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Abstract. The paper is aimed at investigating the motion conditions of the wheeled vibro-impact 
locomotion system equipped with the twin crank-slider excitation mechanism and the additional 
braking mechanisms allowing only one-way rotation of the wheels. The novelty of the present 
research consists in the improved mathematical model describing the motion conditions of the 
vibro-impact system and the proposed parameters optimization technique that allows for 
maximizing the average translational velocity of the wheeled platform. The main idea of this 
technique is to provide the maximal velocities of internal bodies when they get in contact with the 
corresponding impact plates. The numerical modeling results describing the dynamic behavior of 
the vibro-impact system are obtained in Mathematica software and substantiate the correctness of 
the developed mathematical model and of the proposed parameters optimization technique. The 
paper can be of significant practical and scientific interest for researchers and engineers studying 
and improving the vibratory locomotion systems, e.g., for inspecting and cleaning the pipelines. 
Keywords: twin crank-slider mechanism, braking mechanism, motion conditions, mathematical 
model, optimization technique, numerical modeling, dynamic behavior. 

1. Introduction 

The investigations dealing with mathematical modeling and analyzing the dynamic behavior 
of the vibration-driven locomotion systems are currently of significant interest among researchers 
and engineers all over the world. One of the most important problems occurring during designing 
and implementation of such systems consists in providing their most efficient operational 
conditions. Considering the wheeled locomotion systems, the average velocity factor is of the 
most significant ones that should be maximized under the other constant conditions. This paper is 
focused on motion modeling and testing the parameters optimization technique of the wheeled 
vibro-impact locomotion system with the twin crank-slider excitation mechanism. 

Different types of the vibro-impact locomotion systems are thoroughly investigated in 
numerous scientific papers, e.g. [1]-[4]. The experimental investigations on the self-propelled 
vibro-impact locomotion system operating under anisotropic friction are presented in [1]. The 
influence of dry and isotropic friction on the dynamic behavior of a vibro-impact locomotion 
system is studied in [2]. The paper [3] is devoted to investigating the locomotion conditions of a 
self-propelled vibration-driven capsule system equipped with the push-type solenoid. In [4], the 
authors considered the basic approaches to improving the locomotion performance of 
vibration-driven systems. The paper [5] is dedicated to the parameters optimization problem 
focused on maximizing the average velocity of the multi-module vibration-driven locomotion 
robot. The wheeled vibration-driven robot equipped with the inertial vibration exciter (unbalanced 
rotor) is studied in the papers [6]-[8]. The robot dynamic behavior is thoroughly studied in [6], 
[7], and the problems of its vibratory system’s parameters optimization are considered in [8]. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2022.22422&domain=pdf&date_stamp=2022-04-21
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The analysis of numerous scientific papers (e.g. [1]-[8]) has shown that the problems of 
implementing the crank excitation mechanisms in the multi-mass vibro-impact locomotion 
systems are not thoroughly investigated. Therefore, the authors of the present paper have 
previously studied the improved design of the controllable eccentric-type excitation mechanism 
[9], investigated the motion conditions of the three-mass vibro-impact system with the crank-slider 
excitation mechanism [10], and analyzed the possibilities of implementing the proposed excitation 
mechanism in vibratory compacting equipment [11]. The novelty of the present paper consists in 
improving the mathematical model and parameters optimization technique of the wheeled 
vibro-impact locomotion system equipped with the twin crank-slider excitation mechanism and 
the additional braking mechanisms allowing only one-way rotation of the wheels. The proposed 
wheeled platform can be implemented in practice for inspecting and cleaning the pipelines. 

2. Research methodology 

2.1. Dynamic diagram of the wheeled vibro-impact locomotion system 

The dynamic diagram of the three-mass vibro-impact system is presented in Fig. 1. The inertial 
reference frame 𝑥𝑂𝑦 is adopted to study the translational locomotion of the wheeled platform of 
the mass 𝑚ଵ. For this purpose, the generalized coordinate 𝑥ଵ is introduced. The twin crank-slider 
mechanism “ABC-ADE” is used to excite the oscillations of the internal bodies of the masses 𝑚ଶ 
and 𝑚ଷ. The angular velocity 𝜔 of the crank BAD is considered to be constant, and the initial 
positions of the crank and the connecting rods BC, DE are the horizontal ones. The relative 
displacements of the oscillating bodies 𝑚ଶ, 𝑚ଷ with respect to the wheeled platform are described 
by the corresponding generalized coordinates 𝑥ଶ and 𝑥ଷ. The rotation of the crank BAD is 
transformed into the translational reciprocating motions of the sliders C and E, which are 
connected with the internal bodies 𝑚ଶ, 𝑚ଷ by the springs of the stiffnesses 𝑘ଵ, 𝑘ଶ, respectively. 
The potential energies accumulated in the springs during the sliders reciprocating motions are 
transformed into the kinetic energies of the internal bodies oscillations. 

In order to ensure the translational motion of the wheeled platform, the vibro-impact 
operational conditions are used. The relative displacements of the internal bodies (masses 𝑚ଶ, 𝑚ଷ) 
with respect to the wheeled platform (mass 𝑚ଵ) are limited by the corresponding impact plates 
and springs 𝑘ଷ, 𝑘ସ. When the internal bodies come into contact with the impact plates, their kinetic 
energies reduce causing the increase in the potential energies of the impact springs. The energies 
accumulated in the springs are transformed into the kinetic energy of the wheeled platform. In 
such a manner, the stepwise (discontinuous) translational motion of the platform is performed to 
the right; the latter is adopted as the forward motion direction. The backward motion (directed to 
the left) is constrained due to the use of the special braking mechanisms in the wheels allowing 
only one-way rotation. For example, these mechanisms can be designed as unidirectional 
(overrunning) mechanical clutches (Fig. 1). While carrying out further parametric synthesis of the 
vibro-impact system, it is necessary to maximize the average velocity of the wheeled platform. 

 
Fig. 1. Dynamic diagram of the vibro-impact locomotion system 
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2.2. Mathematical model of the system locomotion 

In order to develop the mathematical model of the considered vibro-impact system locomotion, 
the corresponding Lagrange equation of the second kind was derived for each generalized 
coordinate (𝑥ଵ, 𝑥ଶ, 𝑥ଷ). At the present stage of the investigations, all the energy losses are 
neglected. Three differential equations describing the system locomotion are following: ሺ𝑚ଵ + 𝑚ଶ + 𝑚ଷሻ𝑥ሷଵ + ሺ𝑥஼ − 𝑥ଶሻ𝑘ଵ + ሺ𝑥ா − 𝑥ଷሻ𝑘ଶ + ሺ𝛿ଶ∗ − 𝑥ଶሻ𝑘ଷ∗ + ሺ𝛿ଷ∗ − 𝑥ଷሻ𝑘ସ∗ = 𝐹௕௥ , (1)𝑚ଶ𝑥ሷଶ + ሺ𝑥ଶ − 𝑥஼ሻ𝑘ଵ + ሺ𝑥ଶ − 𝛿ଶ∗ሻ𝑘ଷ∗ = 0, (2)𝑚ଷ𝑥ሷଷ + ሺ𝑥ଷ − 𝑥ாሻ𝑘ଶ + ሺ𝑥ଷ − 𝛿ଷ∗ሻ𝑘ସ∗ = 0, (3)

where 𝑥஼, 𝑥ா are the functions describing the relative displacements of the sliders C, E with respect 
to their initial positions; 𝑘ଷ∗, 𝑘ସ∗ are the functions describing the change of the stiffness coefficients 
during the impacts of the corresponding bodies; 𝛿ଶ∗, 𝛿ଷ∗ are the initial distances between the 
oscillating bodies and the corresponding impact plates (i.e., the initial impact gaps); 𝐹௕௥ is the 
braking force acting on the wheels when they attempt to rotate in a counterclockwise direction. 
All the functions and values mentioned above can be expressed as follows: 

𝑥஼ = 𝑙஺஻ + 𝑙஻஼ − 𝑙஺஻ cosሺ𝜔𝑡ሻ − ට𝑙஻஼ଶ − ሺ𝑙஺஻ sinሺ𝜔𝑡ሻሻଶ ≈௟ಳ಴≫௟ಲಳ 𝑙஺஻ − 𝑙஺஻ cosሺ𝜔𝑡ሻ, (4)𝑥ா = −𝑙஺஽ − 𝑙஽ா + 𝑙஺஽ cosሺ𝜔𝑡ሻ + ට𝑙஽ாଶ − ሺ𝑙஺஽ sinሺ𝜔𝑡ሻሻଶ ≈௟ವಶ≫௟ಲವ− 𝑙஺஽ + 𝑙஺஽ cosሺ𝜔𝑡ሻ, (5)𝑘ଷ∗ = ൜𝑘ଷ, 𝑥ଶ ≥ 𝛿ଶ∗,0, 𝑥ଶ < 𝛿ଶ∗, (6)𝑘ସ∗ = ൜𝑘ସ, 𝑥ଷ ≥ 𝛿ଷ∗,0, 𝑥ଷ < 𝛿ଷ∗, (7)𝛿ଶ∗ = 2𝑙஺஻ + 𝛿ଶ, (8)𝛿ଷ∗ = 𝛿ଷ, (9)𝐹௕௥ = ൜0, signሺ𝑥ሶଵሻ ≥ 0,ሺ𝑥஼ − 𝑥ଶሻ𝑘ଵ + ሺ𝑥ா − 𝑥ଷሻ𝑘ଶ + ሺ𝛿ଶ∗ − 𝑥ଶሻ𝑘ଷ∗ + ሺ𝛿ଷ∗ − 𝑥ଷሻ𝑘ସ∗ , signሺ𝑥ሶଵሻ < 0, (10)

where 𝑙஺஻, 𝑙஻஼, 𝑙஺஽, 𝑙஽ா are the lengths of the corresponding rods AB, BC, AD, DE forming the 
crank-slider excitation mechanism; 𝜔 is the angular velocity of the crank BAD; 𝛿ଶ, 𝛿ଷ are the 
smallest distances between the internal bodies and the corresponding impact plates at the state of 
rest when the crank angular position is 0 (for the mass 𝑚ଶ) and 𝜋 (for the mass 𝑚ଷ). 

2.3. Analyzing the basic stages of the internal bodies oscillations 

Substituting Eq. (4)-(9) into Eq. (2)-(3), let us solve the obtained system of two differential 
equations in the Mathematica software considering the following stages. At the first stage, the 
second body (mass 𝑚ଶ) moves from its left initial position to the position where it comes into 
contact with the impact plate: 𝑥ଶሺଵሻ൫𝑡ଶሺଵሻ൯ = 𝛿ଶ∗ = 2𝑙஺஻ + 𝛿ଶ. The third body (mass 𝑚ଷ) moves 
from its right initial position to the position where its velocity becomes zero: 𝑥ሶଷሺଵሻ൫𝑡ଷሺଵሻ൯ = 0. For 
this stage, adopting zero values of the initial conditions ሺ𝑥ଶሺ0ሻ, 𝑥ሶଶሺ0ሻ, 𝑥ଷሺ0ሻ, 𝑥ሶଷሺ0ሻ = 0ሻ, the laws 
of motion of the corresponding internal bodies are following: 

𝑥ଶሺଵሻ = 𝑙஺஻ ቀ𝑘ଵ − 𝑚ଶ𝜔ଶ + 𝑚ଶ𝜔ଶ cosቀඥሺ𝑘ଵ 𝑚ଶ⁄ ሻ𝑡ቁ − 𝑘ଵ cosሺ𝜔𝑡ሻቁ𝑘ଵ − 𝑚ଶ𝜔ଶ , (11)

𝑥ଷሺଵሻ = 𝑙஺஽൫−𝑘ଶ + 𝑚ଷ𝜔ଶ −𝑚ଷ𝜔ଶ cos൫ඥሺ𝑘ଶ 𝑚ଷ⁄ ሻ𝑡൯ + 𝑘ଶ cosሺ𝜔𝑡ሻ൯𝑘ଶ − 𝑚ଷ𝜔ଶ . (12)
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At the second stage, the second body (mass 𝑚ଶ) moves from the position where it got in contact 
with the impact plate to the position where its velocity becomes zero: 𝑥ሶଶሺଶሻ൫𝑡ଶሺଶሻ൯ = 0. The third 
body (mass 𝑚ଷ) moves from its left position where its velocity became zero to the position where 
it comes into contact with the impact plate: 𝑥ଷሺଶሻ൫𝑡ଷሺଶሻ൯ = −𝑥ଷሺଵሻ൫𝑡ଷሺଵሻ൯ + 𝛿ଷ∗ = −𝑥ଷሺଵሻ൫𝑡ଷሺଵሻ൯ +𝛿ଷ. For the considered stage, the initial conditions can be presented as follows: 𝑥ଶሺ0ሻ = 𝑥ଷሺ0ሻ =𝑥ሶଷሺ0ሻ = 0, 𝑥ሶଶሺ0ሻ = 𝑥ሶଶሺଵሻ൫𝑡ଶሺଵሻ൯. The laws of motion of the internal bodies are following: 

𝑥ଶሺଶሻ = 𝑘ଵ𝑙஺஻ + 𝑘ଷሺ2 ∙ 𝑙஺஻ + 𝛿ଶሻ𝑘ଵ + 𝑘ଷ − 𝑘ଵ𝑙஺஻ cosሺ𝜔𝑡ሻ𝑘ଵ + 𝑘ଷ −𝑚ଶ𝜔ଶ        +ඥ𝑚ଶ ሺ−𝑘ଵ − 𝑘ଷሻ⁄ 𝑥ሶଶሺଵሻ൫𝑡ଶሺଵሻ൯ sinh ቀඥሺ−𝑘ଵ − 𝑘ଷሻ 𝑚ଶ⁄ 𝑡ቁ 
       + ቀ𝑚ଶ൫𝑘ଵ𝑙஺஻ + 𝑘ଷሺ2𝑙஺஻ + 𝛿ଶሻ൯𝜔ଶ − 𝑘ଷሺ𝑘ଵ + 𝑘ଷሻሺ2𝑙஺஻ + 𝛿ଶሻቁ coshቆට−𝑘ଵ − 𝑘ଷ𝑚ଶ 𝑡ቇሺ𝑘ଵ + 𝑘ଷሻሺ𝑘ଵ + 𝑘ଷ −𝑚ଶ𝜔ଶሻ , 

(13)

𝑥ଷሺଶሻ = 𝑥ଷሺଵሻ = 𝑙஺஽൫−𝑘ଶ + 𝑚ଷ𝜔ଶ −𝑚ଷ𝜔ଶ cos൫ඥሺ𝑘ଶ 𝑚ଷ⁄ ሻ𝑡൯ + 𝑘ଶ cosሺ𝜔𝑡ሻ൯𝑘ଶ − 𝑚ଷ𝜔ଶ . (14)

There are much more stages of the internal bodies oscillations. Due to the limited length of the 
present paper, let us pay major attention to the first two ones describing the starting conditions of 
the wheeled vibro-impact locomotion system. 

3. Results and discussion 

3.1. Stating and solving the parameters optimization problem 

In the present research, let us consider the optimization problem consisting in maximizing the 
average translational velocity 𝑥ሶଵ௔௩௘௥. of the wheeled platform. The largest velocity can be reached 
in the case when the velocities of the internal bodies reach their maximal values during the contacts 
of the corresponding impact bodies and plates. Considering the stages of the internal bodies 
motions analyzed above, the optimization problem can be stated as follows: 

𝑥ሶଵ௔௩௘௥. → max ⇒ ቐ𝑥ሶଶሺଵሻሺ𝑙஺஻,𝑘ଵ,𝑚ଶ,𝜔, 𝛿ଶሻ →௧ୀ௧మሺభሻ max ,𝑥ሶଷሺଶሻሺ𝑙஺஽,𝑘ଶ,𝑚ଷ,𝜔, 𝛿ଷሻ →௧ୀ௧యሺమሻ max . (15)

The duration 𝑡ଶሺଵሻ of the first stage of the mass 𝑚ଶ oscillations can be determined by 
substituting 𝑥 = 𝑥ଶሺଵሻ൫𝑡ଶሺଵሻ൯ = 2𝑙஺஻ + 𝛿ଶ into Eq. (11) and solving it with respect to time 𝑡. Then, 
by differentiating Eq. (11) with respect to time 𝑡, the velocity expression of the mass 𝑚ଶ can be 
derived. Substituting the obtained value of the stage duration 𝑡ଶሺଵሻ into the derived expression 𝑥ሶଶሺଵሻ, the optimization function 𝑥ሶଶሺଵሻሺ𝑙஺஻, 𝑘ଵ,𝑚ଶ,𝜔, 𝛿ଶሻ can be deduced. 

The duration 𝑡ଷሺଵሻ of the first stage of the mass 𝑚ଷ oscillations can be determined after deriving 
the velocity expression by differentiating Eq. (12) with respect to time 𝑡 and substituting 𝑥ሶ =𝑥ሶଷሺଵሻ൫𝑡ଷሺଵሻ൯ = 0. The solution of the obtained equation with respect to time 𝑡 gives the 
corresponding duration 𝑡ଷሺଵሻ. Substituting the obtained value 𝑡ଷሺଵሻ into Eq. (12), the maximal 
displacement 𝑥ଷሺଵሻ൫𝑡ଷሺଵሻ൯ can be determined. The duration 𝑡ଷሺଶሻ of the second stage of the mass 𝑚ଷ oscillations can be determined by substituting 𝑥 = 𝑥ଷሺଶሻ൫𝑡ଷሺଶሻ൯ = −𝑥ଷሺଵሻ൫𝑡ଷሺଵሻ൯ + 𝛿ଷ into 
Eq. (14), and solving it with respect to time 𝑡. Then, by differentiating Eq. (14) with respect to 
time 𝑡, the velocity expression of the mass 𝑚ଷ can be derived for the second stage of its 
oscillations. Substituting the obtained value of the stage duration 𝑡ଷሺଶሻ into the derived expression 
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𝑥ሶଷሺଶሻ, the optimization function 𝑥ሶଷሺଶሻሺ𝑙஺஽,𝑘ଶ,𝑚ଷ,𝜔, 𝛿ଷሻ can be deduced. 
The parameters optimization technique considered above has been programmed in the 

Mathematica software using the numerical maximization algorithm defining the global maximum 
of the functions 𝑥ሶଶሺଵሻሺ𝑙஺஻, 𝑘ଵ,𝑚ଶ,𝜔, 𝛿ଶሻ, 𝑥ሶଷሺଶሻሺ𝑙஺஽,𝑘ଶ,𝑚ଷ,𝜔, 𝛿ଷሻ subject to the given constraints: 
1 kg < 𝑚ଶ < 4 kg, 1 kg < 𝑚ଷ < 4 kg, 103 N/m < 𝑘ଵ < 107 N/m, 103 N/m< 𝑘ଶ < 107 N/m. 
Specifying the crank lengths 𝑙஺஻ = 0.03 m, 𝑙஺஽ = 0.03 m, the angular velocity 𝜔 = 314 rad s⁄ , 
and the impact gaps 𝛿ଶ = 0.01 m, 𝛿ଷ = 0.01 m, the optimal values of the masses of the internal 
bodies and the stiffness coefficients of the corresponding springs have been calculated:  𝑚ଶ = 3.04 kg, 𝑚ଷ = 2.99 kg, 𝑘ଵ = 9.98∙105 N/m, 𝑘ଶ = 9.84∙105 N/m. 

4. Numerical modeling of the system locomotion in Mathematica software 

In order to perform further numerical modeling of the wheeled vibro-impact system 
locomotion in the Mathematica software, let us introduce the mass of the wheeled platform  𝑚ଵ = 30 kg, and the stiffness coefficients of the impact springs 𝑘ଷ = 108 N/m, 𝑘ସ = 108 N/m. 

The numerical modeling results of the system locomotion under the following controlled 
parameters 𝛿ଶ = 𝛿ଷ = 0.01 m (𝛿ଶ∗ = 0.07 m, 𝛿ଷ∗ = 0.01 m) are presented in Fig. 3. All the changes 
in the position of the wheeled platform are caused by the impacts (𝑥ଶ > 𝛿ଶ∗) of the mass 𝑚ଶ at 𝑡 = 0.008 s, 0.027 s, 0.034 s, 0.053 s, and by the impacts (𝑥ଷ > 𝛿ଷ∗) of the mass 𝑚ଷ at 𝑡 = 0.018 s, 
0.037 s, 0.044 s, 0.056 s. These results allow for substantiating the correctness of the proposed 
mathematical model describing the system locomotion. 

 
a) 

    
b) 

Fig. 2. Time dependences of the system’s bodies: a) displacements and b) velocities 

In order to check the correctness of the optimization technique considered above, let us adopt 
the distances 𝛿ଶ, 𝛿ଷ characterizing the corresponding impact gaps as the changeable parameters 
effecting the kinematic and dynamic characteristics of the vibro-impact system. Fig. 3 presents 
the dependencies of the wheeled platform displacements 𝑥ଵ and average velocity 𝑥ሶଵ௔௩௘௥. on the 
impact gaps values (0 ≤ 𝛿ଶ = 𝛿ଷ ≤ 0.03 m). The optimization problem defining the system’s 
inertia-stiffness parameters (𝑚ଶ, 𝑚ଷ, 𝑘ଵ, 𝑘ଶ) was solved above for the values 𝛿ଶ = 0.01 m,  𝛿ଷ = 0.01 m. The obtained plots substantiate the maximal values of the wheeled platform average 
velocity of about 7 m/s in the impact gaps range 0.01 m ≤ 𝛿ଶ = 𝛿ଷ ≤ 0.015 m. 
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a) 

 
b) 

Fig. 3. Dependencies of the platform a) displacement and b) average velocity on the impact gaps values 

5. Conclusions 

The paper considers the improved design of the wheeled vibro-impact locomotion system 
(Fig. 1), which can be used for inspecting and cleaning the pipelines. It is equipped with the 
additional braking mechanisms that allows one-way rotation of the wheels. The vibrations are 
excited by the twin crank-slider mechanism setting two internal bodies into the translational 
oscillatory motion. Providing the vibro-impact operational conditions, the stepwise 
(discontinuous) translational motion of the wheeled platform is studied. The corresponding 
mathematical model describing the system motion conditions is developed, and the analysis of the 
basic stages of the internal bodies oscillations is carried out. The analytical solutions of the derived 
differential equations are presented for the first two stages of the internal bodies oscillations. 
Based on the obtained solutions, the system’s parameters optimization problem is stated and 
solved using the Mathematica software. The numerical modeling of the system locomotion allows 
for substantiating the correctness of the developed mathematical model and of the proposed 
parameters optimization technique. All the changes in the position of the wheeled platform are 
caused by the impacts of the internal masses (Fig. 2), and the maximal values of the wheeled 
platform average velocity of about 7 m/s are located in the impact gaps range  
0.01 m ≤ 𝛿ଶ = 𝛿ଷ ≤ 0.015 m (Fig. 3), which were initially used for solving the optimization 
problem. The increase in the impact gaps over 0.03 m causes the non-impact operational 
conditions characterized by the lowest values of the wheeled platform average velocity. 
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