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Abstract. The sensor is the front-end component of the bridge structural health monitoring 
system. In this study, three fault diagnosis methods based on principal element analysis are applied 
to a bridge health monitoring system. The diagnostic results show that significant differences 
among the operating conditions will deteriorate the robustness of the diagnostic methods. The 
applicability of the sensor fault diagnosis method is verified based on the principal element 
analysis of a practical health monitoring system. 
Keywords: principal component analysis, weighted principal component analysis, Kernel 
principal component analysis. 

1. Introduction 

Structural health monitoring (SHM) systems have been promoted and applied to many major 
engineering structures [1]. As the front-end component in the monitoring system, the sensor is 
used primarily to acquire structural response information, and its performance directly affects the 
accuracy of structural damage identification and structural safety assessment [2, 3]. It has been 
shown that sensor failures cause false or overlooked alarms in structural health monitoring systems 
[4-6].  

In projects involving principal component analysis (PCA), data are processed into a principal 
component subspace and a residual subspace using multivariate projection techniques such that 
fault diagnosis can be performed in a low-dimensional space [7-9]. Using the weighted principal 
component analysis (WPCA) method, it is theoretically derived that the square prediction error 
(SPE) exhibits a square relationship with each element in the principal vector of the residual space, 
and each element is used as the nonlinear weighting coefficient of the SPE. To diagnose faults in 
nonlinear systems, Scholkopf et al. [10] proposed another nonlinear PCA algorithm, which is 
known as kernel principal component analysis (KPCA). 

In this study, three fault diagnosis methods, i.e., PCA, WPCA, and KPCA, were applied to a 
large-span cable-stayed bridge health monitoring system for multisensor fault self-diagnosis, and 
the advantages and disadvantages of the three diagnostic methods were comprehensively 
compared to provide reliable suggestions for the sensor fault self-diagnosis of the structural health 
monitoring system. 

2. Background 

The bridge is a double-tower single-cable-stayed bridge with a main span of 445 m and a total 
length of 858 m. The left main tower is 172.6 m high, and the right main tower is 162.5 m. The 
bridge is composed of steel truss girders, which are partitioned into two levels, i.e., an upper level 
with sidewalks and four lanes in both directions, and a lower level with a two-way track line. A 
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structural health monitoring system was installed on the bridge to enable the real-time monitoring 
of the bridge. The monitored parameters included temperature, stress, deformation, vibration, 
cable force, wind direction and velocity, and over-running vehicles. In total, 31 vibration 
measurement points were arranged of the bridge, as follows: 14 and 9 vertical and trans-verse 
acceleration points on the main beam, respectively; and two vertical acceleration points and two 
transverse acceleration points on each of the left and right main towers. The specific layout section 
and measurement points are shown in Fig. 1. 

 
Fig. 1. Elevation view of measurement points 

3. Application of fault diagnosis method to bridge 

It was assumed that the bridge was structurally intact, and that all the acceleration sensors used 
were in normal condition at the beginning of the operation. Because the bridge is affected by 
temperature and vehicle excitation at all times during its operation, the operating conditions during 
the daytime when the bridge was hot and during peak operation were inconsistent with those at 
night when the bridge was cold and in off-peak operation. Therefore, a time-of-day approach was 
used to troubleshoot the sensors. Data obtained at 09:00 am and 00:00 am at the beginning of the 
operation of the monitoring system were selected for analysis, and PCA, WPCA, and KPCA were 
performed to diagnose the sensor faults. Because the acceleration difference between the main 
girder and the tower of the bridge was significant, only the acceleration sensor on the main girder 
was analyzed. 

 
a) PCA statistical quantity test 

 
b) WPCA statistical quantity test 
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c) KPCA statistical quantity test 

Fig. 2. Test results at 00:00 am on April 5 

For the off-peak period, the sensor at L5 in the middle span was used as the research sample. 
The data from 00:00 am to 01:00 am on March 5th were selected for training, and the sensor data 
from 00:00 am on April 5th were used as the unknown state for testing; for the peak period, the 
sensor data from 09:00 am to 10:00 am on April 5th were selected for training, and the data from 
09:00 am on May 10th were used as the unknown state. PCA, WPCA, and KPCA were performed 
to diagnose the sensor faults. 

Using the data from March 5th 00:00 am and April 5th 09:00 am, 10,000 sets of acquired data 
were selected for PCA, WPCA, and KPCA training. The sensor at L5 was used as the research 
sample, 10,000 sets of data acquired on April 5th (00:00 am), May 10 (09:00 am), and June 15th 
(09:00 am) were diagnosed. Fig. 2 shows the test results of the three sets of test data from the three 
tests, and the dashed lines in the figure indicate the thresholds of the respective statistics. As shown 
in the figures, none of the statistics exceeded the threshold, which indicates that the system did 
not malfunction. This is consistent with the manual inspection of the bridge structure health 
monitoring system, which validates the proposed method. 

4. Effects of different cases on diagnosis results 

The stability of the three fault diagnosis methods for different cases were investigated. The 
training data at 00:00 am on March 5, which is an off-peak period, were selected to test the test 
data at 09:00 am on May 10, which is a peak period. The results are shown in Fig. 3. 

As shown in the Fig. 3, the PCA, WPCA, and KPCA statistics exceeded the limits at numerous 
points, and multiple sensors were discovered to be faulty based on the cumulative contribution 
rate. However, the probability of multiple sensors failing simultaneously is low in practice, and 
the manual inspection of this bridge resulted in no sensor failure.  

 
a) PCA test results 
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b) Test results for WPCA (𝑇ଶ) 

 
c) Test results for WPCA (Q) 

 
d) Test results of KPCA 

Fig. 3. Effects of different cases on test results 

Therefore, it was speculated that the system cases have changed. The results above show that 
excessive differences in conditions between the training and test samples will deteriorate the 
robustness of the diagnosis method and yield misleading test results, which should be avoided in 
practical applications. Therefore, a time-phased approach for diagnosis is recommended. In 
addition, to reduce the mis-judgment caused by the difference in cases, the bridge must be 
monitored for a long term to obtain more data for PCA training. 

5. Conclusions 

In this study, three fault diagnosis methods, i.e., PCA, WPCA, and KPCA, were applied to the 
health monitoring system of a large-span cable-stayed bridge, and the self-diagnosis of sensor 
faults was realized by analyzing the measured data acquired using the bridge acceleration sensors. 

The sensors were inspected at different times of the day and in different operating conditions 
of the bridge. The sensors were monitored during peak and off-peak traffic periods, and the results 
showed that the cable-stayed bridge sensors were intact and provided results that were consistent 
with the manual inspection results.  

The off-peak training model was used to test the data samples acquired during the peak period, 
and the results yielded false positives. This indicates that excessive differences in work conditions 
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between the training and test samples will deteriorate the robustness of the three diagnostic 
methods. Therefore, a time-phased approach is recommended for diagnosis in this study. 
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