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Abstract. The paper considers the reaction of a mechanical system of three masses connected by 
springs and absorbers moving in the longitudinal direction to the action of a harmonic force 
applied to the largest mass. This mass is attached to the base by a spring with cubic nonlinearity, 
while smaller masses are connected to the main mass by linear springs. A method is proposed for 
obtaining the amplitude-frequency characteristic (AFC) of a nonlinear system from the AFC 
sequence of linearized systems. The results of modelling an equivalent electrical circuit, which is 
an analogue of a mechanical system, are presented. The influence of the value of the nonlinearity 
coefficient on the dynamic response of systems has been studied. It is noted that for some 
combinations of values of the system parameters with cubic nonlinearity with mass ratios 𝑚ଵ:𝑚ଶ:𝑚ଷ = 4:2:1, the AFC contains outer and inner isolated areas – islands. 
Keywords: the three-mass nonlinear system, equivalent electric circuit, dynamic response, 
linearization. 

1. Introduction 

Models of two or three masses connected by nonlinear springs and absorbers are often used to 
describe various mechanisms: vibration isolation systems such as a suspension of a vehicle, an 
industrial robot cutting arm, a punching press, an impact tool, a gyroscope, a generator. The 
vehicle suspension is modelled in [1-5] by a system of three masses with springs and absorbers. 
The system parameters that ensure the driver’s comfort and safety are determined using a wavelet 
analysis. In [6-9] a system with two degrees of freedom consists of a large-mass linear oscillator 
and a low-mass nonlinear vibration absorber. Free and forced oscillations of the system are studied 
using the theory of normal modes and perturbation methods. In [7], the dynamics of a linear 
oscillator is studied for a similar model by the averaging method. The goal is to reduce the 
amplitude of the oscillator near resonance by adjusting the parameters of the nonlinear absorber. 
It is shown that both a positive influence of a nonlinear absorber and a negative one in the 
appearance of unstable modes leading to dangerous instability, are possible. Various complex 
motions associated with these instabilities are studied by the method of direct numerical 
integration. 

The universal software package SPRING, designed to study various problems of the dynamics 
of nonlinear systems, was used in to study the bifurcations of single-mass systems with different 
types of nonlinearities. 

The vibration microgyroscope in [10] consists of three masses, two masses oscillate in the 
longitudinal direction, and the third one can also oscillate in the transverse direction, absorbing 
the vibrations of the active mass. This design, in combination with the proposed technological 
methods, improves the quality of the gyroscope. In [11], a model of a vibro-impact triboelectric 
generator with three degrees of freedom is presented. The impact of various ratios of masses and 
distances between them on the dynamic response and the generated energy has been studied. It is 
concluded that symmetric mass configurations of the oscillator are energetically more favourable 
than asymmetric cases. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2022.22539&domain=pdf&date_stamp=2022-11-11
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The aim of paper [12] is to analyse the discrete dynamic behaviour of nonlinear intelligent 
mechanical vibration systems with co-located sensors and actuating units. To illustrate the theory, 
a numerical example of a system with two masses is given. The considered approach is proposed 
to be applied to systems with three masses. 

2. Equations of motion  

The mechanical system (MS) is described (Fig. 1) by the system of equations: 

ቐ𝑚ଵ𝑥ሷଵ ൅ ሺ𝑏ଵ ൅ 𝑏ଶሻ𝑥ሶଵ − 𝑏ଶ𝑥ሶଶ ൅ ሺ𝑘ଵ ൅ 𝑘ଶሻ𝑥ଵ ൅ 𝑘𝑥ଵଷ − 𝑘ଶ𝑥ଶ ൌ 𝐹௠ sinሺ𝜔𝑡ሻ ,𝑚ଶ𝑥ሷଶ − 𝑏ଶ𝑥ሶଵ ൅ ሺ𝑏ଶ ൅ 𝑏ଷሻ𝑥ሶଶ − 𝑏ଷ𝑥ሶଷ − 𝑘ଶ𝑥ଵ ൅ ሺ𝑘ଶ ൅ 𝑘ଷሻ𝑥ଶ − 𝑘ଷ𝑥ଷ ൌ 0,𝑚ଷ𝑥ሷଷ − 𝑏ଷ𝑥ሶଶ ൅ 𝑏ଷ𝑥ሶଷ − 𝑘ଷ𝑥ଶ ൅ 𝑘ଷ𝑥ଷ ൌ 0,  (1)

where 𝑚ଵ, 𝑚ଶ, 𝑚ଷ– masses of bodies; 𝑏ଵ, 𝑏ଶ, 𝑏ଷ – damping coefficient; 𝑘ଵ, 𝑘ଶ, 𝑘ଷ – linear 
coefficients of spring stiffness; 𝑘 – nonlinear coefficient of the 1st spring (𝑘ଵ𝑥 ൅ 𝑘𝑥ଷ – cubic 
nonlinearity); 𝐹௠ – amplitude of the harmonic force applied to the 1st mass. 

 
Fig. 1. Mechanical system with three masses 

The electrical circuit (EC) is described (Fig. 2) by a system of equations compiled according 
to the method of loop currents: 

⎩⎪⎪⎨
⎪⎪⎧𝐿ଵ 𝑑𝑗ଵ𝑑𝑡 ൅ 𝑅ଵ𝑗ଵ ൅ 1𝐶ଵ න 𝑗ଵ𝑑𝑡 ൅ 𝑅ଶሺ𝑗ଵ − 𝑗ଶሻ ൅ 1𝐶ଶ නሺ𝑗ଵ − 𝑗ଶሻ𝑑𝑡 ൌ 𝑒ሺ𝑡ሻ,𝐿ଶ 𝑑𝑗ଶ𝑑𝑡 − 𝑅ଶሺ𝑗ଵ − 𝑗ଶሻ − 1𝐶ଶ නሺ𝑗ଵ − 𝑗ଶሻ𝑑𝑡 ൅ 𝑅ଷሺ𝑗ଶ − 𝑗ଷሻ ൅ 1𝐶ଷ නሺ𝑗ଶ − 𝑗ଷሻ𝑑𝑡 ൌ 0,𝐿ଷ 𝑑𝑗ଷ𝑑𝑡 ൅ 𝑅ଷሺ𝑗ଷ − 𝑗ଶሻ ൅ 1𝐶ଷ නሺ𝑗ଷ − 𝑗ଶሻ𝑑𝑡 ൌ 0,  (2)
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where 𝐿௞ – inductance (𝑘 ൌ 1, 2, 3); 𝑅௞ – resistors resistance; 𝐶௞ – capacitor capacity; 𝑗௞ – loop 
currents. Given that the amount of electricity from the loop current 𝑄௞ ൌ ׬ 𝑗௞𝑑𝑡, the system of 
equations of the loop current method (2) can be written in the following form: 

ቐ𝐿ଵ𝑄ሷଵ ൅ ሺ𝑅ଵ ൅ 𝑅ଶሻ𝑄ሶଵ − 𝑅ଶ𝑄ሶଶ ൅ ሺ𝑆ଵ ൅ 𝑆ଶሻ𝑄ଵ ൅ 𝑆𝑄ଵଷ − 𝑆ଶ𝑄ଶ ൌ 𝐸௠ sinሺ𝜔𝑡ሻ,𝐿ଶ𝑄ሷଶ − 𝑅ଶ𝑄ሶଵ ൅ ሺ𝑅ଶ ൅ 𝑅ଷሻ𝑄ሶଶ − 𝑅ଷ𝑄ሶଷ − 𝑆ଶ𝑄ଵ ൅ ሺ𝑆ଶ ൅ 𝑆ଷሻ𝑄ଶ − 𝑆ଷ𝑄ଷ ൌ 0,𝐿ଷ𝑄ሷଷ − 𝑅ଷ𝑄ሶଶ ൅ 𝑅ଷ𝑄ሶଷ − 𝑆ଷ𝑄ଶ ൅ 𝑆ଷ𝑄ଷ ൌ 0,  (3)

where 𝑆௞ ൌ 1 𝐶௞⁄  – inverse capacitance, 𝑆 ൌ 0 for the linear system, 𝐸௠ – amplitude of harmonic 
voltage of the generator. 

 
Fig. 2. Equivalent electrical circuit 

Capacitor currents are expressed in terms of loop currents: 

൝𝑖ଵ ൌ 𝑗ଵ,𝑖ଶ ൌ 𝑗ଶ − 𝑗ଵ,𝑖ଷ ൌ 𝑗ଷ − 𝑗ଶ, (4)

and the charges (amounts of electricity) of the capacitors are equal to 𝑞௞ ൌ ׬ 𝑖௞𝑑𝑡, then the ratios 
for the quantities of electricity of capacitors and the quantities of electricity from loop currents are 
true: 

൝𝑞ଵ ൌ 𝑄ଵ,𝑞ଶ ൌ 𝑄ଶ − 𝑄ଵ,𝑞ଷ ൌ 𝑄ଷ − 𝑄ଶ, (5)

and the voltages of the capacitors are found by the formulas 𝑢ଵ ൌ 𝑆ଵ𝑞ଵ ൅ 𝑆ሺ𝑞ଵሻଷ, 𝑢௞ ൌ 𝑆௞𝑞௞  
(𝑘 ൌ 2, 3). To reduce the equations of motion of a mechanical system to dimensionless parameters, 
the following expressions are used: 

𝑚଴ ൌ 𝑚ଷ,    𝑥଴ ൌ 𝐹௠𝑘ଷ ,     𝑡଴ ൌ 2𝜋ඨ𝑚଴𝑘ଷ ,    𝑚෥௞ ൌ 𝑚௞𝑚଴ ,     𝑥෤௞ ൌ 𝑥௞𝑥଴ ,     𝑡̃ ൌ 𝑡𝑡଴ ,    𝜔෥ ൌ 𝜔𝑡଴ ,   
𝑏෨௞ ൌ 𝑏௞ 𝑡଴𝑚଴ ,    𝑘෨௞ ൌ 𝑘௞ 𝑡଴ଶ𝑚଴ ,    𝑘෨ ൌ 𝑘 𝑥଴ଶ ∙ 𝑡଴ଶ𝑚଴ ,    𝐹෨௠ ൌ 𝐹௠ 𝑡଴ଶ𝑚଴𝑥଴ ,    ሺ𝑘 ൌ 1,2,3ሻ , 
where the sign “~” denotes dimensionless parameters. After substituting these expressions and 
transformations into the system of differential equations of motion of a mechanical system, a 
system of equations in dimensionless parameters will be obtained. The form of the resulting 
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system of equations, after discarding the “~” sign from the symbols, coincides with the form of 
the dimensional system. The above equations of motion of a mechanical system are also true for 
dimensionless parameters. 

To reduce the equations of motion of the electrical system to dimensionless parameters, the 
following expressions are used: 

𝐿଴ = 𝐿ଷ,    𝑄଴ = 𝐸௠𝑆ଷ ,    𝑡଴ = 2𝜋ඨ𝐿଴𝑆ଷ ,    𝐿෨௞ = 𝐿௞𝐿଴ ,    𝑄෨௞ = 𝑄௞𝑄଴ ,    𝑡̃ = 𝑡𝑡଴ ,    𝜔෥ = 𝜔𝑡଴ ,   
𝑅෨௞ = 𝑅௞ 𝑡଴𝐿଴ ,    𝑆ሚ௞ = 𝑆௞ 𝑡଴ଶ𝐿଴ ,    𝑆ሚ = 𝑆 𝑄଴ଶ ∙ 𝑡଴ଶ𝐿଴ ,    𝐸෨௠ = 𝐸௠ 𝑡଴ଶ𝐿଴𝑄଴,     𝑢෤௞ = 𝑢௞𝑡଴ଶ𝐿଴𝑄଴ ,     ሺ𝑘 = 1,2,3ሻ , 
where the sign “~” denotes dimensionless parameters. Performing operations similarly to the case 
of a mechanical system leads to a dimensionless system of differential equations of an electrical 
circuit. The form of the resulting system of equations, after discarding the sign “~” from the 
symbols, coincides with the form of the dimensional system. The above equations of the electrical 
system are also true for dimensionless parameters. 

Comparison of the equations for MS and EC leads to a well-known analogy between them 
(Table 1). 

Table 1. Analogy between the parameters of mechanical and electrical systems 
Mass 𝑚௞, kg Inductance 𝐿௞, H 

Damping coefficient 𝑏௞, N·s/m Resistance 𝑅௞, Ω 
Elastic coefficient 𝑘௞, N/m Inverse capacitance 𝑆௞, F-1 
Mass displacement 𝑥௞, m The amount of electricity of the loop current 𝑄௞, C 

Velocity 𝑥ሶ௞, m/s Loop current 𝑗௞, A 
Force of spring elasticity, N Capacitor voltage 𝑢௞, V 

Force 𝐹௞, N Electromotive force 𝐸௠, V 

Taking into account this analogy, the method is described below only for a mechanical system. 
Normal form of equations for the mechanical system (Fig. 1): 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑥ሶଵ = 𝑥ସ,𝑥ሶଶ = 𝑥ହ,𝑥ሶଷ = 𝑥଺,𝑥ሶସ = 1𝑚ଵ ሾ𝐹௠ sin𝜔𝑡 + 𝑘ଶ𝑥ଶ − ሺ𝑘ଵ + 𝑘ଶሻ𝑥ଵ − 𝑘𝑥ଵଷ + 𝑏ଶ𝑥ହ − ሺ𝑏ଵ + 𝑏ଶሻ𝑥ସሿ,𝑥ሶହ = 1𝑚ଶ ሾ𝑘ଷ𝑥ଷ − ሺ𝑘ଶ + 𝑘ଷሻ𝑥ଶ + 𝑘ଶ𝑥ଵ + 𝑏ଷ𝑥଺ − ሺ𝑏ଶ + 𝑏ଷሻ𝑥ହ + 𝑏ଶ𝑥ସሿ,𝑥ሶ଺ = 1𝑚ଷ ሾ𝑘ଷ𝑥ଶ − 𝑘ଷ𝑥ଷ − 𝑏ଷ𝑥଺ + 𝑏ଷ𝑥ହሿ,

 (6)

where 𝑥ଵ,ଶ,ଷ – displacements of the 1st, 2nd, 3rd masses; 𝑥ସ,ହ,଺ – velocity of the 1st, 2nd, 3rd 
masses; circular frequency 1 < 𝜔 < 13; time 0 < 𝑡 < 70. Parameter values: 𝑚ଵ = 4; 𝑚ଶ = 2; 𝑚ଷ = 1 – masses of bodies; 𝑏ଵ = 1; 𝑏ଶ = 0.3; 𝑏ଷ = 0.3 – damping coefficients; 𝑘ଵ = 100;  𝑘ଶ = 25; 𝑘ଷ = 40 – linear coefficients of spring forces; 𝑘 = 20…400 nonlinear coefficient of the 
1st spring (𝑘ଵ𝑥 + 𝑘𝑥ଷ – cubic nonlinearity); 𝐹௠ = 40 – the amplitude of the force applied to the 
1st mass. The numerical solution (NS) for a normal system was obtained by the Runge-Kutta 
method in the SPRING program [13], developed to study dynamic processes in nonlinear systems. 
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3. Analytical solution method 

“Energy” linearization (EL) is the replacement of nonlinear equations with linear ones based 
on the equality of potential energies of equally deformed nonlinear and equivalent linear springs. 
Let the force and deformation of a nonlinear spring be related by the relation: 𝐹௡ = 𝑘ଵ𝑥 + 𝑘𝑥ଷ, (7)

and for an equivalent linear spring, this relationship has the form: 𝐹௘ = 𝑘௘𝑥, (8)

where 𝑘е – 𝑐𝑜𝑛𝑠𝑡, for a specific deformation х. From the equality of potential energies of equally 
deformed springs: 

න 𝐹௘𝑑𝑥 = න 𝐹௡𝑑𝑥,௫
଴

௫
଴      න𝑘௘𝑥𝑑𝑥 = න𝑘ଵ𝑥 + 𝑘𝑥ଷ𝑑𝑥௫

଴
௫
଴ , (9)

the equivalent coefficient of elasticity of a linear spring is found: 𝑘௘ሺ𝑥ሻ = 𝑘ଵ + 12𝑘𝑥ଶ. (10)

With “force” linearization (FL), the forces of equally deformed nonlinear and equivalent linear 
springs are equated: 𝐹௡ = 𝐹௘ , (11)

and the equivalent coefficient of elasticity of the linear spring is found: 𝑘௘ሺ𝑥ሻ = 𝑘ଵ + 𝑘𝑥ଶ. (12)

In the general case, the equivalent coefficient of elasticity of a linear spring for a cubic 
nonlinearity can be written as: 𝑘௘ሺ𝑥ሻ = 𝑘ଵ + 𝑠𝑘𝑥ଶ, (13)

where 𝑠 – weight coefficient, 0.5 ≤ 𝑠 ≤ 1. The minimum value of the weight coefficient 𝑠 = 0.5 
corresponds to EL, and the maximum value 𝑠 = 1 corresponds to FL. 

Formally, when solving the system of MS equations, we can put 𝑘 = 0 and 𝑘ଵ = 𝑘௘ሺ𝑥ଵሻ. The 
resulting linear system is solved by the method of complex amplitudes, as a result of which the 
system of differential equations is reduced to a system of linear algebraic equations for complex 
amplitudes: 

𝐴 ∙ ቌ𝑋ሶଵ𝑋ሶଶ𝑋ሶଷቍ = ൭𝐹௠00 ൱, (14)

where 𝑋ሶ௡ = 𝑋௡ ∙ 𝑒௝∙ఝ೙  – complex displacement amplitude 𝑥௡ (𝑛 = 1, 2, 3); hereinafter, the dot 
above the symbol denotes the complex nature of the value , and not differentiation with respect to 
time, as it was in the systems of equations, 𝑗 = √−1 – imaginary unit; 𝑥௡ = Im൫𝑋ሶ௡𝑒௝∙ఠ௧൯ =𝑋௡ sinሺ𝜔𝑡 + 𝜑௡ሻ ; 𝐴 – matrix of coefficients with elements 𝑎ଵଵ = −𝑚ଵ𝜔ଶ + 𝑗𝜔ሺ𝑏ଵ + 𝑏ଶሻ + 𝑘௘ +
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𝑘௘ + 𝑘ଶ, 𝑎ଵଶ = −𝑘ଶ − 𝑗𝜔𝑏ଶ, 𝑎ଵଷ = 0, 𝑎ଶଵ = −𝑘ଶ − 𝑗𝜔𝑏ଶ, 𝑎ଶଶ = −𝑚ଶ𝜔ଶ + 𝑗𝜔ሺ𝑏ଶ + 𝑏ଷሻ +𝑘ଶ + 𝑘ଷ, 𝑎ଶଷ = −𝑘ଷ − 𝑗𝜔𝑏ଷ, 𝑎ଷଵ = 0, 𝑎ଷଶ = −𝑘ଷ − 𝑗𝜔𝑏ଷ, 𝑎ଷଷ = 𝑘ଷ + 𝑗𝜔𝑏ଷ −𝑚ଷ𝜔ଶ. 
According to Cramer’s formulae, the solution to the system of linear algebraic equations of 

complex amplitudes has the form: 𝑋ሶ௡ = ∆௡det𝐴ሺ𝜔, 𝑘௘ሻ  ,    ሺ𝑛 = 1,2,3ሻ, (15)

where the numerator and denominator are complex polynomials with respect to frequency 𝜔. For 
example: ∆௡= 𝐴௡ሺ𝐹௠,𝜔ሻ + 𝑗𝐵௡ሺ𝐹௠,𝜔ሻ, (16)

where 𝐴ଵሺ𝐹௠,𝜔ሻ = 𝐹௠ሺ𝑚ଶ𝑚ଷ𝜔ସ − ሺ𝑏ଶ𝑏ଷ + 𝑘ଶ𝑚ଷ + 𝑘ଷ𝑚ଶ + 𝑘ଷ𝑚ଷሻ𝜔ଶ + 𝑘ଶ𝑘ଷሻ, 𝐵ଵሺ𝐹௠,𝜔ሻ = 𝐹௠ሺ−ሺ𝑏ଶ𝑚ଷ + 𝑏ଷ𝑚ଶ + 𝑏ଷ𝑚ଷሻ𝜔ଷ + ሺ𝑏ଶ𝑘ଷ + 𝑏ଷ𝑘ଶሻ𝜔ሻ, 𝐴ଶሺ𝐹௠,𝜔ሻ = 𝐹௠ሺ−ሺ𝑏ଶ𝑏ଷ + 𝑘ଶ𝑚ଷሻ𝜔ଶ + 𝑘ଶ𝑘ଷሻ, 𝐵ଶሺ𝐹௠,𝜔ሻ = 𝐹௠ሺ−ሺ𝑏ଶ𝑚ଷሻ𝜔ଷ + ሺ𝑏ଶ𝑘ଷ + 𝑏ଷ𝑘ଶሻ𝜔ሻ , 𝐴ଷሺ𝐹௠,𝜔ሻ = 𝐹௠ሺ−ሺ𝑏ଶ𝑏ଷሻ𝜔ଶ + 𝑘ଶ𝑘ଷሻ , 𝐵ଷሺ𝐹௠,𝜔ሻ = 𝐹௠ሺ𝑏ଶ𝑘ଷ + 𝑏ଷ𝑘ଶሻ𝜔. 
Moduli of complex amplitudes: 

𝑋௡ = |∆௡||det𝐴ሺ𝜔, 𝑘௘ሻ| ,   ሺ𝑛 = 1,2,3ሻ, (17)

after squaring: 

𝑋௡ଶ = |∆௡|ଶ|det𝐴ሺ𝜔, 𝑘௘ሻ|ଶ , (18)

will be the ratio of real polynomials with respect to frequency 𝜔. Expression for det𝐴(𝜔, 𝑘௘) with 
Eq. (12) for FL: 𝑘௘ = 𝑘ଵ + 𝑘 ∙ 𝑋ଵଶ, (19)

will be as follows: 𝑑𝑒𝑡𝐴(𝜔,𝑋ଵ) = 𝑈(𝜔) + 𝑗𝑊(𝜔) + 𝑍(𝜔)𝑋ଵଶ + 𝑗𝑇(𝜔)𝑋ଵଶ, (20)

where: 𝑇(𝜔) = 𝑘 ቀ𝜔(𝑏ଶ𝑘ଷ + 𝑏ଷ𝑘ଶ) + 𝜔ଷ൫(−𝑏ଷ − 𝑏ଶ)𝑚ଷ − 𝑏ଷ𝑚ଶ൯ቁ , 𝑍(𝜔) = 𝑘൫𝑘ଶ𝑘ଷ − 𝜔ଶ൫(𝑘ଷ + 𝑘ଶ)𝑚ଷ + (𝑘ଷ𝑚ଶ + 𝑏ଶ𝑏ଷ)൯ + 𝜔ସ𝑚ଶ𝑚ଷ൯. (21)

The polynomials 𝑈(𝜔) and 𝑊(𝜔) can be written as the scalar product of vectors: 

𝑈(𝜔) = (𝑈ଵ 𝑈ଶ 𝑈ଷ 𝑈ସ)൮ 1𝜔ଶ𝜔ସ𝜔଺൲  , (22)
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where the coordinates of the first term are the coefficients of a polynomial with even powers of 
the cyclic frequency: 𝑈ଵ = 𝑘ଵ𝑘ଶ𝑘ଷ, 𝑈ଶ = ቀ൫(𝑘ଶ + 𝑘ଵ)𝑘ଷ + 𝑘ଵ𝑘ଶ൯𝑚ଷ + (𝑘ଶ + 𝑘ଵ)𝑘ଷ𝑚ଶ + 𝑘ଶ𝑘ଷ𝑚ଵ + 𝑏ଵ𝑏ଶ𝑘ଷ + 𝑏ଵ𝑏ଷ𝑘ଶ+ 𝑏ଶ𝑏ଷ𝑘ଵቁ , 𝑈ଷ = ൫(𝑘ଶ + 𝑘ଵ)𝑚ଶ + (𝑘ଷ + 𝑘ଶ)𝑚ଵ + (𝑏ଶ + 𝑏ଵ)𝑏ଷ + 𝑏ଵ𝑏ଶ൯𝑚ଷ+ (𝑘ଷ𝑚ଵ + (𝑏ଶ + 𝑏ଵ)𝑏ଷ)𝑚ଶ + 𝑏ଶ𝑏ଷ𝑚ଵ, 𝑈ସ = −𝑚ଵ ∙ 𝑚ଶ ∙ 𝑚ଷ . 

(23)

Similarly: 

𝑊(𝜔) = (𝑊ଵ 𝑊ଶ 𝑊ଷ)ቆ 𝜔𝜔ଷ𝜔ହቇ, (24)

here the coordinates of the first vector are the coefficients of a polynomial with odd powers of 
cyclic frequency: 𝑊ଵ = (𝑏ଵ𝑘ଶ + 𝑏ଶ𝑘ଵ)𝑘ଷ + 𝑏ଷ𝑘ଵ𝑘ଶ, 𝑊ଶ = ቀ൫(𝑏ଶ + 𝑏ଷ)𝑘ଷ + (𝑏ଷ + 𝑏ଵ)𝑘ଶ + (𝑏ଷ + 𝑏ଶ)𝑘ଵ൯𝑚ଷ+ ൫(𝑏ଶ + 𝑏ଵ)𝑘ଷ + 𝑏ଷ𝑘ଶ + 𝑏ଷ𝑘ଵ൯𝑚ଶ + (𝑏ଶ𝑘ଷ + 𝑏ଷ𝑘ଶ)𝑚ଵ + 𝑏ଵ𝑏ଶ𝑏ଷቁ , 𝑊ଷ = ൫(𝑏ଶ + 𝑏ଵ)𝑚ଶ + (𝑏ଷ + 𝑏ଶ)𝑚ଵ൯𝑚ଷ + 𝑏ଷ𝑚ଵ𝑚ଶ. (25)

Substituting Eq. (20) for det𝐴(𝜔,𝑋ଵ) into for Eq. (18) of the squared amplitude for 𝑛 = 1, 
after transformations, we obtain the expression: 

𝑋ଵଶ = 𝐴ଵଶ(𝐹௠,𝜔) + 𝐵ଵଶ(𝐹௠,𝜔)൫𝑍(𝜔) ∙ 𝑋ଵଶ + 𝑈(𝜔)൯ଶ + ൫𝑇(𝜔) ∙ 𝑋ଵଶ + 𝑊(𝜔)൯ଶ , (26)

which is a cubic equation with respect to the square of the modulus (𝑋ଵ)ଶ: (𝑍(𝜔)ଶ + 𝑇(𝜔)ଶ) ∙ 𝑋ଵ଺ + 2൫𝑈(𝜔)𝑍(𝜔) + 𝑊(𝜔)𝑇(𝜔)൯ ∙ 𝑋ଵସ + (𝑈(𝜔)ଶ + 𝑊(𝜔)ଶ) ∙ 𝑋ଵଶ− 𝐴ଵ(𝐹௠,𝜔)ଶ − 𝐵ଵ(𝐹௠,𝜔)ଶ = 0. (27)

By setting 𝜔, roots 𝑋ଵ are found from this equation and the amplitude-frequency characteristic 
(AFC) is constructed for the first approximation of the nonlinear system. With one real root of the 
cubic equation, MS has one stable mode, and with three real roots, two stable and one unstable 
modes. The ambiguity 𝑋ଵ is taken into account when determining the displacement amplitudes of 
other masses 𝑋ଶ and 𝑋ଷ. The described method was implemented in the Mathcad software.  

4. Graphic analogue of the method 

The method presented above is an analytical implementation of a graphical method for 
determining AFC of the nonlinear MS from AFC of the linear MS. Graphically, the AFC of the 
nonlinear MS can be found from the AFC of the linear MS using the following algorithm:  

1. Set the initial value of displacement 𝑥ଵ; 
2. Determine the coefficient of equivalent stiffness of the nonlinear MC for the given 

displacement 𝑘௘(𝑥ଵ) according to the chosen linearization method (EL, FL);  
3. Assume the parameter 𝑘ଵ of a linear MS to be equal to the coefficient of equivalent stiffness 
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𝑘ଵ = 𝑘௘(𝑥ଵ); 
4. Construct the AFC of the linear MS of point 3; 
5. Draw a horizontal line L at level 𝑥ଵ on the AFC of point 4;  
6. Determine the coordinates of the points of intersection of line L with the AFC. If there are 

no intersection points, then exit the algorithm;  
7. The points in 6 belong to the AFC of the nonlinear MS and are marked on its graph;  
8. The displacement value х1 is increased by the amount of the selected step. Go to point 2. 
If you need to find the AFC of the nonlinear EC, then the graphical method has specific 

features and is as follows: 
1. Set the initial value of the amount of electricity 𝑄ଵ (analogue of displacement 𝑥ଵ); 
2. Determine the equivalent inverse capacitance 𝑆௘(𝑄ଵ) = 𝑆ଵ + 𝑆(𝑄ଵ)ଶ (FL); 
3. Parameter 𝑆ଵ is assumed to be equal to the equivalent inverse capacitance 𝑆ଵ = 𝑆௘(𝑄ଵ) ; 
4. Find capacitance 𝐶ଵ = 1 𝑆ଵ⁄ ; 
5. Determine dimensional parameter (real capacitance) 𝐶௥ଵ; 
6. Determine voltage 𝑢ଵ = 𝑆ଵ𝑄ଵ across capacitor 𝐶ଵ; 
7. Determine the dimensional parameter (the real voltage across capacitor 𝐶௥ଵ)  𝑢௥ଵ = 𝑢ଵ(𝐿଴𝑄଴) 𝑡଴ଶ⁄ ; 
8. Construct the AFC of the linear EC with capacitor 𝐶௥ଵ; 
9. Draw a horizontal line 𝐿 on the AFC of point 8 at level 𝑢௥ଵ; 
10. Determine the coordinates of the points of intersection of line 𝐿 with the AFC. If there are 

no intersection points, then exit the algorithm;  
11. The points in 10 belong to the AFC of the nonlinear EC and are marked on its graph; 
12. The value of the amount of electricity 𝑄ଵ is increased by the value of the selected step. Go 

to point 2. 
An example is given below for the EC graphical algorithm. Let the dimensionless parameters 

of the MS be known: 𝑚ଵ = 4; 𝑚ଶ = 2; 𝑚ଷ = 1; 𝑏ଵ = 1; 𝑏ଶ = 0.3; 𝑏ଷ = 0.3; 𝑘ଵ = 100; 𝑘ଶ = 25; 𝑘ଷ = 40; 𝑘 = 60; 𝐹௠ = 40.  
Using the analogy between MS and EC, the dimensionless parameters of the EC are found: 𝐿ଵ = 4; 𝐿ଶ = 2; 𝐿ଷ = 1; 𝑅ଵ = 1; 𝑅ଶ = 0.3; 𝑅ଷ = 0.3; 𝑆ଵ = 100; 𝑆ଶ = 25; 𝑆ଷ = 40; 𝑆 = 60;  𝐸௠ = 40. To obtain the dimensional parameters of EC, three parameters must be set in an arbitrary 

way, let them be 𝐿ଷ = 0.1 H, 𝐶ଷ = 470 pF, 𝐸௠ = 1 V, then, using the relationship between the 
dimensional and dimensionless parameters, the remaining dimensional parameters of the EC are 
found (4 digits are retained): 𝐿ଵ = 0.4 H; 𝐿ଶ = 0.2 H; 𝑅ଵ = 2322 Ω; 𝑅ଶ = 696 Ω; 𝑅ଷ = 696 Ω; 𝐶ଵ = 185.5 pF; 𝐶ଶ = 742.2 pF. The electrical circuit of the dimensional EC is designed in the 
Multisim program (Fig. 3). The AFC of the linear EC are obtained using the Bode Plotter tool 
(Fig. 4). By moving the marker along the AFC, the coordinates of the desired points of the curve 
are determined. 

 
Fig. 3. Dimensional EC in the Multisim program 
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Fig. 4. AFC of the dimensional EC in the Bode Plotter tool window of the Multisim program with a 

movable vertical marker (in the lower part of the window on the left is the frequency and  
on the right is the corresponding ordinate of the marker’s intersection point with the graph) 

Fig. 5 shows the AFC of the dimensional EC recalculated to the dimensional parameters for 
FL and the simulation results (graphical algorithm), which the centres of the circles correspond 
to. 

 
Fig. 5. The recalculated AFC of the dimensional EC and the results of the graphical algorithm  

(centres of circles) obtained in program multisim 

5. Results 

The results of the influence of a change in the coefficient of nonlinearity к on the shape of the 
AFC of a three-mass system are presented in the graphs Fig. 6, 7, 8. 

 
Fig. 6. AFC of the dimensionless MS at EL for nonlinearity coefficients 𝑘 = 20, 60 without  

singularities and at 𝑘 = 100 with a detached part of the vertex – the “outer island” 
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Fig. 7. AFC of dimensionless MS at EL for coefficients of nonlinearity 𝑘 = 140, 260, there is an  

increase in the size of the “outer island” and at 𝑘 = 350 the “outer island” joins the vertex  
with the beginning of the formation of the “inner island” under it 

 
Fig. 8. AFC of dimensionless MS at EL for coefficients of nonlinearity 𝑘 = 450 continuation of the 

formation of the “inner island”, 𝑘 = 550 completion of its formation and 𝑘 = 600 reduction of its size 

 
Fig. 9. The enlarged part of the graphs in Fig. 8 showing the emergence of an “inner island” and  

reducing its size (with a further increase in 𝑘, the island shrinks to a point and disappears) 

Graphs for the same nonlinearity coefficients for the EL and FL and their comparison with the 
NS is demonstrated in Fig. 10, 11. 
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Fig. 10. Comparison of the AFC of the dimensionless MC at EL (there is no “outer island”) and  

FL (the “outer island” increases and approaches the vertex) with NS (increase in the size  
of the “outer island” that has arisen) for a coefficient of nonlinearity 𝑘 = 60  

(NS is the numerical integration of the system (6) in SPRING program) 

 
Fig. 11. Comparison of the AFC of the dimensionless MS at EL (the beginning of the formation  

of the “inner island”) and FL (the “inner island” has disappeared) with  
NS (there is an “inner island”) for a nonlinearity coefficient 𝑘 = 400 

At close to zero values of the nonlinearity coefficient к the AFC of the dimensionless MS has 
three partial resonances: at 𝜔ଵ = 2.3 and 𝜔ଶ = 6 clearly expressed and at 𝜔ଷ = 8.2 hardly 
noticeable, what can be seen on the graph Fig. 6. for 𝑘 = 20 (the slope of the vertex of the second 
resonance is due to non-linearity). An increase in the nonlinearity coefficient causes a 
transformation of the AFC, which can be conditionally divided into the following stages: 

1) the appearance of an “outer island” of small size (a point). By “outer island” here we mean 
a separate area of the AFC graph that is not related to the main AFC, having no features. For 
example, the main AFC in Fig. 6 there will be curves for 𝑘 = 20 𝑘 = 60, and the graph for  𝑘 = 100 consists of the main curve and the “outer island”. The difference between the “outer 
island” and the “inner island” is that if you draw a vertical straight line through a separate area of 
the graph and move along this straight line from the abscissa axis upwards, then for the “outer 
island” the first point of intersection of the vertical will be with the main AFC, and the second and 
the third intersection point will be with the boundaries of the “outer island”. For the “inner island”, 
the first and second points of intersection of the vertical line, when moving up along, will be with 
the boundaries of the “inner island”, and the third point of intersection will be with the main AFC. 

2) Increasing the size of the “outer island”, as seen in Fig. 7 for graphs at 𝑘 = 140 and  𝑘 = 260. 
3) Contact and merging of the “outer island” with the main AFC, which is illustrated by the 

graph in Fig. 7 at 𝑘 = 350. 



DYNAMICS OF A THREE-MASS SYSTEM WITH CUBIC NONLINEARITY AND THAT OF AN EQUIVALENT ELECTRICAL CIRCUIT.  
VLADIMIRS NIKISHINS, IVANS GRINEVICHS, IGORS SCUKINS 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 1523 

4) Formation of the “inner island” under the spot of merging (their point 3). This process can 
be traced in the graphs in Fig. 7 at 𝑘 = 350 and 8 for 𝑘 = 450, the merging occurs at the 
dimensionless cyclic frequency 𝜔 = 8. 

5) The emergence of the “inner island”, for example, in Fig. 8 at 𝑘 = 550 and the zoomed 
image in Fig. 9 at 𝑘 = 550. 

6) The reduction in the size of the “inner island” can be seen in Fig. 8 for 𝑘 = 600 and zoomed 
in Fig. 9 for 𝑘 = 600. 

7) The disappearance of the “inner island”, after which the AFC remains, an example of it is 
given in Fig. 11 for FL. 

The curves in Fig.10, 11 show that the MS considered at EL (weight coefficient 𝑠 = 0.5) is 
less rigid, and at FL (𝑠 = 1) it is more rigid than the true MS, for which the NS takes place, which 
is taken here as a benchmark. Any value of the weight coefficient from the interval (0.5;1), for 
example 𝑠 = 0.75, will give a smaller deviation of the linearized solution from the benchmark. 

6. Conclusions 

The paper proposes a method for constructing the AFC of a nonlinear system from the set of 
the AFC of the corresponding linearized systems. It is shown that the benchmark response of a 
nonlinear system obtained in the SPRING program is the interval between the responses of 
systems linearized in force and energy. By choosing the optimal weight coefficient, one can 
achieve the minimum deviation of the approximate solution from the benchmark. Algorithms for 
graphical construction of the AFC of a nonlinear mechanical system and an equivalent electrical 
circuit are presented, which graphically implement the proposed analytical method. The influence 
of the value of the nonlinearity coefficient on the dynamic response of systems has been studied. 
It has been shown that for some values of the parameters of systems with cubic nonlinearity, the 
AFC contains outer and inner isolated areas – islands, and the process of the appearance and 
disappearance of such islands has been illustrated. 
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