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Abstract. Rolling element bearing is a core component in the rotating machine. The performance 
of the whole machine is mainly dominated by the performance condition of the rolling element 
bearing. The Initial Fault Time (IFT) is a beginning landmark of the unhealthy condition of 
bearings. In order to identify accurately and rapidly the IFT under the weak fault signatures and 
heavy background noise, an identification method of the IFT is proposed by the monitoring 
indicator and envelope analysis with Weighted Empirical Mode Decomposition (WEMD) and 
Infogram. The monitoring indicator is constructed by the variation coefficient of the summation 
of the multiple standardized statistical features of the vibration signal. The approximate IFT can 
be obtained by the minimum before the early stage of the continuous increase in the monitoring 
indicator. Whereafter, a more accurate IFT can be detected by envelope analysis with WEMD and 
Infogram based on interval-halving backtracking strategy. The proposed method is verified by the 
tested dataset provided by Intelligent Maintenance System (IMS). The results show that the 
proposed method is efficient, rapid and simple for identifying the IFT. 
Keywords: envelope analysis, initial fault, Infogram, variation coefficients of integrated 
indicator, weighted empirical mode decomposition. 

1. Introduction 

Rolling element bearing is one of the main components in rotary machines [1]. Because the 
bearing is used to connect the fixed and rotating parts for transmitting power to equipment, it 
becomes one of the most vulnerable parts of mechanical equipment [2]. Statistically, its fault 
results in the 45 % to 55 % failure of rotary machines [3]. The failure of the equipment can be 
prevented largely by monitoring the health condition of bearings, and the safety of the equipment 
will be improved consequently [4, 5]. However, one of the crucial tasks for monitoring the 
performance condition of bearing is to determine rapidly and accurately the Initial Fault Time 
(IFT) as the starting of the Remaining Useful Life (RUL) prediction [1, 6]. The accuracy of the 
RUL life prediction mainly depends on the IFT and prediction methods [7]. Meanwhile, the IFT 
is also the division point of the healthy and unhealthy conditions [6]. However, since the IFT is 
easily submerged due to weak fault signatures and heavy background noise, the initial fault of 
bearing is very difficult to be detected timely [8-10]. Therefore, it is necessary to identify rapidly 
and accurately the IFT for improving the accuracy of the RUL prediction and know timely the 
fault condition of bearing. 

In recent years, many efforts have been made to detect rapidly and accurately the IFT [11]. 
The backtracking strategy was used to determine the IFT quickly by Li et al. [9], Babiker et al. [8] 
and Meng et al. [10]. The kurtosis value beyond threshold 3.5 was used to identify the IFT by 
Howard [12]. The alarm threshold based on Envelope Harmonic-to-Noise Ratio with the Fast 
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Ensemble Empirical Mode Decomposition (FEEMD-EHNR) and Energy-Entropy 
Autocorrelation Function (EEACF) was proposed to recognize the IFT by Chegini [11]. A 
degradation level based on Mahalanobis Distance (MD) with multiple time-domain statistics was 
given for estimating the IFT by Yu et al. [13]. The mutation point in the Root Mean Square (RMS) 
of the whole life cycle of bearing was regarded as the IFT [14]. Besides, Ma et al. [15] considered 
that there are almost the same kurtosis values in the frequency band components as the normal 
condition of bearing with improved Tunable Q-Factor Wavelet Transform (TQWT) at the IFT. 
However, the backtracking strategy can guarantee good accuracy of IFT, the time lag cannot be 
avoided. The efficiency and rapidity identified by monitoring indicator should be advocated, the 
accuracy of the existing methods of the IFT identified by monitoring indicator still to be improved, 
and some monitoring indicator must be constructed by the data in full life. Therefore, the accuracy 
and rapidity of IFT identification depend on the effectiveness and computational efficiency of the 
signal processing method and monitoring indicator. 

Signal processing is the first procedure to confirm the existence of a fault accurately [16]. 
Because the initial fault is weak and masked easily with the environmental noise under bearing 
running, many signal processing methods for extracting initial fault signatures or denoising based 
on vibration signal were investigated [9], for instance, Empirical Mode Decomposition (EMD) 
[17], Variational Mode Decomposition (VMD) [18], Singular Value Decomposition (SVD) [19], 
Multi-resolution SVD (MRSVD) [20], Local Mean Decomposition (LMD) [21], Wavelet Packet 
Decomposition (WPD) [22], TQWT [15, 23] and improved methods [9, 10, 22]. Although the 
above methods have a good effect on detecting the early fault of bearing since the solid theoretical 
foundation, strong robustness and the features of the time-frequency domain are considered [24], 
in order to overcome their disadvantage and obtain better effectiveness or computational 
efficiency, a lot of optimal methods are investigated, their convenience is even ignored under the 
optimal studies in practice. 

Meanwhile, an ideal health indicator will be helpful to reflect quickly and accurately the IFT 
of bearing. Although many health indicators can highlight the IFT, most of them are constructed 
based on the sampling data in full life or the selection of performance features of bearing  
[9, 10, 13]. Furthermore, the convenience and mechanism of the selection methods are different, 
for example, signal-to-ratio [25], locality preserving projection [26] and principal component 
analysis [27, 28]. Hence, these indicators are not convenient for directly monitoring the IFT, such 
as the HI proposed by Li et al. [9], the Growth Rate of Real-time MD with Cumulative Sum 
(GRRMD-CUMSUM) proposed by Meng et al. [10] and MD employed Yu et al. [13]. Some health 
indicators are able to present the IFT visually, but there is not a definite feature or quantified 
criteria for determining the IFT, for instance, RMS employed by Jiang et al. [14, 29], 
FEEMD-EHNR and EEACF proposed by Chegini [11]. Besides, the decision thresholds of the 
IFT were given based on the proposed indicators and the entire life cycle data in [9, 11, 13]. In 
general, a single feature is also used to represent bearing performance degradation, but it is not 
perfect for reflecting the degradation [30, 31]. The MD is usually used to integrate multiple 
features [9, 10, 32, 33], but the standard deviation and mean of its normalized reference space 
must be 1 and 0 [25], respectively. The RMS is also applied to fuse multiple indexes [10], but the 
order of magnitude of feature is not considered, and it is not sensitive to the IFT. 

In this study, in order to identify the IFT rapidly, a simple and effective integrated indicator is 
constructed firstly by the summation of multiple standardized indexes based on the envelope 
spectrum of bearing vibration signal in real time. The features of the envelope spectrum are 
standardized for eliminating the difference of the order of magnitude in amplitude. Meanwhile, a 
signal processing method with high computational efficiency is proposed to improve the SNR of 
vibration signals based on EMD. Considering that the EMD exhibits high decomposed accuracy 
and computational efficiency, the aspect of them is hardly optimized further or even takes a lot of 
work. Some Intrinsic Mode Functions (IMFs) with high SNR are usually elected to represent the 
detected signal, but some IMFs with low SNR have to be abandoned. There are some weak fault 
components in the abandoned IMFs, which may have made the diagnosis inaccurate. A series of 
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objective weight operators of IMFs in EMD are used to improve the SNR of the raw signal based 
on EMD for better denoising or enhancement of fault components. Then, the more accurate IFT 
will be detected by envelope analysis based on interval-halving backtracking strategy with the 
improved EMD method and Infogram. Meanwhile, the proposed method will be verified by the 
run-to-failure data packet from the Intelligent Maintenance System (IMS) Center. 

The rest of the article is compiled as follows. In Section 2, the EMD, multiple features of 
envelope spectrum based on vibration signal and the robustness of the feature are described. In 
Section 3, the construction of the integrated indicator, the IFT identified method and WEMD are 
presented. In Section 4, the effect of the WEMD and Infogram is shown based on simulation 
signals. In Section 5, the validity of the proposed method is checked by the IMS experimental 
datasets. In Section 6, the comparisons of the results of the proposed method with other methods 
and some discussions are presented. In Section 7, some conclusions are given. 

2. Methodologies 

2.1. Empirical mode decomposition 

The EMD is one of the most efficient signal analysis methods, which was proposed by Huang 
et al. in 1998 [17]. Any signal can be decomposed into a series of IMFs by EMD. The IMFs are 
complete and almost orthogonal [34]. Every IMF must be limited by the two constraints in the 
algorithm. The number of extrema and zero-crossings must either equal or differ at most by 1 in 
the whole data. Besides, the mean value of the envelope limited by local maxima and minima is 0 
at any point [35]. After any signal is demodulated by EMD, the raw signal is obtained with Eq. (1): 𝑥ሺ𝑡ሻ =  𝑖𝑚𝑓ୀଵ ሺ𝑡ሻ + 𝑟ሺ𝑡ሻ, (1)

where 𝑖𝑚𝑓ሺ𝑡ሻ is the 𝑖th IMF, and 𝑟ሺ𝑡ሻ denotes the residue, which represents the mean trend of 
the signal 𝑥ሺ𝑡ሻ. 
2.2. Statistical features of envelope spectrum 

The envelope spectrum is a usual way to detect whether a Fault Characteristic Frequency 
(FCF) and its harmonics are included in the vibration signal of bearings. Hence, the statistical 
features of the envelope spectrum can also be used to reflect the performance degradation of 
rolling element bearing [10]. They can be calculated by following procedures. 

Step 1. Calculation of envelope spectrum. 
Any vibration signal 𝑥ሺ𝑡ሻ is converted through the Hilbert transform. Then the envelope 𝐸௫ሺ𝑡ሻ 

is given by the absolute value of a filtered signal as Eq. (2) [36]: 𝐸௫ሺ𝑡ሻ = ห𝑥ሺ𝑡ሻ + j ∙ Hilbert൫𝑥ሺ𝑡ሻ൯ห. (2)

The envelope spectrum 𝐸𝑆௫ሺ𝑡ሻ is calculated via the Discrete Fourier transform (DFT) of 𝐸௫ሺ𝑡ሻ 
as Eq. (3) [36]: 𝐸𝑆௫ሺ𝑡ሻ = 2DFT൫𝐸௫ሺ𝑡ሻ൯. (3)

Step 2. Computation of statistical features based on envelope spectrum.  
The calculation of the statistical features based on envelope spectrum can be obtained by 

referring to the calculation of time-domain statistical features, for instance, Peak, RMS, Average, 
Impulse factor, Standard deviation, Shape factor, Crest factor, Clearance factor, Skewness, 
Kurtosis factor and Variation Coefficient. And they are shown in Table 1. Where 𝐹 is the range 
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of cyclic frequencies in the envelope spectrum of a vibration signal, 𝐸𝑆ሺ𝑡, 𝑓ሻ is the amplitude of 
the envelope spectrum of the 𝑡th sampling signal at 𝑓 Hz. 

Table 1. Envelope spectrum features of rolling element bearing 
Features Equations Features Equations 

Peak 𝐼ሺ𝑡ሻ = 𝑚𝑎𝑥|𝐸𝑆ሺ𝑡, 𝑓ሻ| Standard 
deviation 𝐼௦௧ௗሺ𝑡ሻ = ඨ1𝐹 ൣ𝐸𝑆ሺ𝑡, 𝑓ሻ − 𝐼௩ሺ𝑡ሻ൧ଶிୀଵ  

RMS 𝐼௦ሺ𝑡ሻ = ඩ1𝐹𝐸𝑆ሺ𝑡, 𝑓ሻଶி
ୀଵ  Clearance 

factor 
𝐼ሺ𝑡ሻ = 𝐼ሺ𝑡ሻቀ1𝐹 ∑ ඥ|𝐸𝑆ሺ𝑡,𝑓ሻ|ிୀଵ ቁଶ 

Average 𝐼௩ሺ𝑡ሻ = 1𝐹 |𝐸𝑆ሺ𝑡, 𝑓ሻ| Skewness 

𝐼௦௪ሺ𝑡ሻ= 1𝐹 ∙ 𝐼௦௧ௗሺ𝑡ሻଷൣ𝐸𝑆ሺ𝑡, 𝑓ሻ − 𝐼௩ሺ𝑡ሻ൧ଷி
ୀଵ  

Impulse 
factor 𝐼ሺ𝑡ሻ = 𝐼ሺ𝑡ሻ𝐼௩ሺ𝑡ሻ Kurtosis 

𝐼௨௧ሺ𝑡ሻ= 1𝐹 ∙ 𝐼௦௧ௗሺ𝑡ሻସൣ𝐸𝑆ሺ𝑡, 𝑓ሻ − 𝐼ሺ𝑡ሻ൧ସி
ୀଵ  

Crest 
factor 𝐼௦௧ሺ𝑡ሻ = 𝐼ሺ𝑡ሻ𝐼௦ሺ𝑡ሻ Variation 

coefficient 𝐼௩ሺ𝑡ሻ = 𝐼௦௧ௗሺ𝑡ሻ𝐼௩ሺ𝑡ሻ 
Shape 
factor 𝐼௦ሺ𝑡ሻ = 𝐼௦ሺ𝑡ሻ𝐼௩ሺ𝑡ሻ   

2.3. Robustness 

The robustness of the features may be different due to their preferences. The robustness is an 
inherent property of the feature [6]. The robustness can be evaluated with the metric proposed by 
Zhang et al. [37] as Eq. (4): 

𝑅𝑜𝑏ሺ𝐼ሻ = 1𝑇 expቆ− ቤ𝐼௧ − 𝐼௧ഥ𝐼௧ ቤቇ௧்ୀଵ , (4)

where 𝐼௧ denotes the feature value of 𝐼 at 𝑡 time, and 𝐼௧ഥ is the mean tendency value of 𝐼 feature at 𝑡 time. 

3. Proposed approach 

The flow chart of the proposed approach presented in Fig. 1 consists of the construction of the 
integrated indicator with the summation of multiple standardized features, the IFT identification 
based on the integrated indicator and envelope analysis with proposed WEMD and Infogram. 

3.1. Construction of integrated indicator 

All features of envelope spectrum can represent performance degradation of bearing, but their 
robustness is different. Meanwhile, their preferences are different to reflect the performance 
condition of bearing. The amplitude of every feature is different in the order of magnitudes. 
Therefore, the features with stably strong robustness should be selected to construct the integrated 
indicator, and these selected features should be standardized firstly to construct the integrated 
indicator. The integrated indicator can be obtained by the summation of multiple standardized 
features. The calculation of the integrated indicator contains three procedures. 

Step 1. Selection of the features with stably strong robustness. 
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In order to select the features with stably strong robustness from the candidate features 
mentioned in Table 1, the tested data packet of bearings generated from the IMS Center of the 
University of Cincinnati is selected to analyze the robustness of the feature, which is also made 
public for the fault detection or diagnosis of bearings. The bearing test platform is shown in Fig. 2. 
Four Rexnord ZA-2115 double-row bearings were installed to support the shaft in the test 
platform, and its parameters are shown in Table 2. In order to fastly obtain the run-to-failure 
monitoring data similar to the real performance degradation of bearings, the shaft speed was kept 
at 2000 rpm (33.3 Hz) by an AC motor via a friction belt, and a radial load of 6000 lbs was put 
onto the shaft with a spring mechanism for reducing the service life in experiment. The tested data 
packet contains six run-to-failure datasets from three cases and is shown in Table 3. And test case 
will not end until one of the four bearings reached the complete failure in every case. Meanwhile, 
the complete failure time is older than the designed life time of bearings in every case. Every 
acquired vibration signal contains 20,480 points, which was collected by a data acquisition card 
(NI DAQ Card 6062E) every 10 min at a 20 kHz sampling rate. Two accelerometers were installed 
on the bearing housing of each bearing in case 1, which were placed vertically and horizontally, 
respectively. One accelerometer was only installed on the bearing housing of each bearing in case 
2 and 3. The fault occurred in two of the bearings in case 1. The fault occurred in one of the 
bearings in case 2 and 3.  

 
Fig. 1. Flow chart of proposed approaches 

 
Fig. 2. Test platform of bearings 

The robustness of candidate features mentioned in Table 1 is calculated by Eq. (4) as shown 
in Table 4. From Table 4, the robustness of these features is not always beyond 0.9. Therefore, the 
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Shape factor, Standard deviation, Average, RMS, Skewness and Variation Coefficient are selected 
to construct the integrated indicator. 

Table 2. Parameters of Rexnord ZA-2115 Double Row Bearing 
Parameters Ball number Ball diameter Pitch diameter Contact angle 

Value 16 8.4 71.5 15.17 
Unit / mm mm ° 

Table 3. Datasets from The IMS Center 
Bearing of fault Channel Case Defect type Fault feature frequency Number of sampling point 

3 Ch 5 1 Inner race 296.9 Hz 2156 
3 Ch 6 1 Inner race 296.9 Hz 2156 
4 Ch 7 1 Rolling element 139.9 Hz 2156 
4 Ch 8 1 Rolling element 139.9 Hz 2156 
1 Ch 1 2 Outer race 236.4 Hz 984 
3 Ch 3 3 Outer race 236.4 Hz 6324 

Table 4. Robustness of features based on datasets from IMS Center 
Datasets Case1-Ch 5 Case1-Ch 6 Case1-Ch 7 Case1-Ch 8 Case2-Ch 1 Case3-Ch 3 

Clearance factor 0.942 0.877 0.946 0.944 0.933 0.864 
Crest factor 0.942 0.888 0.948 0.946 0.939 0.865 

Impulse factor 0.942 0.877 0.946 0.944 0.934 0.864 
Shape factor 0.997 0.998 0.995 0.996 0.992 0.998 

Standard deviation 0.984 0.988 0.985 0.986 0.979 0.985 
Average 0.989 0.993 0.991 0.991 0.987 0.989 

RMS 0.988 0.992 0.989 0.990 0.983 0.988 
Peak 0.943 0.876 0.946 0.943 0.930 0.857 

Skewness 0.94 0.922 0.938 0.926 0.961 0.900 
Kurtosis 0.869 0.822 0.871 0.861 0.917 0.760 

Variation Coefficient 0.992 0.992 0.99 0.99 0.987 0.993 

Step 2. Every feature 𝐼∗ሺ𝑡ሻ is standardized in real time by Eq. (5): 

𝐼∗ሺ𝑡ሻ = 𝐼ሺ𝑡ሻ𝐼ሺ𝑡ሻതതതതതത, (5)

where 𝐼ሺ𝑡ሻതതതതതത are the mean of every feature 𝐼ሺ𝑡ሻ in real time, which is calculated based on the 
sampling data from the first to the current time. 

Step 3. The integrated indicator is constructed by the summation of the multiple standardized 
features, which is calculated in real time by Eq. (6): 

𝑆ሺ𝑡ሻ =  𝐼∗ሺ𝑡ሻ.ୀଵ  (6)

Step 4. Calculation of variation coefficient of the integrated indicator. 
The variation coefficient of the integrated indicator can reflect the variation of the integrated 

indictor, which can be obtained by variation coefficient as Eq. (7): 

𝑉𝐶ௌሺ𝑡ሻ = 𝑆௦௧ௗሺ𝑡ሻ𝑆ሺ𝑡ሻ, (7)

where 𝑆௦௧ௗሺ𝑡ሻ and 𝑆ሺ𝑡ሻ is the standard deviation and mean of the integrated indicator 𝑆ሺ𝑡ሻ in 
real time. They will be updated by the obtained integrated indicator 𝑆ሺ𝑡ሻ from first to current 
sampling time. 
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Aiming at avoiding the 𝑆ሺ𝑡ሻ is infinity, the current mean 𝑆ሺ𝑡ሻ will be replaced with 
the previous mean 𝑆ሺ𝑡 − 1ሻ when the calculated current mean is equal to 0 in practice. 

3.2. Identification of IFT with approximate to fine strategy 

Stage 1: Estimation of the approximate IFT. The approximate IFT can be obtained by the 
minimum before the early stage of the continuous increase in the variation coefficient of the 
integrated indicator. The approximate IFT indicates that a fault has been generated in bearing for 
warning and further reducing the detection range of the accurate IFT. 

Stage 2: Identification of the accurate IFT. The accurate IFT can be acquired by the interval-
halving backtracking strategy with envelope spectrum based on the proposed WEMD and 
Infogram. Firstly, the fault is detected by the envelope spectrum. Then, the fault is checked by the 
narrow-band envelope spectrum based on the proposed WEMD and Infogram when the FCF and 
its harmonics cannot be clearly seen in the envelope spectrum. Finally, the interval-halving 
backtracking process will end until the FCF and its harmonics cannot be clearly found in the 
narrow-band envelope spectrum. The interval-halving backtracking strategy was described by 
Meng et al. [11]. The WEMD will be detailed in the next part. 

3.3. Identification of IFT with approximate to fine strategy 

Due to the existence of over-decomposition or inadequate decomposition in EMD algorithm 
[34], the IMFs should be processed or selected for an ideal effect. There is a cyclostationary impact 
behavior in the vibration signal of fault bearing [38]. Because the strength of the impact 
component in the IMFs can be measured by the kurtosis, the correlation of the raw signal and the 
IMFs can be represented with the correlation coefficient. Hereafter the sensitivity of IMFs that 
contains the fault signature can be reflected by the value of the kurtosis and the correlation 
coefficient [39]. The signal can be reconstructed to enhance fault signature by the objective weight 
of IMFs and themselves. The improved EMD is named as the Weighted EMD (WEMD), which 
contains four procedures. 

Step 1. Any signal is decomposed into 𝑁 individual components 𝑖𝑚𝑓 by EMD.  
Step 2. The kurtosis 𝐾𝑢𝑟𝑡 and the correlation coefficient 𝐶𝑜𝑟𝑟 about each of IMFs are 

calculated. 
Step 3. The weight 𝑤 of each of IMFs is obtained with Eq. (8): 

𝑤 = 𝐾𝑢𝑟𝑡∑ 𝐾𝑢𝑟𝑡ேୀଵ + 𝐶𝑜𝑟𝑟∑ 𝐶𝑜𝑟𝑟ேୀଵ . (8)

Step 4. The highlighted fault signal is constructed with Eq. (9): 

𝑥ሺ𝑡ሻ =  𝑤 ∙ேୀଵ 𝑖𝑚𝑓ሺ𝑡ሻ. (9)

4. Simulation results and comparisons 

The performance of the proposed WEMD method will be validated by the simulation signal. 
About 90 % of bearing failure results from defects in the inner or outer race [40]. The simulation 
signal of bearing with a defect can be constructed by Eqs. (10) [20, 36, 41]: 

ቐ𝑥ሺ𝑡ሻ = 𝐴௧𝑒ିఉ௧ sinሺ2𝜋𝑓𝑡ሻ + ℎሺ𝑡ሻ + 𝑤𝑔𝑛ሺ𝑡ሻ,ℎሺ𝑡ሻ =  𝐵 sin൫2𝜋𝑓𝑡൯ୀଵ ,  (10)
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where 𝐴௧ is the possible amplitude of impulse response, 𝛽 is decay coefficient, 𝑓 is the resonant 
frequency, ℎሺ𝑡ሻ is the harmonic interference signal including 𝐽 harmonic signals, 𝑤𝑔𝑛ሺ𝑡ሻ is 
Gaussian white noise, 𝐵 and 𝑓 are the amplitude and the angular frequency of the harmonic 
signal, respectively. 

These parameters of the simulation signal are shown in Table 5. Furthermore, the simulation 
signal without white noise is shown in Fig. 3. 

Table 5. Parameters of the simulation signal 
Parameters 𝐴௧ 𝛽 𝑓 𝐽 𝐵 𝑓 SNR 

Value [2.8 3.3] 100 1300 Hz 2 1.3/1.1 23 Hz/53 Hz [–9 9] dB 
 

 
a) Signal in time domain 

 
b) Envelope spectrum 

Fig. 3. Simulation signal without white noise 

The kurtosis is an indicator that reflects the strength of the impulse component in a signal [39]. 
The dispersion of signal intensity distribution is dominated by white noise except for the impulse 
component in a signal [42], and it can be measured with variance 𝜎ଶ. In order to measure the SNR 
of the diagnosis signal, and considering that the impulse component in vibration signal of fault 
bearing should be concerned, the kurtosis and variance are used to represent the levels of signal 
and noise in SNR, respectively. The SNR can be replaced and measured by the Kurtosis-to-
Variance Ratio (KVR) as Eq. (11): 𝐾𝑉𝑅 = 𝐾𝑢𝑟𝑡𝜎ଶ . (11)

The simulation signal with white noise at different SNR and its envelope spectrum are shown 
in Fig. 4. Their kurtosis, variance and KVR are shown in Table 6. The trend of the KVR is almost 
same as the SNR except for no noise from Table 6. The SNR is ineffective at no noise, and it is 
not existed for no noise in practice. Hence, the KVR can represent the SNR. Besides, the amplitude 
of the simulation signal at different SNR is enlarged as the noise increases, which causes an 
increase in kurtosis, but the increase in kurtosis is less than the change in variance since the 
increase of noise. 

 
a) Signal in time domain 

 
b) Envelope spectrum 

Fig. 4. Simulation signal with white noise at different SNR 

Table 6. Kurtosis, variance and sharpness of simulation signal with white noise at different SNR 
SNR –9 dB –6 dB –3 dB 0 dB 3 dB 6 dB 9 dB No noise 

Kurtosis  2.9131 2.8236 2.6452 2.4109 2.2666 2.1081 2.0353 1.933 
Variance  10.4974 6.2772 4.3866 3.4648 2.9768 2.7415 2.5987 2.4771 

KVR  0.2775 0.4498 0.603 0.6958 0.7617 0.769 0.7832 0.7803 
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In order to validate the effectiveness of the proposed WEMD, the simulation signal with  
–9 dB white noise is processed by different signal processing methods, and the simulation signal 
with –9 dB white noise is shown in Fig. 5. The simulation signal is reconstructed by the 
components of the maximum kurtosis and correlation coefficient with EMD and EEMD, and it is 
processed by WEMD. And beyond that, the unprocessed signal and the processed signal are 
filtered at the bandwidth and center frequency selected by Infogram. Their fitting density 
distributions, kurtosis, variance and KVR are shown in Fig. 6 and Table 7, respectively. 

 
a) Signal in time domain 

 
b) Envelope spectrum 

Fig. 5. Simulation signal with -9 dB white noise 

From Table 7, the maximum KVR and minimum variance can be obtained by WEMD with 
Infogram. The largest KVR and smallest variance can also be obtained by WEMD among EMD, 
EEMD and WEMD. The largest kurtosis value of the signal can be obtained by the combined 
method of the EMD and EEMD with Infogram, but a strong noise is still present in the selected 
frequency band. Hence, their KVR is smaller than the WEMD with Infogram method. Based on 
these reasons, the proposed WEMD has an obvious advantage in denoising and enhancing fault 
signature. A better effect of the noise reduction and enhanced fault can be obtained by the 
combined signal processing method of WEMD and Infogram. 

 
Fig. 6. Fitting density distributions of the simulation signal with different processing methods 

Table 7. Kurtosis, variance and sharpness of simulation signal by different processing methods 

Methods No Processing EMD EEMD WEMD Infogram EMD 
+Infogram 

EEMD 
+Infogram 

WEMD 
+Infogram 

Kurtosis 3.0342 2.0071 2.638 2.9028 2.1173 6.504 6.6329 2.6143 
Variance  10.5337 4.5965 4.8987 0.9853 0.7565 0.294 0.2883 0.0876 

KVR 0.2881 0.4367 0.4232 3.01 2.7989 22.1246 23.0064 29.8391 

5. Experimental results and analysis 

The vibration data packet from the IMS Center mentioned in Section 3.1 has been applied 
multiple times for the experimental case study in [8-11, 14, 15, 35, 43]. The data packet contains 
three common fault types of bearings: outer race, inner race and rolling element. Meanwhile, all 
complete failures occurred after exceeding designed life time of bearings which is more than 100 
million revolutions. Therefore, the run to failure data packet of bearing is also used to validate the 
proposed approach. 

The datasets of bearing 3 in channel 5 of case 1, bearing 1 in channel 1 of case 2 and bearing 
3 in channel 3 of case 3 mentioned in Table 3 are be analyzed detailly, and their run to failure 
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vibration signals are shown in Fig. 7. From Fig. 7, the initial fault may be generated at about 
1800th, 700th and 6100th sampling points in the three collected datasets. 

5.1. Case 1 

The experiment dataset of bearing 3 in Ch 5 of Case 1 is processed with the proposed method 
mentioned in Section 3. Initially, the collected signals are processed with envelope spectrum, and 
six selected indexes are obtained by the formulas mentioned in Table 1, and they are shown in 
Fig. 8. Next, the six indexes are standardized by Eq. (5) and shown in Fig. 9. The integrated 
indicator is obtained by Eq. (6) and shown in Fig. 10. The variation coefficient of the integrated 
indicator is obtained by Eq. (7) and shown in Fig. 11. 

 
a) 

 
b) 

 
c) 

Fig. 7. Vibration signals from IMS: a) case 1-Ch 5, b) case 2-Ch 1, c) case-Ch 3 

 
Fig. 8. Indexes of case 1: a) shape factor,  

b) standard deviation, c) average, d) RMS,  
e) variation coefficient, f) skewness 

 
Fig. 9. Standardized indexes of case 1: a) shape 

factor, b) standard deviation, c) average, d) RMS,  
e) variation coefficient, f) skewness 

From Fig. 11, the approximate IFT can be estimated at the 1832th sampling point by the 
minimum before the early stage of the continuous increase in the curve of the variation coefficient 
of the integrated indicator. The Infogram of the 1832th sampling point is shown in Fig. 12. The 
bandwidth and center frequency of the Squared Envelope (SE), Squared Envelope Spectrum (SES) 
and average Infogram are identified as (10240 5120) Hz, (320, 9120) Hz and (10240, 5120) Hz, 
respectively. The fault characteristic frequency and its harmonics cannot be found in narrow-band 
envelope spectrum based on them. The optimal bandwidth should be selected within 3 and 6 times 
of fault characteristic frequency in the Shannon theorem. The optimal bandwidth is redressed as 
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1280 Hz at 5120 Hz and 9120 Hz center frequency, and its fault characteristic frequency and 
harmonics of fault characteristic frequency can be seen in envelope spectrum at (1280, 5120) Hz 
as shown in Fig. 13. 

 
Fig. 10. Integrated indicator of case 1 

 

 
Fig. 11. Variation coefficient of integrated  

indicator in case 1 

 
Fig. 12. Infogram of the 1832th sampling point 

 
a) (1280, 5120) Hz 

 
b) (1280, 9120) Hz 

Fig. 13. Narrow-band envelope spectrum of the 1832th sampling point 

Meanwhile, the sampling point of the interval between 198th and 1832th sampling point are 
detected by interval-halving backtracking strategy with envelope spectrum based on WEMD and 
Infogram. However, the fault characteristic frequency and its harmonics cannot be seen in the 
envelope spectrum at the detected interval between 198th and 1831th sampling point. The 
bandwidth and center frequency of the SE, SES and average Infogram of 1831th sampling point 
are the same as the 1832th sampling point, and the envelope spectrums are shown in Fig. 14, and 
the fault characteristic frequency and its harmonics cannot be found at their envelope spectrum. 
Hence, the 1832th sampling point is finally recognized as the accurate IFT by the interval-halving 
backtracking strategy. 

Table 8. IFT of other datasets in case 1 
Bearing of fault Channel IFT 

Bearing 3 Ch 6 1840th 
Bearing 4 Ch 7 1440th 
Bearing 4 Ch 8 1441th 
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Besides, the other three collected datasets in case 1 are also analyzed by using the same way. 
Their results are shown in Table 8. 

 
a) (1280, 5120) Hz 

 
b) (1280, 9120) Hz 

Fig. 14. Narrow-band envelope spectrum of the 1831th sampling point 

5.2. Case 2 

The experiment dataset of bearing 1 in Ch 1 of case 2 is analyzed by using the same method 
as case 1. The integrated indicator and its variation coefficients are obtained based on six selected 
indexes, which are shown in Fig. 15 and Fig. 16, respectively. According to Fig. 16, the 
approximate IFT can be estimated at the 532th sampling point, and the optimal bandwidth and 
center frequency are estimated as (1707, 4267) Hz, (5120, 7680) Hz and (3413 5120) Hz based 
on the SE, SES and average Infogram, which is shown in Fig. 17, respectively. However, the fault 
characteristic frequency and its harmonics can be found in their narrow-band envelope spectrum. 
Because of the optimal bandwidth limitation of the Shannon theorem, the bandwidth is reset as 
1280 Hz. The fault characteristic frequency and its harmonics can be found at narrow-band 
envelope spectrum of (1280, 7680) Hz, which is shown in Fig. 18. 

 
Fig. 15. Integrated indicator of case 2 

 

 
Fig. 16. Variation coefficients of integrated  

indicator in case 2 

 
Fig. 17. Infogram of the 532th sampling point 

The further detected interval is determined at the interval between 34th and 532th sampling 
points. The accurate IFT is further found at the 524th sampling point by the interval-halving 
backtracking strategy. The Infogram of the 524th sampling point is shown in Fig. 19. The  
(1280 5760) Hz and (5120, 7680) Hz are identified as the optimal bandwidth and center frequency 
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by Infogram, respectively. The optimal bandwidth should be limited at between 3 and 6 times of 
fault characteristic frequency in the Shannon theorem. The optimal bandwidth of 1280 Hz is used 
for envelop analysis, the envelope spectrums of the 524th sampling point are shown in Fig. 20.  

 
a) [1280, 4267] Hz 

 
b) [1280, 5120] Hz 

 
c) [1280, 7680] Hz 

Fig. 18. Narrow-band envelope spectrum of the 532th sampling point  

 
Fig. 19. Infogram of the 524th sampling point 

 
a) (1280, 5760) Hz 

 
b) (1280, 7680) Hz 

Fig. 20. Narrow-band envelope spectrum of the 524th sampling point  

 
a) (1280, 5760) Hz 

 
b) (1280, 7680) Hz 

Fig. 21. Narrow-band envelope spectrum of the 523th sampling point 

The fault characteristic frequency and its 2x and 3x harmonic can be found at (1280, 7680) Hz 
from Fig. 20(b). The 523th sampling point is analyzed as the same as the 524th sampling point. 



IDENTIFICATION OF INITIAL FAULT TIME FOR BEARING BASED ON MONITORING INDICATOR, WEMD AND INFOGRAM.  
JIADONG MENG, CHANGFENG YAN, TAO WEN, ZONGGANG WANG 

1304 JOURNAL OF VIBROENGINEERING. NOVEMBER 2022, VOLUME 24, ISSUE 7  

Its Infogram is the same as the Infogram of the 524th sampling point. From Fig. 21 of narrow-
band envelope spectrums at (1280, 5120) Hz and (1280, 7680) Hz of the 523th sampling point, 
the fault characteristic frequency is only found, but its harmonics cannot be found. Hence, the 
524th sampling point can be regarded as the accurate IFT. 

5.3. Case 3 

The experiment dataset of bearing 3 in Ch 3 of case 3 is analyzed by the same method as case 
1 and 2. The integrated indicator and its variation coefficient are shown in Figs. 22 and 23, 
respectively. 

According to Fig. 23, the approximate IFT can be estimated at the 5965th sampling point, and 
the further detected interval is determined at between 274th and 5965th sampling points. The 
Infogram of the 5965th sampling point is shown in Fig. 24, and the (1707 4267) Hz,  
(1280, 640) Hz and (2560, 3840) Hz are identified as the optimal bandwidth and center frequency 
by the SE, SES and average Infogram, respectively. The optimal bandwidth is changed to 
1280 Hz, and the bandwidth at the center frequency of 640 Hz is reset as 1200 Hz. The fault 
characteristic frequency and its 3x harmonics can be found at envelope spectrum based on  
(1280, 3840) Hz as shown in Fig. 25(c). 

 
Fig. 22. Integrated indicator of case 3 

 

 
Fig. 23. Variation coefficients  

of integrated indicator in case 3 

 
Fig. 24. Infogram of the 5965th sampling point 

The accurate IFT is further found at the 5900th sampling point by the interval-halving 
backtracking strategy. The Infogram of the 5900th sampling point is shown in Fig. 26, the optimal 
bandwidth and center frequency (1280, 3200) Hz, (1280, 640) Hz and (1280 4480) Hz are 
recognized with the SE, SES and average Infogram, respectively. The bandwidth is reset as 
1200 Hz of the center frequency at 640 Hz to obtain the narrow-band envelope spectrum. And 
their narrow-band envelope spectrums are shown in Fig. 27. The BPFO can be obviously seen in 
the (1280, 3200) Hz from Fig. 27(a), the BPFO and 2x harmonic of BPFO is seen in the  
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(1200, 640) Hz from Fig. 27(b) and its 2x and 3x harmonic of BPFO cannot be seen in the  
(1280, 4480) Hz from Fig. 27(c). Besides, the BPFO and its harmonics with rotational frequency 𝑓 are also found in Fig. 27. 

 
a) (1707, 4267) Hz 

 
b) (1200, 640) Hz 

 
c) (1280, 3840) Hz 

Fig. 25. Narrow-band envelope spectrum of the 5965th sampling point  

 
Fig. 26. Infogram of the 5900th sampling point 

Meanwhile, the 5899th sampling point is also analyzed by the same method as the 5900th 
sampling point. Its Infogram is shown in Fig. 28, and the optimal bandwidth and center frequency 
(1707, 4267) Hz and (1280, 640) Hz can be obtained by the Infogram. The optimal bandwidth and 
center frequency are redressed as (1280, 4267) Hz and (1200, 640) Hz based on Shannon theorem 
and envelope spectrum, and their narrow-band envelope spectrums are shown in Fig. 29. The 
BPFO is only obviously seen in Fig. 29 a). Although the BPFO and its harmonics with rotational 
frequency 𝑓 can be found in Fig. 29, its harmonics cannot be found in Fig. 29. The existence of 
fault is not determined by its envelope spectrum. Hence, the accurate IFT is considered at the 
5900th sampling point. 
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a) (1280 3200) Hz 

 
b) (1200 640) Hz 

 
c) (1280 4480) Hz 

Fig. 27. Narrow-band envelope spectrum of the 5900th sampling point  

 
Fig. 28. Infogram of the 5899th sampling point 

 
a) (1280 4267) Hz 

 
b) (1200 640) Hz 

Fig. 29. Narrow-band envelope spectrum of the 5899th sampling point  

6. Comparisons and discussions 

Aiming at verifying the accuracy of the identified IFT of bearings, the results are compared 
with other previous investigations [8-11, 14, 15, 44] and these identified methods with the fault 
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diagnosis techniques are described in Table 9. And these identified initial fault results have been 
detailed in Tables 10, 11 and 12 based on cases 1, 2 and 3, respectively. There are few identified 
results of case 1 since the monitoring of inner race faults is more difficult and its investigation is 
less [11, 45]. The vibration data of case 3 is less used in previous articles since the data was 
updated behind cases 1 and 2 [11]. 

Table 9. Description of identified methods for initial fault time 
Methods Description of method 

Method 1 [8] Calculate the proposed threshold 𝜇 + 4𝜎 (𝜇 and 𝜎 are the mean and standard deviation of 
EHNR) based on EHNR by FEEMD. 

Method 2 [8] Calculate the proposed threshold 𝜇 + 4𝜎 (𝜇 and 𝜎 are the mean and standard deviation of 
EEACF) based on EEACF. 

Method 3 [9] Coarse-to-fine strategy based on envelope spectrum by using VMD and MOMEDA. 
Method 4 [10] Backtracking strategy based on envelope spectrum by using improved VMD and Infogram. 
Method 5 [11] Backtracking strategy based on envelope spectrum by using EMD-Fast ICA. 
Method 6 [14] Detect the incipient fault of bearing by IVMD conjoined EMD. 
Method 7 [15] An almost the same kurtosis values in multiple components based on improved TQWT. 
Method 8 [44] A scale independent flexible bearing health monitoring index based on time frequency 

manifold energy & entropy. 
Proposed 
method  

Approximate to accurate strategy based on envelope spectrum by using monitoring 
indicator and WEMD with Infogram. 

Table 10. Comparisons of the initial fault point in case 1 

Methods Method 1 
[8] 

Method 2 
[8] 

Method 5 
[11] 

Method 7 
[15] 

The proposed method 
(approximate) 

The proposed 
method (accurate) 

IFTs 2120th Ineffective 1990th 1980th 1832th 1832th 

Table 11. Comparisons of the initial fault point in case 2 

Methods Method 
1 [8] 

Method 
2 [8] 

Method 
3 [9] 

Method 
4 [10] 

Method 
5 [11] 

Method 
6 [14] 

Method 
7 [15] 

Method 
8 [47] 

The proposed 
method 

(approximate) 

The 
proposed 
method 

(accurate) 
IFTs 535th 533th 533th 531th 533th 531th 532th 533th 532th 524th 

Table 12. Comparisons of the initial fault point in case 3 

Methods Method 1 
[8] 

Method 2 
[8] 

Method 7 
[15] 

The proposed method 
(approximate) 

The proposed method 
(accurate) 

IFTs 6162th 6072th 6071th 5965th 5900th 

According to the comparisons of the estimated approximate IFT with the results of other 
methods, the results show that the identification method of the approximate IFT is almost as 
accurate as other methods, or even more accurate. Meanwhile, the variation coefficient of the 
integrated indicator can be obtained timely based on the monitoring data from first to current 
monitoring time. The IFT can be monitored by the minimum before the early stage of continuous 
increase in variation coefficient of the integrated indicator in practice. 

In addition, an earlier IFT can be found rapidly by interval-halving backtracking strategy with 
envelope analysis based on the proposed WEMD and Infogram. The earlier IFT has better 
accuracy than the results of other methods and the approximate IFT. The more accurate IFT can 
help to improve the accuracy of RUL prediction further. Meanwhile, the simulation results and 
the earlier IFT show that the combination of the WEMD and Infogram has a good effect on 
denoising or enhancement of the fault component in the vibration signal.  

Meanwhile, the weight of every IMFs in variance, kurtosis and correlation coefficient are 
analyzed in EMD based on the simulation signal, which is shown in Fig. 30. From Fig. 30, there 
is a similar and obvious change in the weight of kurtosis and correlation coefficient, but there's 
almost no weight difference in variance. The weight of kurtosis and correlation coefficient is 
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greater than the weight of variance in some IMFs, and other IMFs is smaller. The KVR of the 
IMFs with large KVR become larger and the KVR of IMFs with small KVR become smaller by 
the weight operator in WEMD. Therefore, the WEMD can improve the KVR of signal, which has 
a better effect than EMD and EEMD on denoising or enhancing the fault component. 

 
Fig. 30. Weight of every IMFs in variance, kurtosis and correlation coefficient 

There is a difference in the recognized IFT of bearing 3 based on Ch 5 and Ch 6 and the bearing 
4 based on Ch 7 and Ch 8 in case 1. The difference of the recognized IFT of the bearing 3 based 
on two channels may be caused by two accelerometer positions and the rotation of inner race. Two 
accelerometer positions have different sensitivity to the generated location of the fault. And the 
different sensitivity may be verified at bearing 4 based on Ch 7 and Ch 8 in case 1, and there is 
also a slight difference at bearing 4 based on two-channel signals. 

There is an irregularity in the integrated indicator curve in Figs. 10, 15 and 22. The irregularity 
may be on account of bearing manufacturing errors, unstable rotor speed, friction and poor 
lubrication etc. And there is some larger fluctuation at the unhealthy condition in Figs. 10, 15 and 
22, which may be due to the abrasive particles dropping into the defect, the edge of the defect 
being smoothed or the impact behavior from the defect. 

There is a short rise in the early stage of the variation coefficient of the integrated indicator in 
Figs. 11, 16 and 23, which may be a running-in phase as described in [43]. The running-in phase 
is the earlier stage of perfectly healthy conditions of bearings, moreover which is healthy. There 
may be an uneven distribution of the grease or some degrees of surface waviness and surface 
roughness in a new bearing. The phase usually ends very quickly with normal running after some 
wear [46]. Then, the performance of bearings starts to weaken slowly with the repeated cyclic 
contact of rolling elements and inner or outer race. And the variation of bearings performance is 
slower and slower until a fault occurred. The performance of bearings will generally become 
worse and worse after the existence of a fault, and the variation of bearings performance is faster 
and faster in general. When the unhealthy condition reaches a certain level, the severity is almost 
constant or diminishing. Hence, the variation coefficient of the integrated indicator of the bearings 
performance degradation features can represent the variation of the performance for monitoring 
the IFT of bearings. However, a quite accurate IFT has been found before the minimum before 
the early stage of the continuous increase in the variation coefficient of the integrated indicator. 
However, the initial fault is generally a micro-crack in the beginning because repeated cycles of 
contact result in the accumulation of plastic strain [43]. The fault is so weak that it cannot be 
highlighted in the performance degradation indicator of bearing. Therefore, the identification 
mechanism from the approximate to the more accurate IFT is not in conflict with the fact. 

7. Conclusions 

An approximate to fine identified method of the IFT of bearing is proposed for monitoring the 
IFT and improving the accuracy of RUL prediction in the article. Firstly, an approximate IFT can 
be obtained by the minimum before the early stage of the continuous increase of the constructed 
variation coefficient of the integrated indicator. Whereafter, a more accurate IFT can be obtained 
by interval-halving backtracking strategy based on WEMD, Infogram and envelope analysis. 
Some conclusions could be given as follows. 
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1) The variation coefficient of the integrated indicator can be used to monitor the health 
condition of bearings, and the minimum before the early stage of the continuous increase of the 
constructed variation coefficient of the integrated indicator can be used to obtain the approximate 
IFT. 

2) The more accurate IFT can be obtained rapidly by the interval-halving backtracking strategy 
based on WEMD, Infogram and envelope analysis. 

3) The combined method of WEMD and Infogram can be applied for denoising or enhancing 
the fault component in vibration signal with fault. 
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