௘∗, 𝑢ଷ௘∗ between Eqs. (26) and (27), we obtain: (𝐷ସ − 𝐺𝐷ଶ + 𝑁){𝑢ଵ௘∗(𝑧) ,𝑢ଷ௘∗(𝑧)} = 0. (28)

Eq. (28) can be factorized as: (𝐷ଶ − 𝑟ଵଶ)(𝐷ଶ − 𝑟ଶଶ){ 𝑢ଵ௘∗(𝑧) ,𝑢ଷ௘∗(𝑧)} = 0, (29)

where, 𝑟௡ଶ, (𝑛 =1, 2) are the roots of the characteristic equation of Eq. (29), the solutions of 
Eq. (29) are: 

𝑢ଵ௘∗ (𝑧) = ෍  𝑅௡ 𝑒ି௥೙ ௭ + ෍  𝑅௡ାଶ 𝑒௥೙ ௭ଶ௡ୀଵଶ௡ୀଵ , (30)𝑢ଷ௘∗ (𝑧) = ෍  𝐿ଵ௡ 𝑅௡ ଶ௡ୀଵ 𝑒ି௥೙ ௭ + ෍  𝐿ଵ(௡ାଶ) 𝑅௡ାଶ 𝑒௥೙ ௭ଶ௡ୀଵ . (31)

From Eqs. (7) and (13) into (25) and by using the Eqs. (30) and (31), we obtain the components 
of stresses in an elastic medium: 

𝜎௫௫௘∗ (𝑧) = ෍  𝐿ଶ௡ 𝑅௡ ଶ௡ୀଵ 𝑒ି௥೙ ௭ + ෍  𝐿ଶ(௡ାଶ) 𝑅௡ାଶ 𝑒௥೙ ௭ଶ௡ୀଵ , (32)
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𝜎௭௭௘∗ (𝑧) = ෍  𝐿ଷ௡ 𝑅௡ଶ௡ୀଵ  𝑒ି௥೙ ௭ + ෍  𝐿ଶ(௡ାଶ) 𝑅௡ାଶ 𝑒௥೙ ௭ଶ௡ୀଵ , (33)𝜎௫௭௘∗ (𝑧) = ෍  𝐿ସ௡ 𝑅௡ଶ௡ୀଵ  𝑒ି௥೙ ௭ + ෍  𝐿ସ(௡ାଶ) 𝑅௡ାଶ 𝑒௥೙ ௭ଶ௡ୀଵ , (34)

where, the coefficients 𝑙௜, 𝛿௜, 𝐺, 𝑁 and 𝐿௜௡ are given in Appendix A2  

4. The boundary conditions 

The parameters 𝑀௡, (𝑛 = 1, 2, 3, 4) and 𝑅௡, (𝑛 = 1, 2, 3, 4) can be determined by using the 
boundary conditions at the surface are [3-7]: 

𝜎௭௭ = 𝜎௭௭௘ ,      𝜎௫௭ = 𝜎௫௭௘ ,      𝑢ଵ = 𝑢ଵ௘ ,       𝑢ଷ = 𝑢ଷ௘ ,     𝜑 = 0,      𝜕𝑇𝜕𝑧 = 0,     at     𝑧 = 0, 𝜎௭௭ = 𝜎௭௭௘ − 𝑃ଵ 𝑒( ఠ ௧ା௜ ௕ ௫ ),      𝜎௫௭ = 0,    at      𝑧 = −  ℎ, (35)

where, 𝑃ଵ is the magnitude of the mechanical force. 
The using of the expressions of the variables considered in the past boundary conditions 

Eq. (35), to get the equations that are satisfied with the parameters. And hence, eight equations 
will be gained. The inverse matrix method is applied to the eighth equation, to obtain the value of 𝑀௡ (𝑛 = 1, 2, 3, 4) and 𝑅௡ (𝑛 = 1, 2, 3, 4): 

⎝⎜
⎜⎜⎜
⎛𝑀ଵ𝑀ଶ𝑀ଷ𝑀ସ𝑅ଵ𝑅ଶ𝑅ଷ𝑅ସ ⎠⎟

⎟⎟⎟
⎞ =

⎝⎜
⎜⎜⎜⎜
⎛ 𝐻ହଵ 𝐻ହଶ 𝐻ହଷ 𝐻ହସ −𝐿ଷଵ −𝐿ଷଶ −𝐿ଷଷ −𝐿ଷସ𝐻଺ଵ 𝐻଺ଶ 𝐻଺ଷ 𝐻଺ସ −𝐿ସଵ −𝐿ସଶ −𝐿ସଷ −𝐿ସସ𝑖𝑏 − 𝑘ଵ𝐻ଵଵ 𝑖𝑏 − 𝑘ଶ𝐻ଵଶ 𝑖𝑏 − 𝑘ଷ𝐻ଵଷ 𝑖𝑏 − 𝑘ସ𝐻ଵସ −1 −1 −1 −1−𝑘ଵ − 𝑖𝑏𝐻ଵଵ −𝑘ଶ − 𝑖𝑏𝐻ଵଶ −𝑘ଷ − 𝑖𝑏𝐻ଵଷ −𝑘ସ − 𝑖𝑏𝐻ଵସ −𝐿ଵଵ −𝐿ଵଶ −𝐿ଵଷ −𝐿ଵସ𝐻ଷଵ 𝐻ଷଶ 𝐻ଷଷ 𝐻ଷସ 0 0 0 0−𝑘ଵ𝐻ଶଵ −𝑘ଶ𝐻ଶଶ −𝑘ଷ𝐻ଶଷ −𝑘ସ𝐻ଶସ 0 0 0 0𝐻ହଵ𝑒௞భ௛ 𝐻ହଶ𝑒௞మ௛ 𝐻ହଷ𝑒௞య௛ 𝐻ହସ𝑒௞ర௛ −𝐿ଷଵ𝑒௥భ௛ −𝐿ଷଶ𝑒௥మ௛ −𝐿ଷଷ𝑒ି௥భ௛ −𝐿ଷସ𝑒ି௥మ௛𝐻଺ଵ𝑒௞భ௛ 𝐻଺ଶ𝑒௞మ௛ 𝐻଺ଷ𝑒௞య௛ 𝐻଺ସ𝑒௞ర௛ 0 0 0 0 ⎠⎟

⎟⎟⎟⎟
⎞ିଵ

⎝⎜
⎜⎜⎜
⎛ 000000−𝑃ଵ0 ⎠⎟

⎟⎟⎟
⎞. (36)

5. Numerical results and discussion 

The analysis is conducted for aluminum epoxy-like material as [24]: 𝜆 = 7.59×1010 N/m2, 𝜇 =1.89××1010 N/m2, 𝑎଴ = 0.61×10-10 N, 𝜌 = 2.19×103 kg/m3, 𝛽଴ = 𝛽ଵ = 0,05×105 N/(m2.k), 𝑐௘ = 966 J/(kg.k), 𝑘 = 252 J/(m.s.k), 𝑗଴ = 0.196×10-4 m2, 𝜆଴ = 𝜆ଵ = 0.37×1010 N/m2,  𝑇଴ = 293 k, 𝜏ఏ = 0.02 s, 𝜏௤ = 0.5 s, 𝜔 = 𝜔଴ + 𝑖𝜁, 𝜔଴ = 3.56, 𝜁 = – 4.81, 𝑏 = 8, ℎ = 1×10-6. 
The physical constants for elastic medium (granite) as [5]: 𝜆௘ = 0.884×1010 N/m2,  𝜇௘ = 1.2667×1010 N/m2, 𝜌௘ = 2.6×103 kg/m3, 𝑐௘௘ = 720.7 J/(kg.k), 𝑘௘ = 3.1 J/(m.s.k.) 
In light of the results of this paper, the computations are conducted for the value of non-

dimensional time 𝑡 = 0.01, in the range of 0 ≤  𝑧 ≤  0.4 on the surface 𝑥 = 3.01. The numerical 
strategy stated herein is utilized for the distribution of horizontal displacement 𝑢ଵ, the vertical 
displacement 𝑢ଷ, the temperature 𝑇, the micro-elongational scalar 𝜑, the stress components 𝜎௫௫, 𝜎௭௭ and 𝜎௫௭ with distance 𝑧. To study the influence of rotation on the solution in the DPL model 
and  the L-S theory and the effect of phase-lag of heat flux and phase-lag of temperature gradient 
on the solution in the DPL model, this paper introduces the results of the numerical assessment in 
the form of graphs. The results are shown in Figs. 2-15 for the mechanical force with magnitude 𝑃ଵ = 1 for the DPL model and the L-S theory. 
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Fig. 2. Distribution of the horizontal displacement 𝑢ଵ with the distance 𝑧 

 
Fig. 3. Distribution of the vertical displacement 𝑢ଷ with the distance 𝑧 

 
Fig. 4. Distribution of the temperature 𝑇 with distance 𝑧 

 
Fig. 5. Distribution of the micro-elongational scalar 𝜑 with the distance 𝑧 
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Fig. 6. Distribution of the force stress component 𝜎௫௫ with the distance 𝒛 

 
Fig. 7. Distribution of the force stress component 𝜎௭௭ with the distance 𝒛 

 
Fig. 8. Distribution of the force stress component 𝜎௫௭ with horizontal distance 𝒛 

5.1. Influence of rotation  

Figs. 2-8 show comparison between the displacement components 𝑢ଵ, 𝑢ଷ, the temperature 𝑇, 
the micro-elongational scalar 𝜑 and the force stresses components 𝜎௫௫, 𝜎௭௭, 𝜎௫௭ for various values 
of Ω (Ω = 0.2, 0.5) for the DPL model and the L-S theory. Fig. 2 represents the distribution of the 
horizontal displacement 𝑢ଵwith the distance 𝑧. It is observed that  𝑢ଵ increases with the increase 
of rotation for the two theories. In the (DPL) model and the L-S theory, the values of the horizontal 
displacement 𝑢ଵ for Ω = 0.2 are small as opposed to those for Ω = 0.5. Fig. 3 illustrates the 
variation of the vertical displacement 𝑢ଷ against the distance 𝑧, it is observed that the effect of 
rotation Ω is inversely proportional to the value of the vertical displacement 𝑢ଷ in the DPL model 
and the L-S theory i.e the rotation Ω has a decreasing effect. Fig. 4 describes the distribution of 
the temperature T with the distance 𝑧. In this figure, all curves start from a positive value and then 
converge to zero with large values of the distance 𝑧 and fulfill the boundary condition. It is obvious 
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that the values of the temperature 𝑇 increases with increase of rotation for the two theories. Fig. 5 
shows the variation of the micro-elongational scalar 𝜑 against the distance 𝑧, it is clear that the 
values of 𝜑 start from zero and decrease to a minimum then increase up to vanish. It is obvious 
that the values of 𝜑 increase with the decrease of rotation for two theories, and satisfies the 
boundary condition. Fig. 6 is plotted to describe the distribution of the stress components 𝜎௫௫ with 
the distance 𝑧. In this figure, all curves begin from a positive value, then decrease to a minimum 
and increase up to vanishes at large values of 𝑧. The effect of rotation Ω is directly proportional 
to the value of the stress component 𝜎௫௫ in both the DPL model and the L-S theory. Fig. 7 exhibits 
the variation of the stress component 𝜎௭௭ against the distance 𝑧. In the DPL model, the effect of 
different values of rotation is hardly visible. It is shown that the influence of rotation is inversely 
proportional to the value of the stress component 𝜎௭௭ in the L-S theory. Fig. 8 compares among 
the two different values of rotation for the DPL model and the L-S theory. It is obvious that the 
value of the stress component 𝜎௫௭ increases as the rotation decreasing. 

 
Fig. 9. Distribution of the horizontal displacement 𝑢ଵ with the distance 𝒛 

 
Fig. 10. Distribution of the vertical displacement 𝑢ଷ with the distance 𝒛 

 
Fig. 11. Distribution of the temperature 𝑇 with distance 𝒛 
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Fig. 12. Distribution of the micro-elongational scalar 𝜑 with the distance 𝑧 

 
Fig. 13. Distribution of the force stress component 𝜎௫௫ with the distance 𝑧 

 
Fig. 14. Distribution of the force stress component 𝜎௭௭ with the distance 𝑧 

 
Fig. 15. Distribution of the force stress component 𝜎௫௭ with the distance 𝑧 



DUAL-PHASE-LAG MODEL ON MICROELONGATED THERMOELASTIC ROTATING MEDIUM.  
MOHAMED I. A. OTHMAN, SARHAN Y. ATWA, E. E. M. ERAKI, MOHAMED F. ISMAIL 

22 JOURNAL OF ENGINEERING AND THERMAL SCIENCES. JUNE 2022, VOLUME 2, ISSUE 1  

5.2. Influence of the phase-lag of the heat flux and the phase-lag of temperature gradient 

Figs. 9-15 show comparison between the displacement components 𝑢ଵ, 𝑢ଷ, the temperature 𝑇, 
the micro-elongational scalar 𝜑 and the force stress components 𝜎௫௫, 𝜎௭௭, 𝜎௫௭, when it comes to 
thermoelasticity the DPL model for different values of the temperature gradient phase-lag 𝜏ఏ, such 
as 𝜏ఏ = 0.002, 0.47 at 𝜏௤ = 1, Ω =0.5 and for different values of the heat flux phase-lag  𝜏௤ = 0.0333, 0.99 at 𝜏ఏ = 0.02, Ω = 0.5. Fig. 9 depicts that the phase-lag of temperature gradient 
and the heat flux have an increasing effect on the magnitude of the horizontal displacement 𝑢ଵ, 
whereas in fig. 15 they have a decreasing effect on the magnitude of the stress component 𝜎௫௭ in 
the range 0.05 ≤ 𝑧 ≤ 0.4. Figs. 10 and 13 show that the phase-lag of the heat flux has an 
increasing effect on the vertical displacement 𝑢ଷ over the range 0 ≤ 𝑧 ≤ 0.11 and on the stress 
component 𝜎௫௫ over the range 0 ≤ 𝑧 ≤ 0.4, whereas, the phase-lag of the temperature gradient 
has a decreasing influence on both. Figs. 11 and 14 in that order, exhibit that the temperature 𝑇, 
and the stress component 𝜎௭௭ are inversely proportional to the value of 𝜏௤ for 𝑧 > 0. Fig. 12, 
explains that the value of micro-elongational scalar 𝜑 increases with the increase of 𝜏௤ and 𝜏ఏ. 
5.3. The 3D surface curves  

Figs. 16-21 are representing the 3D surface curves for the physical quantities, i.e., the 
horizontal displacement component 𝑢ଷ, the micro-elongational scalar 𝜑 and the stress 
components 𝜎௫௫, 𝜎௫௭, for the DPL model by keeping in mind the effect of rotation Ω = 0.5. The 
importance of these figures is that they have been utilized to study the dependence of previous 
physical quantities on both components of distance. 

 
Fig. 16. 3D curve distribution of the horizontal displacement 𝑢ଵversus  

distances at Ω = 0.5𝜏ఏ = 0.02, 𝜏௤ = 0.5 

 
Fig. 17. 3D curve distribution of the vertical displacement 𝑢ଷ 

versus distances at Ω = 0.5, 𝜏ఏ = 0.02, 𝜏௤ = 0.5 



DUAL-PHASE-LAG MODEL ON MICROELONGATED THERMOELASTIC ROTATING MEDIUM.  
MOHAMED I. A. OTHMAN, SARHAN Y. ATWA, E. E. M. ERAKI, MOHAMED F. ISMAIL 

 ISSN ONLINE 2669-2465, KAUNAS, LITHUANIA 23 

 
Fig. 18. 3D curve distribution of the micro-elongational scalar 𝜑  

versus distances at Ω = 0.5, 𝜏ఏ = 0.02, 𝜏௤ = 0.5  

 
Fig. 19. 3D curve distribution of the force stress component 𝜎௫௫  

versus distances at Ω = 0.5, 𝜏ఏ = 0.02, 𝜏௤ = 0.5  

 
Fig. 20. 3D curve distribution of the force stress component 𝜎௭௭  

versus distances at Ω = 0.5, 𝜏ఏ = 0.02, 𝜏௤ = 0.5 

 
Fig. 21. 3D curve distribution of the force stress component 𝜎௫௭  

versus distances at Ω = 0.5, 𝜏ఏ = 0.02, 𝜏௤ = 0.5 
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6. Conclusions 

According to the results of this work, one can see that the effect of rotation, the 
micro-elongational scalar and the applied boundary conditions play a major role in the study of 
thermoelastic medium deformation. The effect of rotation and the micro-elongational scalar has 
an obvious influence on all physical quantities. All the physical quantities, converge to zero very 
steeply with the distance 𝑧 increases. A comparison between the DPL model and the L-S theory 
is conducted. An analytical solution depended on normal mode analysis of the problem on 
thermoelastic micro-elongated layer by encircling finite elastic under influence of the rotation has 
been developed and used it.  
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Appendix 

A1. 

𝑎ଵ = 𝜇𝜌𝑐ଵଶ ,      𝑎ଶ = 𝜆 + 𝜇𝜌𝑐ଵଶ ,      𝑎ଷ = 𝛽ଵ𝜆଴𝑐ଵଶ𝑎଴𝛽଴𝑤∗ଶ ,      𝑎ସ = 𝜆ଵ𝑐ଵଶ𝑎଴𝑤∗ଶ  ,      𝑎ହ = 𝜆଴ଶ𝑎଴𝜌𝑤∗ଶ, 𝑎଺ = 𝜌𝑗଴𝑐ଵଶ2𝑎଴ ,       𝑎଻ = 𝜌𝑐௘𝑐ଵଶ𝑘𝑤∗ ,      𝑎଼ = 𝛽଴ଶ𝑇଴𝑘𝜌𝑤∗ ,      𝑎ଽ = 𝛽ଵ𝛽଴𝑇଴𝑐ଵଶ𝑘𝜆଴𝑤∗ ,       𝑎ଵ଴ = 𝑎ଵ + 𝑎ଶ,      𝑎ଵଵ = 𝛺ଶ − 𝑤ଶ − 𝑎ଵ଴𝑏ଶ,      𝑎ଵଶ = 𝛺ଶ − 𝑤ଶ − 𝑎ଵ𝑏ଶ,      𝑎ଵଷ = 𝑎ହ𝑏ଶ, 𝑎ଵସ = 𝑏ଶ + 𝑎ସ + 𝑎଺𝑤ଶ,      𝑎ଵସ = 𝑏ଶ + 𝑎ସ + 𝑎଺𝑤ଶ,      𝑎ଵହ = ൫1 + 𝜏௤𝑤൯, 𝑎ଵ଺ = (1 + 𝜏ఏ𝑤),      𝑎ଵ଻ = 𝑎଼𝑎ଵହ𝑤,      𝑎ଵ଼ = 𝑎଼𝑎ଵହ𝑤 𝑏ଶ,      𝑎ଵଽ = 𝑎ଵ଺𝑏ଶ + 𝑎଻𝑎ଵହ𝑤, 𝑎ଶ଴ = 𝜆 + 2𝜇𝜌𝑐ଵଶ ,      𝑎ଶଵ = 𝜆𝜌𝑐ଵଶ,  𝐴 = 1𝑎ଵ𝑎ଵ଴𝑎ଵ଺ (𝑎ଵ𝑎ଵ଻ − 𝑎ଵ𝑎ହ𝑎ଵ଺ − 𝑎ଵ𝑎ଵଵ𝑎ଵ଺ + 𝑎ଵ𝑎ଵ଴𝑎ଵଽ − 𝑎ଵ଴𝑎ଵଶ𝑎ଵ଺ + 𝑎ଵ𝑎ଵ଴𝑎ଵସ𝑎ଵ଺), 𝐵 = −1𝑎ଵ𝑎ଵ଴𝑎ଵ଺ (− 𝑎ଵ𝑎ଵ଼ + 𝑎ଵଶ𝑎ଵ଻ − 4𝑎ଵ଺𝑤ଶΩଶ + 𝑎ଵ𝑎ଵଷ𝑎ଵ଻ + 𝑎ଵ𝑎ହ𝑎ଵଽ + 𝑎ଵ𝑎ଵଷ𝑎ଵ଺ + 𝑎ଵ𝑎ଵଵ𝑎ଵଽ− 𝑎ଵ𝑎ଵସ𝑎ଵ଻ − 𝑎ହ𝑎ଵଶ𝑎ଵ଺  − 𝑎ଵଵ𝑎ଵଶ𝑎ଵ଺ + 𝑎ଵ଴𝑎ଵଶ𝑎ଵଽ + 𝑎ଵ𝑎ଵଵ𝑎ଵସ𝑎ଵ଺ − 𝑎ଵ𝑎ଵ଴𝑎ଵସ𝑎ଵଽ+ 𝑎ଵ଴𝑎ଵଶ𝑎ଵସ𝑎ଵ଺ + 𝑎ଵ𝑎ହ𝑎ଽ𝑤 − 𝑎ଵ𝑎ଷ𝑎ଽ𝑎ଵ଴𝑤), 𝐶 = 1𝑎ଵ𝑎ଵ଴𝑎ଵ଺ (− 𝑎ଵଶ𝑎ଵ଼ + 4𝑎ଵଽ𝑤ଶΩଶ − 𝑎ଵ𝑎ଷ𝑎ଵ଼ + 𝑎ଷ𝑎ଵଶ𝑎ଵ଻ − 𝑎ଵ𝑎ଵଷ𝑎ଵଽ + 𝑎ଵ𝑎ଵସ𝑎ଵ଼+ 𝑎ହ𝑎ଵଶ𝑎ଵଽ + 𝑎ଵଶ𝑎ଵଷ𝑎ଵ଺ + 𝑎ଵଵ𝑎ଵଶ𝑎ଵଽ − 𝑎ଵଶ𝑎ଵସ𝑎ଵ଻ + 4𝑎ଵସ𝑎ଵ଺𝑤ଶΩଶ  − 𝑎ଵ𝑎ଵଵ𝑎ଵସ𝑎ଵଽ       +𝑎ଵଵ𝑎ଵଶ𝑎ଵସ𝑎ଵ଺ − 𝑎ଵ଴𝑎ଵଶ𝑎ଵସ𝑎ଵଽ − 𝑎ଵ𝑎ଽ𝑎ଵଷ𝑤 + 𝑎ହ𝑎ଽ𝑎ଵଶ𝑤 − 𝑎ଵ𝑎ଷ𝑎ଽ𝑎ଵଵ𝑤 − 𝑎ଷ𝑎ଽ𝑎ଵ଴𝑎ଵଶ𝑤), 
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𝐸 = −1𝑎ଵ𝑎ଵ଴𝑎ଵ଺ (𝑎ଵଶ𝑎ଵସ𝑎ଵ଼ − 𝑎ଵଶ𝑎ଵଷ𝑎ଵଽ − 𝑎ଷ𝑎ଵଶ𝑎ଵ଼ − 4𝑎ଷ𝑎ଽΩଶ𝑤ଷ − 4𝑎ଵସ𝑎ଵଽΩଶ𝑤ଶ− 𝑎ଵଵ𝑎ଵଶ𝑎ଵସ𝑎ଵଽ − 𝑎ଽ𝑎ଵଶ𝑎ଵଷ𝑤 − 𝑎ଷ𝑎ଽ𝑎ଵଵ𝑎ଵଶ𝑤), 𝐻ଶ௡ = −  𝑎ଵ଻𝑘௡ସ + (𝑎ଵ଼ + 𝑎ଵସ𝑎ଵ଻ − 𝑎ହ𝑎ଽ𝑤)𝑘௡ଶ + (𝑎ଽ𝑎ଵଷ𝑤 − 𝑎ଵସ𝑎ଵ଼)(𝑎ଵଽ + 𝑎ଵସ𝑎ଵ଺)𝑘௡ଶ − 𝑎ଵ଺𝑘௡ସ − (𝑎ଵସ𝑎ଵଽ + 𝑎ଷ𝑎ଽ) , 𝐻ଷ௡ = 𝑎ହ𝑘௡ଶ − 𝑎ଵଷ − 𝑎ଷ𝐻ଶ௡(𝑘௡ଶ − 𝑎ଵସ) ,      𝐻ଵ௡ = 2Ω𝑤𝑎ଵ𝑘௡ଶ + 𝑎ଵଶ, 𝐻ସ௡ = −  𝑏ଶ𝑎ଶ଴ − 𝑖𝑏𝑎ଶ଴𝑘௡𝐻ଵ௡ + 𝑎ଶଵ𝑘௡ଶ + 𝑖𝑏𝑎ଶଵ𝑘௡𝐻ଵ௡ − 𝐻ଶ௡ + 𝐻ଷ௡, 𝐻ହ௡ = 𝑎ଶ଴𝑘௡ଶ + 𝑖𝑏𝑎ଶ଴𝑘௡𝐻ଵ௡ − 𝑏ଶ𝑎ଶଵ − 𝑖𝑏𝑎ଶଵ𝑘௡𝐻ଵ௡ − 𝐻ଶ௡ + 𝐻ଷ௡, 𝐻଺௡ = −  𝑖𝑏𝑎ଵ𝑘௡ + 𝑎ଵ𝑘௡ଶ𝐻ଵ௡ − 𝑖𝑏𝑎ଵ𝑘௡ + 𝑎ଵ𝑏ଶ𝐻ଵ௡. 
A2. 

𝑙ଵ = 𝜆௘ + 2𝜇௘𝜌௘𝑐ଵ௘ଶ ,      𝑙ଶ = 𝜆௘ + 𝜇௘𝜌ଶ𝑐ଵ௘ଶ ,      𝑙ଷ = 𝜇௘𝜌௘𝑐ଵ௘ଶ ,      𝑙ସ = 𝜆௘𝜌௘𝑐ଵ௘ଶ,       𝛿ଵ = 𝑏ଶ𝑙ଵ + 𝑤ଶ,      𝛿ଶ = 𝑙ଷ𝑏ଶ + 𝑤ଶ,      𝐺 = 𝑏ଶ𝑙ଶଶ − 𝛿ଵ𝑙ଵ − 𝛿ଶ𝑙ଷ𝑙ଵ𝑙ଷ ,      𝑁 = 𝛿ଵ𝛿ଶ𝑙ଵ𝑙ଷ , 𝐿ଵ௡ = 𝑙ଷ𝑟௡ଶ − 𝛿ଵ𝑖𝑏𝑙ଶ𝑟௡ ,       𝐿ଵ(௡ାଶ) = 𝑙ଷ𝑟௡ଶ − 𝛿ଵ−𝑖𝑏𝑙ଶ𝑟௡ ,         𝐿ଶ௡ = 𝑖𝑏𝑙ଵ − 𝑟௡𝑙ସ𝐿ଵ௡,       𝐿ଶ(௡ାଶ) = 𝑖𝑏𝑙ଵ + 𝑟௡𝑙ସ𝐿ଵ(௡ାଶ),      𝐿ଷ௡ = 𝑖𝑏𝑙ସ − 𝑙ଵ𝑟௡𝐿ଵ௡,      𝐿ଷ(௡ାଶ) = 𝑖𝑏𝑙ସ − 𝑙ଵ𝑟௡𝐿ଵ(௡ାଶ), 𝐿ସ௡ = 𝑖𝑏𝑙ଷ𝐿ଵ௡ − 𝑙ଷ𝑟௡,      𝐿ସ(௡ାଶ) = 𝑖𝑏𝑙ଷ𝐿ଵ(௡ାଶ) + 𝑙ଷ𝑟௡. 
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