
 

1262 JOURNAL OF VIBROENGINEERING. NOVEMBER 2022, VOLUME 24, ISSUE 7  

Research on IGOA-LSSVM based fault diagnosis of 
power transformers 

Yunsheng Chen 
Guangzhou Huali Science and Technology Vocational College, Guangzhou, China 
E-mail: gdcys1982@yeah.net 
Received 7 February 2022; received in revised form 30 April 2022; accepted 10 May 2022 
DOI https://doi.org/10.21595/jve.2022.22439 

Copyright © 2022 Yunsheng Chen. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. Power transformer is an important part of power equipment, and its functionality affects 
the proper operation of the whole power network. In order to diagnose power transformer faults 
effectively, the authors propose a fault diagnosis strategy based on an improved locust 
optimization algorithm for least squares vector machines (IGOA-LSSVM). Firstly, it was required 
to address the problem that the diagnostic prediction accuracy of the least squares vector machine 
is reduced due to its parameters. So this paper introduces the locust optimization algorithm with 
simple algorithm structure and good performance for optimizing the parameters. And at the same 
time, the authors generate an improved locust optimization algorithm with self-learning factors, 
proportional weight coefficients and Levy flight strategy. Secondly, the improved locust 
optimization algorithm is used for optimizing the least squares vector machine parameters. 
Finally, in the simulation experiments, the results of the benchmark test function illustrate that the 
IGOA algorithm has better performance, and the test results of a fault samples diagnosis of the 
power transformer equipment illustrate that the IGOA-LSSVM has good prediction effect and 
improves the fault identification accuracy compared with ACO-LSSVM and PSO-LSSVM in five 
types of fault diagnosis. 
Keywords: power transformer, fault prediction, grasshopper optimization algorithm. 

1. Introduction 

With the continuous improvement of national mechanization development level, the 
relationship between each equipment becomes intricate and complex, and the consequences 
brought by equipment failure will be unpredictable, so mechanical fault diagnosis technology has 
been highly valued by scholars. However, how to take accurate and efficient fault diagnosis 
method for mechanical equipment has been one of the first problems considered in the field of 
mechanical engineering. As the core component of the whole system, the power transformer 
equipment operates as an inseparable part of the whole power grid. Once the mechanical failure 
of the power transformer occurs, it will bring a great damage to the people as well as to the national 
property, so a research of power transformer is of the utmost importance. In this paper, the study 
is carried out from the perspective of transformer fault identification and diagnosis. Y. Sun et al. 
[1] proposed to use a BP neural network for a transformer fault diagnosis, through the neural 
network could effectively improve the fault. X. Yang et al. [2] proposed a neural network based 
on the BP-PNN for a transformer fault diagnosis, and proposed a dual fusion approach based on 
the BP and PNN for a fault feature identification, and then the simulation experiments showed 
that if used, the neural network had a better recognition effect. S. Fei et al. [3] proposed an 
identification idea consisting in optimizing the support vector machine based on the genetic 
algorithm, which was applied to optimize the parameters of support vector machine, thus 
improving the prediction performance of support vector machine. T. Kari et al. [4] proposed a 
hybrid feature selection method for power transformer fault diagnosis based on support vector 
machine and genetic algorithm, which had better results in extracting features. S. F. Cheng et al. 
[5] applied a wavelet neural network with improved particle swarm algorithm in transformer fault 
diagnosis, using the powerful ability of wavelet neural network to identify features for prediction, 
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and optimizing wavelet neural network parameters using an improved particle swarm algorithm. 
Simulation experiments illustrated that the neural network had better results in transformer fault 
diagnosis. B. Zeng et al. [6] proposed to optimize a LSSVM neural network by using the wolf 
swarm algorithm, simulation experiments illustrated a significant improvement in fault feature 
recognition through the optimized LSSVM neural network. R. Naresh et al. [7] proposed an 
integrated neuro-fuzzy method for transformer fault diagnosis, which had a good effect for 
identifying transformer mechanical faults. L. Dong et al. [8] used a rough set and fuzzy wavelet 
neural network combined with the least squares weighted fusion algorithm in power transformer 
fault detection, which combined roughly set and wavelet neural fusion to improve the transformer 
fault diagnosis accuracy. P. Purkait et al. [9] proposed an expert system for transformer impulse 
fault diagnosis based on the time-frequency domain analysis, with the perspective to involve also 
the time frequency domain analysis to carry out the fault prediction study. D. Ma et al. [10] 
introduced an expert system for a fault diagnosis of power system based on a BP neural network, 
which mainly fuses multiple BP neural networks to predict and analyze the possible faults of 
power transformer equipment with the help of similar expert system, and the simulation 
experiment showed that the diagnosis system had a good effect. M. Demetgul et al. [11] proposed 
to use Gustafson-Kessel (GK) and k-medoids algorithm for fault clustering with an accuracy of 
about 90 %. Y. Miao et al. [12] proposed to use improved Blind deconvolution methods in fault 
diagnosis and described the prospects of application. W. Deng et al. [13] proposed a novel 
compound fault diagnosis method based on the optimized maximum correlation kurtosis 
deconvolution (MCKD) and sparse representation. The simulation experiments illustrated that the 
method allowed extracting the compound fault characteristics of rolling bearings and achieving 
accurate compound fault diagnosis. Q. Song et al. [14] proposed a multi-scale convolutional neural 
network (MSCNN) combined with a matrix diagram for chemical process fault diagnosis method, 
and simulation experiments illustrated that the algorithm had a good application perspective. 

Having summarized the above literature research with different solutions to identify power 
transformer equipment faults, using neural networks to assist in equipment fault resolution, the 
authors of this paper determined the main direction that most scholars were still researching. But 
while the neural network parameter settings are the key factor for equipment diagnosis for this 
goal, combined with the basis of some scholars’ research, this paper proposes a locust 
optimization-based algorithm with a least squares vector machine optimization model, uses a 
locust algorithm to select the optimal parameter model, and finally applies the ready solution for 
the equipment fault diagnosis of power transformers. Simulation experiments illustrate that the 
diagnosis model has a good prediction effect. 

2. Basic algorithm description 

2.1. Grasshopper optimization algorithm 

Saremi [15], an Australian scholar, proposed the Grasshopper optimization algorithm (GOA) 
based on the swarming behavior of Grasshoppers, which is divided into two parts, exploration and 
exploitation, where the exploration part corresponds to the larval stage of Grasshoppers and the 
exploitation part corresponds to the adult stage of Grasshoppers. In the larval stage, the 
Grasshoppers move to a small area, which is good for a local search. In the adult stage, 
Grasshoppers move to a small area, which facilitates a local search. The individual positions of 
Grasshopper populations are influenced by population interaction, gravitational forces and wind 
forces during reproduction, foraging and migration: 𝑋௜ = 𝑟ଵ𝑆௜ + 𝑟ଶ𝐺௜ + 𝑟ଷ𝐴௜ , (1)

where, 𝑋௜ denotes the position of the 𝑖th Grasshopper, 𝑆௜ denotes the influence of the 𝑖th 
Grasshopper by the interaction force of other Grasshoppers, 𝐺௜ is the influence of the 𝑖th 
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Grasshopper by the gravitational force, 𝐴௜ is the influence of the 𝑖th Grasshopper by the wind 
force, and 𝑟ଵ, 𝑟ଶ, 𝑟ଷ are random numbers which take the value of [0, 1], respectively, in the 
equation as follows: 

𝑆௜ = ෍𝑠(𝑑௜௝)𝑑መ௜௝௄
௝ୀଵ௝ஷ௜

, (2)

where 𝐾 denotes the number of Grasshoppers, 𝑑௜௝ = |𝑥௝ − 𝑥௜| denotes the distance between the 𝑖, 𝑗th of two Grasshoppers. 𝑑መ௜௝ = (𝑥௝ − 𝑥௜) 𝑑௜௝⁄  denotes the unit vector from 𝑖 Grasshopper to the 𝑗th Grasshopper, and 𝑠 denotes the influence function between the Grasshoppers subjected to the 
interaction force with other Grasshoppers, expressed as follows: 𝑠(𝑟) = 𝑓𝑒ି௥௟ − 𝑒ି௥ . (3)

In Eq. (3), when 𝑠(𝑟) is greater than 0, Grasshoppers will attract each other, so the range of 𝑟 
is called the attraction domain, when 𝑠(𝑟) is less than 0, Grasshoppers will repel each other, so 
the range of 𝑟 is called the repulsion domain; when 𝑠(𝑟) is 0, Grasshoppers will neither attract nor 
repel each other, so 𝑟 is the comfortable distance. In addition, 𝑓 and 𝑙 represent the attraction 
strength parameter and the scale parameter, respectively, and their values affect the domains of 
attraction, repulsion and moderate distribution distances, generally 𝑙 is 1.5 and 𝑓 is 0.5: 𝐺௥ = −𝑔𝑒̂௚, (4)𝐴௜ = 𝑢𝑒̂௪ . (5)

In Eq. (4), 𝑔 denotes the gravitational constant, 𝑒̂௚ denotes the unit vector pointing at the center 
of the earth; in Eq. (5), 𝑢 denotes the wind direction constant, 𝑒̂௪ denotes the wind direction unit 
vector, so the Grasshopper individual position is updated as follows: 

𝑋௜ = ෍𝑠(|𝑥௝ − 𝑥௜|) 𝑥௝ − 𝑥௜𝑑௜௝ − 𝑔𝑒̂௚ +௄
௝ୀଵ௝ஷ௜

𝑢𝑒̂௪ . (6)

Although Eq. (6) is used to simulate the Grasshopper population, from the aspect of practical 
application, the gravitational factor is usually not considered, and the wind direction is determined 
to point at the target location, so the best individual Grasshopper location is solved as the 
optimization problem. The formula is shown below: 

𝑋௜ௗ = 𝑝⎩⎨
⎧෍𝑝𝑢𝑏ௗ − 𝑙𝑏ௗ2 𝑠(|𝑥௝ௗ − 𝑥௜ௗ|) 𝑥௝ − 𝑥௜𝑑௜௝௄
௝ୀଵ௝ஷ௜ ⎭⎬

⎫ + 𝑇෠ௗ , (7)

𝑝 = 𝑝୫ୟ୶ − 𝑡 × 𝑝୫ୟ୶ − 𝑝୫୧୬𝑇୫ୟ୶ , (8)

where, 𝑢𝑏ௗ and 𝑙𝑏ௗ correspond to the upper and lower bounds of the 𝑖th Grasshopper in the 𝑑th 
dimension respectively, 𝑇෠ௗ is the target position of the Grasshopper swarm, 𝑝 in Eq. (8) is the 
decreasing coefficient, which is used to balance the global search and local exploitation ability on 
the one hand, and the exclusion and attraction domains on the other hand, 𝑡 is the number of 
current iterations, 𝑝୫ୟ୶ and 𝑝୫୧୬ are the maximum and minimum values respectively. 𝑇୫ୟ୶ is the 
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maximum number of iterations 

2.2. LSSVM 

Least squares support vector machine (LSSVM) is a deformation algorithm for automatic 
vector machines that uses a least squares loss function instead of an insensitive loss function to 
convert the quadratic programming problem in automatic vector machine training into a set of 
linear equations solution problem, thus greatly reducing the complexity and speeding up the 
solution while ensuring the accuracy speed. 

Let the training sample set for the binary classification problem be: 𝑆 = ሼ(𝑥௜ ,𝑦௜),   𝑥௜ ∈ 𝑅௡,   𝑦௜ ∈ ሼ−1, +1ሽ,   𝑖 = 1,2,⋯𝑛ሽ, (9)

where, 𝑥௜ denotes the 𝑖th input sample, 𝑦௜ is the category label relative to 𝑥௜, and 𝑛 is the number 
of samples. First, the samples to be classified are mapped to the high-dimensional space by 
introducing a nonlinear function, and then the optimal decision function is constructed in the high-
dimensional space as follows: 𝑓(𝑥) = 𝑤௧𝜑(𝑥) + 𝑏, (10)

where, 𝑤 is the weight vector, 𝜑(𝑥) is the mapping function, and 𝑏 is a constant, so the 
optimization function of the least squares vector machine is: 

minఠ,క,௕ 12 ‖𝜔‖ଶ + 𝑐 12෍𝜉ଶெ
௜ୀଵ ,𝑠. 𝑡.𝑥′௟ = 𝜔்𝜙(𝑅ᇱ௟) + 𝑏 + 𝜉௟ , (11)

where, 𝜍 is the relaxation variable, and 𝑐 is the regularization parameter. 
The current LSSVM has many kernel functions, and its radial basis function has the advantages 

of parameters, generality, etc. In this paper, the authors choose it as the kernel function of LSSVM, 
which is determined as follows: 

𝐾(𝑅ᇱ௠,𝑅ᇱ௡) = expቆ−‖𝑅ᇱ௠,𝑅ᇱ௡‖ଶ2𝜎ଶ ቇ ,      (𝑚,𝑛 = 1,2, . . . ,𝑀). (12)

By introducing the Lagrange operators 𝑎 and 𝑏, Eq. (11) is transformed into a pairwise 
problem, i.e.: ൤0 1ത்1ത Ω + 𝛾ିଵ𝐼൨ ቂ𝑏𝑎ቃ = ቂ0𝑥′ቃ, (13)

where 𝑥′ = [𝑥ᇱଵ, 𝑥ᇱଶ, … , 𝑥ᇱெ]், 𝑎 = [𝑎ଵ,𝑎ଶ, … ,𝑎ெ]், 1ത = [1,1, … ,1]், Ω(𝑚,𝑛) = 𝐾(𝑅௠ᇱ ,𝑅௡ᇱ ). 

From ቂ𝑏𝑎ቃ = ൤0 1ത்1ത Ω + 𝛾ିଵ𝐼൨ ቂ𝑜𝑥′ቃ, 𝑎 and 𝑏 can be derived. The decision function of LSSVM 

can be obtained as: 

𝑥ො = 𝑓௫(𝑅) = ෍𝑎௜ெ
௟ୀଵ 𝐾(𝑅௜ ,𝑅ᇱ௜) + 𝑏. (14)



RESEARCH ON IGOA-LSSVM BASED FAULT DIAGNOSIS OF POWER TRANSFORMERS.  
YUNSHENG CHEN 

1266 JOURNAL OF VIBROENGINEERING. NOVEMBER 2022, VOLUME 24, ISSUE 7  

3. IGOA 

Like most meta-heuristic algorithms, the Grasshopper algorithm will also have some 
shortcomings such as falling into local optimality, slow algorithm convergence, and low solution 
accuracy. In order to improve the performance of the GOA algorithm and better optimize the 
LSSVM parameters, this paper proposes a self-learning factor, proportional weight coefficient and 
improved Grasshopper optimization algorithm for Levy flight. 

3.1. Self-learning factor 

In the Grasshopper algorithm, the Grasshopper is subject to the influence function between the 
interaction force with other Grasshoppers is the key to the Grasshopper individual position 
movement, with the increasing number of iterations, the coefficient of attractiveness of the 𝑖th 
Grasshopper individual with other Grasshoppers becomes the key to influence the position, 
therefore, this paper improves the adaptive learning of attractiveness as follows: 𝑓 = 𝑓୫୧୬ + (𝑓୫ୟ୶ − 𝑓୫୧୬) × (1 − cos(1 − 𝑡 𝑇୫ୟ୶⁄ )) 𝜋⁄ , (15)

where, 𝑓୫ୟ୶ and 𝑓୫୧୬ denote the maximum and minimum values of the adaptive learning factor, 𝑡 
and 𝑇୫ୟ୶ are the number of current iterations and the maximum number of iterations, respectively. 
It is found from the formula that with the gradual increase in the number of iterations, it is effective 
in the early stage of the algorithm to avoid other Grasshopper individuals congregating at once, 
thus avoiding individuals falling into the local optimum, avoiding missing some extreme values 
of individuals, as well as avoiding the appearance of regions that may not be searched. 

3.2. Proportional weight coefficient optimization 

In order to further improve the local search and global optimum capability of the traditional 
Grasshopper algorithm, this paper combines Eq. (1) and Eq. (7), and optimizes the weight 
coefficients 𝑟ଵ and 𝑟ଶ respectively in the actual situation, with the following optimization 
expression: 

𝑟ଵ = 𝑟୫ୟ୶ − ൬2 − 𝑒 ௧௧ౣ౗౮൰ × (𝑟୫ୟ୶ − 𝑟୫୧୬). (16)𝑟ଶ = 𝑟୫୧୬ + ൬2 − 𝑒 ௧௧ౣ౗౮൰ × (𝑟୫ୟ୶ − 𝑟୫୧୬). (17)

The two proportional weight coefficients have an impact on the location of Grasshopper 
individuals. In the early stage of the algorithm, because the value of 𝑟ଵ is larger, so 𝑟ଵ > 𝑟ଶ, 
Grasshopper individuals approach the global optimal individual faster, which is beneficial to the 
global search, and in the middle and late stage of the algorithm, the value of 𝑟ଵ is smaller, and so 𝑟ଵ < 𝑟ଶ. Grasshopper individuals are located in a similar area to the global optimal Grasshopper 
individuals, which is beneficial to the local search, and maintains the diversity of the population. 
This dynamic balance between the local search and the global optimum of the Grasshopper 
algorithm effectively avoids the premature convergence of the algorithm. 

3.3. Levy flight optimization and individual optimization search 

A. M. Edwards [16] in the study of bionic animals found that bionic animals were those that 
advanced randomly in an arbitrary dimensional space in any direction for any length of moment 
departure, and this behavioral feature was called Levy flight feature. This flight characteristic can 
perform local search in a small range on one hand and global search in a large range on the other 
hand, and such an operation can effectively balance the relationship between the global and local 
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ones. The distribution density function of Levy flight step variation can be approximated as 
follows: 𝐿𝑒𝑣𝑦(𝑠𝑡𝑒𝑝)~|𝑠𝑡𝑒𝑝|ିଵିఉ, 0 < 𝛽 ≤ 2, (18)

where, 𝑠𝑡𝑒𝑝 is the random motion step of Levy’s flight behavior, expressed as follows: 

𝑠𝑡𝑒𝑝 = 𝜇/|𝑣|ଵఉ . (19)

Parameter 𝜇, 𝑣 follows the normal distribution: 𝜇~𝑁൫0,𝜎ఓଶ൯,     𝑣~𝑁(0,𝜎௩ଶ), (20)

where: 

𝜎ఓ = ൜ Γ(1 + 𝛽)sin(𝜋𝛽/2)Γ[(1 + 𝛽)/2]𝛽2(ఉିଵ)/ଶൠଵ/ఉ ,      𝜎௩ = 1. 
From the behavior of Levy flight features, Grasshoppers also have such behavior during 

foraging, especially when other Grasshopper individuals approaches the current individual, which 
can very easily lead the algorithm to a local optimum situation. So to avoid this situation, the Levy 
aircraft mechanism is introduced in the foraging behavior of the algorithm with the following 
equation: 

𝑋௜ = ෍𝑠(|𝑥௝ − 𝑥௜|) 𝑥௝ − 𝑥௜𝑑௜௝ − 𝑔𝑒̂௚ +௄
௝ୀଵ௝ஷ௜

𝑢𝑒̂௪ + 𝑎(𝑡) ⋅ s𝑖𝑔𝑛(𝑟𝑎𝑛𝑑) ⊕ 𝑠𝑡𝑒𝑝. (21)

where, 𝑟𝑎𝑛𝑑 is a random number between [–1, 1], s𝑖𝑔𝑛(𝑟𝑎𝑛𝑑) is the Levy flight direction as 
shown in Eq. (22), and 𝑎(𝑡) is the scale factor as shown in Eq. (23): s𝑖𝑔𝑛(𝑟𝑎𝑛𝑑) = ൜1,            𝑟𝑎𝑛𝑑 ≥ 0,−1,     𝑟𝑎𝑛𝑑 < 0,    − 1 ≤ 𝑟𝑎𝑛𝑑 ≤ 1, (22)𝑎(𝑡) = 𝑎௜௡௜௧ × exp ൬ 𝑡𝑇୫ୟ୶൰, (23)

where,
 
𝑡 is the current number of iterations, and 𝑎௜௡௜௧ is the initial scale factor. It is found from 

Eq. that the use of the Levy flight feature enables the GOA to perform a small range search at the 
beginning of the algorithm and then a large range random search, ensuring that the GOA searches 
in different ranges, which can approximate the global optimal solution. Therefore, the use of the 
Levy flight feature can prevent the algorithm from oscillating around the optimal value and obtain 
the optimal solution as soon as possible. 

3.4. Algorithm flow 

The IGOA algorithm flow is shown in Fig. 1. 

4. IGOA-LSSVM based device fault identification steps 

The improved GOA and LSSVM for state prediction of power mechanical equipment is to 
build a nonlinear model between the input and output quantities, which core is to determine two 
important parameters 𝑐 and 𝜎 in the LSSVM, which have a very significant impact on the 
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predictive capability of the model. 
The specific steps are as follows: 
Step 1: Set the dimension in which the Grasshoppers are located in the Grasshopper 

optimization algorithm, the entire number of Grasshopper population, the initial values of the 
relevant algorithm parameters, and the maximum number of algorithm iterations to run. To set the 
relevant parameters of the LSSVM neural network, it is required to form a set of parameters 𝑐and 𝜎 in the LSSVM, and compare the set of parameters with the Grasshopper individuals one by one, 
so that the best set of parameters can be obtained by involving the optimal Grasshopper 
individuals, that is, the optimal parameters of the LSSVM. 

Step 2: Optimize each of the three improved strategies in GOA according to the improved 
three-ratio method. 

Step 3: In the Grasshopper algorithm individual fitness function, the middle decision function 
is used in LSSVM, and in the iteration process, the individual fitness value of the Grasshopper is 
compared with the current individual optimal fitness value, and if the former fitness value is better 
than the latter, the latter is directly replaced; otherwise, it remains unchanged. 

Step 4: When the algorithm reaches the maximum number of iterations, the algorithm ends, so 
the optimal Grasshopper individuals correspond to the optimal 𝑐 and 𝜎. 

Begin

Initialization parameters

Update Equation (3) with Equation 
(14)

Update Equation (1) with Equation 
(15-16)

Update Equation (6) with Equation 
(19)

Satisfy end 
condition

No

End

Yes

 
Fig. 1. Flow chart of the algorithm in this paper 

5. Simulation 

5.1. Algorithm performance 

In this paper, the IGOA algorithm and the GOA algorithm are compared under six benchmark 
test functions (Table 1) in different dimensions (2-dimensional, 5-dimensional and 
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30-dimensional). Moreover, respective parameters and set for 100 iterations are selected for these 
algorithms, and the simulation results are obtained with the help of Matlab2012 simulation 
platform as shown in Table 2. 

Table 1. Benchmark function 
Function No Benchmark function 

F1 ෍𝑥ଶ௡
ଵ  

F2 ෍(෍𝑥௝௜
௝ୀଵ )௡

௜ୀଵ  

F3 ෍[100(𝑥௜ାଵ − 𝑥௜ଶ)ଶ + (𝑥௜ − 1)ଶ]௡ିଵ
௜ୀଵ  

F4 20exp൮− 15ඩ1𝑛෍𝑥௜ଶ௡
௜ୀଵ ൲ − exp൭1𝑛෍ cos(2𝜋𝑥௜)௡

௜ୀଵ ൱ 

F5 ෍(𝑥௜ଶ − 10cos(2𝜋𝑥௜) + 10)௡
௜ୀଵ  

F6 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑥௜)) 

Table 2 shows the comparison of the optimal values and variances of the two algorithms in 
different dimensions of six benchmark functions, and it is found that the difference between the 
optimal values and variances of the two algorithms in 2 dimensions is not large. The difference 
between the two algorithms gradually increases as the dimensionality increases, and when the 
dimensionality reaches 30 dimensions, the optimal value and variance of the two algorithms 
gradually increase, and the difference between the two algorithms is larger when it is in the F1 
and F3 functions. From Table 2, it can be found that IGOA has better performance compared with 
the GOA algorithm, which also evidences that the improved IGOA can significantly improve the 
performance of the algorithm, especially in the higher dimensionality. Fig. 2. shows the 
comparison of the fitness values of the two algorithms. From the figure, it is found that the curves 
of both algorithms show a decreasing trend as the number of iterations gradually increases, but 
the IGOA algorithm obtains the optimal value when the number of iterations is 80, which indicates 
that the performance of the improved algorithm is significantly improved. 

 
Fig. 2. Comparison of adaptation values of two algorithms 
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Table 2. Optimization results of two algorithms in different benchmark functions 
Function Dimension Algorithm Optimal value Variance 

F1 

2 GOA 3.172 1.614 
IGOA 1.324 0.288 

5 GOA 1.427e-9 1.831e-8 
IGOA 2.174e-12 3.932e-11 

30 GOA 3.724e-11 5.212e-11 
IGOA 2.294e-14 6.193e-13 

F2 

2 GOA 3.412 3.532 
IGOA 2.814 2.843 

5 GOA 1.437e-10 3.414e-8 
IGOA 1.272e-14 4.243e-10 

30 GOA 3.143e-14 3.832e-11 
IGOA 1.415e-16 6.941e-13 

F3 

2 GOA 3.913 1.824 
IGOA 2.982 1.392 

5 GOA 3.397e-11 3.281e-9 
IGOA 2.912e-13 4.812e-11 

30 GOA 3.628e-12 3.512e-13 
IGOA 4.295e-17 7.713e-14 

F4 

2 GOA 4.812e-4 3.184e-3 
IGOA 7.823e-5 1.628e-4 

5 GOA 1.915e-10 3.274e-7 
IGOA 2.112e-13 4.132e-11 

30 GOA 7.276e-17 5.131e-12 
IGOA 1.832e-17 9.334e-14 

F5 

2 GOA 1.671e-3 2.134e-2 
IGOA 1.015e-4 1.717e-2 

5 GOA 1.856e-11 1.901e-8 
IGOA 2.212e-16 6.012e-11 

30 GOA 9.274e-15 4.182e-13 
IGOA 2.431e-17 7.342e-15 

F6 

2 GOA 2.312e-3 1.824e-2 
IGOA 3.914e-4 4.124e-3 

5 GOA 3.216e-12 2.815e-10 
IGOA 1.312e-13 5.712e-10 

30 GOA 9.178e-13 9.212e-11 
IGOA 2.373e-14 8.272e-10 

5.2. Fault diagnosis 

The internal faults of transformers can be mainly classified into electrical and thermal faults 
according to their fault phenomena. Therefore, the fault causes are generally divided into high 
temperature overheating, medium and low temperature overheating, high-energy discharge, low-
energy discharge and partial discharge. When a fault occurs in a transformer, hydrogen, methane, 
ethylene, acetylene and other gases dissolve in the insulating oil of the transformer, and the 
specific type of fault in the transformer is determined based on the content of these gases in the 
oil. Therefore, data collection and sample classification are carried out in this paper. 

5.2.1. Sample collection 

Since the operating condition of a transformer is directly related to the content of dissolved 
gases in the oil, representative data samples are selected here for model creation. Due to the great 
variability and dispersion between the volumes of various gas components, the input data for 
training are first pre-processed here in order to reduce the impact caused by the  
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order-of-magnitude differences between them and to speed up the training. In this paper, the 
training and test sets are processed by normalization, and the specific formulas are shown below: 𝑋ത = 𝑥௜ − 𝑥୫୧୬𝑥୫ୟ୶ − 𝑥୫୧୬, (24)

where, 𝑥௜ denotes the original raw gas data, 𝑥୫ୟ୶ and 𝑥୫୧୬ denote the maximum and minimum 
values of the raw gas data, respectively, and 𝑋ത denotes the normalized gas data. 

5.2.2. Sample classification 

According to the improved three-ratio method of gas characteristics, this paper divides the 
transformer operating status into 6 categories, namely, high-energy discharge, low-energy 
discharge, high temperature overheating, medium and low temperature overheating, partial 
discharge, and normal state. In addition, it introduces the corresponding coding system, which is 
shown in Table 3. Through the model in this paper, the optimized penalty factor 𝑐 and the kernel 
height basis function parameter group 𝜎 are used to train the model using the training samples in 
the original DGA [17] data, and the test samples are used to test and evaluate the model. 

Table 3. Sample classification 
No Category 
1 High-energy discharge 
2 Low-energy discharge 
3 High temperature overheating 
4 Medium to low temperature overheating 
5 Partial discharge 
6 Normal state 

5.2.3. Example analysis 

In order to verify finally that the transformer’s mechanical fault diagnosis model based on 
the improved algorithm optimized support vector machine proposed in this paper is equally 
effective when more data are available. Here in this paper, 260 sets of DGA data collected are 
classified according to the procedure from Table 4. Among the 260 sets of sample data collected, 
they are divided into six categories, of which 170 sets of sample data are available in the training 
set, and the remaining 90 sets are used as the test set sample data. Among them, 1-45 belong to 
the first category (high-energy discharge), 46-90 belong to the second category (low-energy 
discharge), 91-135 belong to the third category (high-temperature overheating), 136-180 belong 
to the fourth category (medium-low temperature overheating), 181-225 belong to the fifth 
category (partial discharge), and 226-260 belong to the sixth category (normal state). And in the 
first five operating states of the original DGA data grouped into 30 groups as the training set, the 
other 1-55 groups as the test set; from the sixth operating state of the data grouped into 20 groups 
as the training set, and the remaining 1-5 groups were put into the test set. The specific training 
set and test set sample labels are shown in Table 4.  

Table 4. Training set and test set samples 
Sample tags 1 2 3 4 5 6 

Test sets 30 30 30 30 30 20 
Sample set 15 15 15 15 15 15 

The test failure results are shown in Table 5. The table demonstrates that the algorithm in this 
paper has good results in six fault cases, with the average detection rate above 93 %. Thus, the 
IGOA-LSSVM proposed in this paper has good results in the detection process, although the 
recognition accuracy in high temperature overheating is lower than 90 %, i.e. the gas 
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characteristics of this fault are not obvious enough and are easily influenced by the rest of the fault 
characteristics. 

Table 5. Failure test results 
Fault type Number of tests Number of correct judgments Accuracy rate 

High-energy discharge 15 14 93.3 % 
Low-energy discharge 15 14 93.3 % 

High temperature overheating 15 13 86.7 % 
Medium to low temperature overheating 15 15 100 % 

Partial discharge 15 14 93.3 % 
Normal state 15 14 93.3 % 

5.2.4. Comparison of diagnosis effect 

In order to illustrate further the effectiveness of the algorithm in diagnostic prediction, this 
paper selected the least squares vector machine based on the Ant colony algorithm and the least 
squares vector machine based on the Particle swarm algorithm for comparison with the algorithm 
applied in this paper. The authors randomly selected 50 test samples for each experiment. The 
experimental results are shown in Fig. 3.-Fig. 5. 

 
Fig. 3. GA-SVM fault diagnosis  

classification results 

 
Fig. 4. PSO-SVM fault diagnosis  

classification results 

 
Fig. 5. IGOA-SVM fault diagnosis classification results 

As shown in Fig. 3, when a GA-LSSVM model is used for transformer fault diagnosis, no 
faults appear for the high energy discharge diagnosis: 3 faults for low-energy discharge diagnosis; 
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3 faults for high-temperature overheating diagnosis; 2 faults for medium- and low-temperature 
overheating diagnosis; 2 faults for partial discharge diagnosis, and the comprehensive fault 
diagnosis rate is 82 %. As can be derived from Fig. 4, when the PSO-LSSVM model is used for 
transformer fault diagnosis, no fault appears in the high-energy discharge diagnosis, only one low 
energy discharge diagnosis error but no fault. Two high temperature overheating diagnosis errors 
also appear without a fault. Two medium and low temperature overheating diagnoses revealed no 
fault, only one partial discharge diagnosis error without fault. So the comprehensive fault 
diagnosis rate is 88 %. As can be derived from Fig. 5, when the IABC-LSSVM model is applied 
for a transformer fault diagnosis, the high-energy discharge diagnosis and the low-energy 
discharge diagnosis reveal no fault. One high-temperature overheating diagnosis error appears 
without fault. Only two medium and low-temperature overheating diagnoses and one partial 
discharge diagnosis revealed errors without fault. The comprehensive fault diagnosis rate is 92 %. 
Therefore, from the results in Fig. 3-Fig. 5, the IGOA-LSSVM proposed in this paper has a good 
effect for diagnosing faults. 

6. Conclusions 

To improve the ability to identify mechanical faults in power transformers, the authors propose 
an IGOA-LSSVM fault diagnosis model based on the IGOA. To improve the prediction of 
LSSVM, they created an IGOA model based on GOA algorithm using three strategies: 
self-learning factor, proportional weight coefficient and Levy flight, and used it to optimize the 
LSSVM parameters. In the simulation experiments, the IGOA-LSSVM has better recognition 
effect compared with ACO-LSSM and PSO-LSSVM models for the identification of five power 
transformer faults. In the next step, the authors are going to improve further the fault diagnosis 
method. 
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