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Abstract. Based on Eshelby’s equivalent inclusion theory, the four-phase model and the 
interaction direct derivative estimate, the prediction model of effective thermal expansion 
coefficient of composite containing multiple types of inclusion in anisotropic matrix was 
established. The effective thermal expansion coefficient of eutectic composite containing defects 
was calculated. And then the influence of defects and inclusions on the effective thermal 
expansion coefficient is discussed in detail. The results show that the influence of inclusions will 
be amplified by defects when there are multiple inclusions in the matrix. Therefore, the interaction 
direct derivative estimate cannot accurately predict the influence of defect distribution on thermal 
expansion coefficient of eutectic composite ceramics. 
Keywords: anisotropic, interaction direct inference estimation, defect, coefficient of thermal 
expansion. 

1. Introduction 

Thermal expansion problems of composite ceramic materials widely exist in aerospace, 
military equipment, medical applications and other fields. Regulating the thermal expansion 
properties of composite ceramic materials is helpful for the preparation of precision parts with 
controllable thermal expansion, which is of great value for improving equipment sensitivity and 
optimizing performance. Due to the extremely low temperature during the preparation process, 
the two phases in the eutectic will be mismatched due to thermal expansion, which inevitably 
produces thermal mismatched strain. Therefore, the thermal residual stress of composite ceramic 
material has important theoretical significance and engineering application value. In order to 
predict the residual thermal stress, it is necessary to have a clear understanding of the effective 
thermal expansion coefficient of composite ceramic materials. 

In recent years, many scholars have done a lot of research on the prediction of thermal 
expansion coefficient by using different theories and methods. And good results have been 
obtained for the prediction of thermal expansion properties of composites with similar thin 
structures. For example, Wu [1] used Eshelby’s equivalent inclusion theory to predict thermal 
expansion coefficient of inclusion composite with different shapes. Kumar [2] studied the 
effective thermal expansion coefficient of ceramic particle metal matrix composites by using 
Eshelby-Mori-Tanaka method. Upadhyay [3] et al. further studied the effective thermal expansion 
coefficient of granular composites with debonding interfaces by using the three-phase model 
method. Mohammad [4] and Trofimov [5] predicted the macroscopic thermal expansion 
coefficient of fiber-reinforced composites with randomly distributed micro-cracks. Hirata [6] 
deduced the equivalent thermal expansion coefficient of the inclusion interaction, which all 
obtained good prediction results within a certain range of inclusion content. In addition, the 
influence of fiber microstructure on thermal expansion coefficient of fiber reinforced composites 
was calculated by using numerical methods by Li [7] and Liu [8], Sihn [9] using the improved 
formula of universal single cell model with unknown stress. The thermal expansion coefficient is 
studied considering the effect of defects. When the defects exceed a certain range and some 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2022.22387&domain=pdf&date_stamp=2022-02-05


EFFECT OF DEFECT DISTRIBUTION ON THERMAL EXPANSION COEFFICIENT OF EUTECTIC COMPOSITE CERAMICS.  
ZHIHONG DU, RUNXIU YANG, MIAN WU 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 101 

theoretical results exceed the limit of the thermal expansion coefficient of components, the thermal 
expansion coefficient model of composite materials with anisotropic matrix needs further 
improvement. 

In the above methods, inclusions are placed in isotropic material to study, but there are few 
studies on anisotropic matrix materials. In the mesoscale, the effective matrix of composite 
ceramics is anisotropic, so the model is not universal. The coefficient of thermal expansion is 
studied considering the effect of defects. When the defects exceed a certain range and some 
theoretical results exceed the limit of the thermal expansion coefficient of components, the thermal 
expansion coefficient model of composite materials with anisotropic matrix needs further 
improvement. 

In this paper, four phase model method and interaction direct inference estimation are adopted, 
and based on Eshelby’s equivalent inclusion theory. According to the different distribution of 
defects in composites, a universal model of thermal expansion coefficient of eutectic composites 
was proposed, and the effects of defects and fiber content on thermal expansion coefficient of 
composites were analyzed. 

2. Interaction direct inference estimation in four phase model 

It is assumed that ellipsoid inclusions will be randomly distributed in the matrix in the 
composite. The defects can be considered as special ellipsoidal inclusions with stiffness 0. A 
representative of the composite ceramic materials selected unit is analyzed, taking containing 
interface phase inclusions called two phase cell yuan, will be embedded in a two phase cell yuan 
limited atmosphere constitute three phase cell yuan, substrate material and then to embed the 
three-phase cell yuan and composite material effective medium constitute four phase model, four 
phase cell structure model is shown in Fig. 1. 

 
Fig. 1. Cell model with defects 

In the model, the inclusions are assumed to be ellipsoid, and 𝑎ଵ, 𝑎ଶ and 𝑎ଷ are defined as three 
main half-axis lengths respectively, where axis 𝑎ଵ is the axis of symmetry of the material. The 
interface layer and matrix shell around the inclusion have the same shape with the inclusion. The 
local coordinate system as shown in Fig. 1 is established, and the ellipsoid inclusion can be 
expressed by the following equation: 

൬𝑥ଵ𝑎ଵ൰ଶ + ൬𝑥ଶ𝑎ଶ൰ଶ + ൬𝑥ଷ𝑎ଷ൰ଶ ≤ 1. (1)

In the equation, when 𝑎ଵ ≪ 𝑎ଶ, 𝑎ଷ represents sheet inclusion, when 𝑎ଵ ≫ 𝑎ଶ, 𝑎ଷ represents 
rod or fibrous inclusion. The flexibility increment of the desired effective medium is defined as 𝐇. According to the direct estimation method of interaction [10], the following results can be 
obtained: 𝐇 = (𝐈 −෍Ω௜𝐇௜ௗ)ିଵ𝐇 ௗ , (2)

where: 
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𝐇௜ௗ = ෍[𝑓௜(𝐇௜ି ଵ + Ω௜)ିଵ], (3)

where, 𝐇௜ is the compliance fluctuation of type 𝐼 inclusions relative to matrix: 𝐇௜ = 𝐒௜ − 𝐒଴. (4)Ω௜ is the eigen stiffness of inclusion, Ω௜ = 𝐂଴(𝐈 − 𝐌௜), when the composite contains only type 𝑖 inclusions, the sparse solution as follows: 𝐇ௗ = ෍𝐇௜ௗ . (5)

The equivalent stiffness of eutectic composite ceramics is as follows: 𝐂 = (𝐒଴ + 𝐇)ିଵ. (6)

In fibrous inclusions, the components of Eshelby tensor 𝐌௜ are as follows: 𝑀ଶଶଷଷ = 𝑀ଷଷଶଶ =ସణబିଵ଼(ଵିణబ), 𝑀ଶଷଶଷ = 𝑀ଵଷଵଷ = ଵସ, 𝑀ଵଶଵଶ = ଷିସణబ଼(ଵିణబ), 𝑀ଶଶଶଶ = 𝑀ଷଷଷଷ = ହିସణబ଼(ଵିణబ), 𝑀ଶଶଵଵ = 𝑀ଷଷଵଵ =ణబଶ(ଵିణబ). The rest of the components are 0. Where, subscript 𝑖 represents type 𝑖 inclusions, subscript 
0 represents the matrix, 𝐈 represents the fourth-order unit tensor, 𝐒௜ is the equivalent compliance 
matrix of type 𝑖 inclusions, 𝐒଴ = 𝐂଴ି ଵ represents the compliance matrix of composite ceramic 
matrix, 𝐌௜ represents the fourth-order Eshelby tensor corresponding to type 𝑖 inclusions, 𝑓௜ 
represents the volume content of type 𝑖 inclusions, and 𝜗଴ represents the Poisson’s ratio of matrix. 

3. Equivalent thermal expansion coefficient of eutectic composite ceramics 

For ease of calculation, 𝛂଴ and 𝛂௜ are used to represent the thermal expansion coefficient 
matrix of the matrix and the type 𝑖 inclusions. And the thermal expansion coefficient matrix can 
be written as follows: 

൜𝛂଴ = (𝛼଴,𝛼଴,𝛼଴, 0,0,0)் ,𝛂௜ = (𝛼௜ ,𝛼௜ ,𝛼௜ , 0,0,0)் .  (7)

In the above formula, 𝛂଴ and 𝛂௜ are used to represent the thermal expansion coefficient. The 
thermal expansion coefficient matrix of the effective medium representing the composite is 
indicated by 𝛂: 𝛂 = (𝛼ଵଵ,𝛼ଶଶ,𝛼ଷଷ, 0,0,0)் . (8)

In the above formula, 𝛼ଵଵ, 𝛼ଶଶ and 𝛼ଷଷ are linear expansion coefficients of composite material 
along axis 1, 2 and 3 directions. When the temperature of the composite material changes ∆𝑇, the 
effective medium thermal strain increment caused by the mismatch of thermal expansion 
coefficients of each phase in the material is 𝜀: 𝜀 = (𝛼 − 𝛼଴)Δ𝑇. (9)

The thermal mismatch strain 𝜀௜ generated in the inclusion is shown as follows: 𝜀௜ = (𝛼௜ − 𝛼଴)Δ𝑇. (10)

According to Eshelby’s theory, the average strain tensor of composite ceramics is as follows: 
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𝛆ത = 𝛂଴Δ𝑇 − 𝑓௜Ω௜ି ଵ𝛔௜, (11)

where, Ω௜ is the intrinsic stiffness tensor of inclusion. Ω௜ = 𝐂௜(𝐈 − 𝐌௜), 𝐌௜ is the Eshelby tensor 
corresponding to the inclusion shape, 𝐂௜ is the stiffness tensor of the inclusion, and 𝛔௜ is the 
average stress in the inclusion. 

According to the definition of effective thermal expansion coefficient matrix, the average 
strain tensor of composite ceramic material is as follows: 𝜀̅ = 𝛼Δ𝑇. (12)

Then, it can be calculated from Eqs. (9), (11) and (12): 𝜀 = −𝑓௜Ω௜ି ଵ𝜎௜ . (13)

According to Eshelby’s theory, when the thermal strain increment 𝜀 is generated, the stress 
tensor of the matrix is as follows: 𝜎଴ = Ω଴(𝐈 − Ω଴𝐇)ିଵ𝜀, (14)

where, Ω଴ is the equivalent intrinsic stiffness tensor of the matrix. Equivalent stress tensor in 
inclusion is as follows: 𝜎௜ = −Ω௜(𝐈 + Ω௜𝐇௜)ିଵ𝜀௜ + (𝐈 + Ω௜𝐇௜)ିଵ𝜎଴. (15)

In the above formula, the −Ω௜(𝐈 + Ω௜𝐇௜)ିଵ𝜀௜ is the stress tensor caused by the thermal 
mismatch strain 𝜀௜ generated in the inclusion, and the (𝐈 + Ω௜𝐇௜)ିଵ𝜎଴ is the stress tensor in the 
inclusion caused by the external load stress tensor. The eigen stiffness tensor of matrix, interface 
and reinforced fiber are equal because the matrix, interface and reinforced fiber have the same 
shape and orientation in the fiber reinforced eutectic composite ceramics. Substituting Eqs. (14) 
and (15) into Eq. (13), the results are as follows: 𝜀 = 𝑓௜𝜔௜[𝜀௜ − (𝐈 − Ω଴𝐇)ିଵ𝜀]. (16)

Here, 𝜔௜ = (𝐈 + Ω௜𝐇௜)ିଵ, then Eq. (16) can be written as: 𝜀 = 𝑓௜𝜔௜[𝐈 + 𝑓௜𝜔௜(𝐈 − Ω଴𝐇)ିଵ]ିଵ𝜀௜ . (17)

According to the defect cell model, axis 1 is the longitudinal direction of the inclusion, and 
axis 2 and 3 constitute the transverse plane of the inclusion. Then the equivalent thermal expansion 
coefficient of the composite material can be expressed as follows: 𝛼ଵଵ = 𝛼଴ + 𝑓௜𝑅ଵଵ௜ (𝛼௜ − 𝛼଴),    𝛼ଶଶ = 𝛼଴ + 𝑓௜𝑅ଶଶ௜ (𝛼௜ − 𝛼଴), (18)

where: 

𝑅ଵଵ௜ = 𝑍ଶଶ௜ + 𝑍ଶଷ௜ − 2𝑍ଵଶ௜𝑍ଵଵ௜ (𝑍ଶଶ௜ + 𝑍ଶଷ௜ ) − 2𝑍ଵଶ௜ 𝑍ଶଵ௜ ,      𝑅ଶଶ௜ = 𝑍ଵଵ௜ − 𝑍ଶଵ௜𝑍ଵଵ௜ (𝑍ଶଶ௜ + 𝑍ଶଷ௜ ) − 2𝑍ଵଶ௜ 𝑍ଶଵ௜ ,    𝑍ଵଵ௜ = 1 + 𝐴ଵଵ + 𝑋ଵଵ௜ , 𝑍ଵଶ௜ = 𝐴ଵଶ + 𝑋ଵଶ௜ ,       𝑍ଶଵ௜ = 𝐴ଶଵ + 𝑋ଶଵ௜ ,      𝑍ଶଶ௜ = 1 + 𝐴ଶଶ + 𝑋ଶଶ௜ ,     𝑍ଶଷ௜ = 𝐴ଶଷ + 𝑋ଶଷ௜ , 𝐴ଵଵ = 𝐾଴ − 𝐾௜9𝐾଴𝐾௜ ൫𝐶ଵଵ௘௙௙ + 2𝐶ଵଶ௘௙௙൯ + 𝜇଴ − 𝜇௜3𝜇଴𝜇௜ ൫𝐶ଵଵ௘௙௙ − 𝐶ଵଶ௘௙௙൯, 𝐴ଵଶ = 𝐾଴ − 𝐾௜9𝐾଴𝐾௜ ൫𝐶ଵଵ௘௙௙ + 2𝐶ଵଶ௘௙௙൯ + 𝜇଴ − 𝜇௜6𝜇଴𝜇௜ ൫𝐶ଵଶ௘௙௙ − 𝐶ଵଵ௘௙௙൯, 



EFFECT OF DEFECT DISTRIBUTION ON THERMAL EXPANSION COEFFICIENT OF EUTECTIC COMPOSITE CERAMICS.  
ZHIHONG DU, RUNXIU YANG, MIAN WU 

104 VIBROENGINEERING PROCEDIA. FEBRUARY 2022, VOLUME 40  

𝐴ଶଵ = 𝐾଴ − 𝐾௜9𝐾଴𝐾௜ ൫𝐶ଶଵ௘௙௙ + 𝐶ଶଶ௘௙௙ + 𝐶ଶଷ௘௙௙൯ + 𝜇଴ − 𝜇௜6𝜇଴𝜇௜ ൫2𝐶ଶଵ௘௙௙ − 𝐶ଶଶ௘௙௙ − 𝐶ଶଷ௘௙௙൯, 𝐴ଶଶ = 𝐾଴ − 𝐾௜9𝐾଴𝐾௜ ൫𝐶ଶଵ௘௙௙ + 𝐶ଶଶ௘௙௙ + 𝐶ଶଷ௘௙௙൯ + 𝜇଴ − 𝜇௜6𝜇଴𝜇௜ ൫2𝐶ଶଶ௘௙௙ − 𝐶ଶଵ௘௙௙ − 𝐶ଶଷ௘௙௙൯, 𝐴ଶଷ = 𝐾଴ − 𝐾௜9𝐾଴𝐾௜ ൫𝐶ଶଵ௘௙௙ + 𝐶ଶଶ௘௙௙ + 𝐶ଶଷ௘௙௙൯ + 𝜇଴ − 𝜇௜6𝜇଴𝜇௜ ൫2𝐶ଶଷ௘௙௙ − 𝐶ଶଵ௘௙௙ − 𝐶ଶଶ௘௙௙൯, 𝐶ଵଵ௘௙௙ = 𝐾଴(1 −𝑀ଵଵଵଵ − 2𝑀ଶଶଵଵ) + 43 𝜇଴(1 −𝑀ଵଵଵଵ + 𝑀ଶଶଵଵ), 𝐶ଵଶ௘௙௙ = 𝐾଴(1 −𝑀ଶଶଶଶ − 𝑀ଵଵଶଶ − 𝑀ଶଶଷଷ) + 23 𝜇଴(𝑀ଶଶଷଷ + 𝑀ଶଶଶଶ − 2𝑀ଵଵଶଶ − 1), 𝐶ଶଵ௘௙௙ = 𝐾଴(1 −𝑀ଵଵଵଵ − 2𝑀ଶଶଵଵ) + 23 𝜇଴(𝑀ଵଵଵଵ − 𝑀ଶଶଵଵ − 1), 𝐶ଶଶ௘௙௙ = 𝐾଴(1 −𝑀ଶଶଶଶ − 𝑀ଵଵଶଶ − 𝑀ଶଶଷଷ) + 23 𝜇଴(2(1 −𝑀ଶଶଶଶ) + 𝑀ଵଵଶଶ + 𝑀ଶଶଷଷ), 𝐶ଶଷ௘௙௙ = 𝐾଴(1 −𝑀ଶଶଶଶ − 𝑀ଵଵଶଶ − 𝑀ଶଶଷଷ) + 23 𝜇଴(𝑀ଵଵଶଶ + 𝑀ଶଶଶଶ − 2𝑀ଶଶଷଷ − 1), 𝑋ଵଵ௜ = 𝑊ଵଵ௜ 𝐺ଵଵ + 2𝑊ଵଶ௜ 𝐺ଶଵ,      𝑋ଵଶ௜ = 𝑊ଵଵ௜ 𝐺ଵଶ + 𝑊ଵଶ௜ (𝐺ଶଶ + 𝐺ଶଷ),     𝑋ଶଵ௜ = 𝑊ଶଵ௜ 𝐺ଵଵ + ൫𝑊ଶଶ௜ + 𝑊ଶଷ௜ ൯𝐺ଶଵ,    𝑋ଶଶ௜ = 𝑊ଶଵ௜ 𝐺ଵଶ + 𝑊ଶଶ௜ 𝐺ଶଶ + 𝑊ଶଷ௜ 𝐺ଶଷ, 𝑋ଶଷ௜ = 𝑊ଶଵ௜ 𝐺ଵଶ + 𝑊ଶଷ௜ 𝐺ଶଶ + 𝑊ଶଶ௜ 𝐺ଶଷ, 𝐺ଵଵ = 1 − 𝐶𝑠ଶଶ − 𝐶𝑠ଶଷ(1 − 𝐶𝑠ଵଵ)(1 − 𝐶𝑠ଶଶ − 𝐶𝑠ଶଷ) − 2𝐶𝑠ଵଶ𝐶𝑠ଶଵ, 𝐺ଵଶ = 𝐶𝑠ଵଶ(1 − 𝐶𝑠ଵଵ)(1 − 𝐶𝑠ଶଶ − 𝐶𝑠ଶଷ) − 2𝐶𝑠ଵଶ𝐶𝑠ଶଵ, 𝐺ଶଵ = 𝐶𝑠ଶଵ(1 − 𝐶𝑠ଵଵ)(1 − 𝐶𝑠ଶଶ − 𝐶𝑠ଶଷ) − 2𝐶𝑠ଵଶ𝐶𝑠ଶଵ, 𝐺ଶଶ = (1 − 𝐶𝑠ଵଵ)(1 − 𝐶𝑠ଶଶ) − 𝐶𝑠ଵଶ𝐶𝑠ଶଵ(1 − 𝐶𝑠ଶଶ + 𝐶𝑠ଶଷ)[(1 − 𝐶𝑠ଵଵ)(1 − 𝐶𝑠ଶଶ − 𝐶𝑠ଶଷ) − 2𝐶𝑠ଵଶ𝐶𝑠ଶଵ], 𝐺ଶଷ = (1 − 𝐶𝑠ଵଵ)𝐶𝑠ଶଷ + 𝐶𝑠ଵଶ𝐶𝑠ଶଵ(1 − 𝐶𝑠ଶଶ + 𝐶𝑠ଶଷ)[(1 − 𝐶𝑠ଵଵ)(1 − 𝐶𝑠ଶଶ − 𝐶𝑠ଶଷ) − 2𝐶𝑠ଵଶ𝐶𝑠ଶଵ], 𝐶𝑠ଵଵ = 𝐶ଵଵ௘௙௙𝐻ଵଵଵଵ + 2𝐶ଵଶ௘௙௙𝐻ଶଶଵଵ,       𝐶𝑠ଵଶ = 𝐶ଵଵ௘௙௙𝐻ଵଵଶଶ + 𝐶ଵଶ௘௙௙(𝐻ଶଶଶଶ + 𝐻ଶଶଷଷ), 𝐶𝑠ଶଵ = 𝐶ଶଵ௘௙௙𝐻ଵଵଵଵ + ൫𝐶ଶଶ௘௙௙ + 𝐶ଶଷ௘௙௙൯𝐻ଶଶଵଵ,      𝐶𝑠ଶଶ = 𝐶ଶଵ௘௙௙𝐻ଵଵଶଶ + 𝐶ଶଶ௘௙௙𝐻ଶଶଶଶ + 𝐶ଶଷ௘௙௙𝐻ଶଶଷଷ, 𝐶𝑠ଶଷ = 𝐶ଶଵ௘௙௙𝐻ଵଵଶଶ + 𝐶ଶଷ௘௙௙𝐻ଶଶଶଶ + 𝐶ଶଶ௘௙௙𝐻ଶଶଷଷ,     𝑊ଵଵ௜ = 𝑓௜ + 𝑓௙ ቀ(1 + 𝐴ଵଵ)𝑇ଵଵ௙ + 2𝐴ଵଶ𝑇ଶଵ௙ ቁ,   𝑊ଵଶ௜ = 𝑓௙൫(1 + 𝐴ଵଵ)𝑇ଵଶ௙ + 𝐴ଵଶ(𝑇ଶଶ௙ + 𝑇ଶଷ௙ )൯,     𝑊ଶଵ௜ = 𝑓௙൫𝐴ଶଵ𝑇ଵଵ௙ + (1 + 𝐴ଶଶ + 𝐴ଶଷ)𝑇ଶଵ௙ ൯,        𝑊ଶଶ௜ = 𝑓௜ + 𝑓௙൫𝐴ଶଵ𝑇ଵଶ௙ + (1 + 𝐴ଶଶ)𝑇ଶଶ௙ + 𝐴ଶଷ𝑇ଶଷ௙ ൯,𝑊ଶଷ௜ = 𝑓௙൫𝐴ଶଵ𝑇ଵଶ௙ + (1 + 𝐴ଶଶ)𝑇ଶଷ௙ + 𝐴ଶଷ𝑇ଶଶ௙ ൯, 𝑇ଵଵ௜ = 1 + 𝐴ଶଶ + 𝐴ଶଷ(1 + 𝐴ଵଵ)(1 + 𝐴ଶଶ + 𝐴ଶଷ) − 2𝐴ଵଶ𝐴ଶଵ ,     𝑇ଵଶ௜ = −𝐴ଵଶ(1 + 𝐴ଵଵ)(1 + 𝐴ଶଶ + 𝐴ଶଷ) − 2𝐴ଵଶ𝐴ଶଵ, 𝑇ଶଵ௜ = −𝐴ଶଵ(1 + 𝐴ଵଵ)(1 + 𝐴ଶଶ + 𝐴ଶଷ) − 2𝐴ଵଶ𝐴ଶଵ, 𝑇ଶଶ௜ = (1 + 𝐴ଵଵ)(1 + 𝐴ଶଶ) − 𝐴ଵଶ𝐴ଶଵ(1 + 𝐴ଶଶ − 𝐴ଶଷ)[(1 + 𝐴ଵଵ)(1 + 𝐴ଶଶ + 𝐴ଶଷ) − 2𝐴ଵଶ𝐴ଶଵ], 𝑇ଶଷ௜ = −(1 + 𝐴ଵଵ)𝐴ଶଷ + 𝐴ଵଶ𝐴ଶଵ(1 + 𝐴ଶଶ − 𝐴ଶଷ)[(1 + 𝐴ଵଵ)(1 + 𝐴ଶଶ + 𝐴ଶଷ) − 2𝐴ଵଶ𝐴ଶଵ]. 
The above compliance increment 𝐻ଵଵଵଵ, 𝐻ଵଵଶଶ, 𝐻ଶଶଵଵ, 𝐻ଶଶଶଶ, 𝐻ଶଶଷଷ and the components of 

Eshelby tensor are given in reference [11]. 
The defects and fibers are regarded as two different types of inclusions distributed in the same 

matrix. It can be considered that the defects distributed in the matrix form an equivalent matrix, 
and the fibers distributed in the equivalent matrix. Taking the axis 1 direction as an example, the 
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volume fraction of defective inclusion was 𝑓௜ and the fiber volume fraction was 𝑓௙, and the 
interface phase between defective inclusion and rod-like eutectic was regarded as the general 
interface to analyze the change of thermal expansion coefficient of composite material at this time, 
as shown in Fig. 2. 

As shown in Fig. 2, the thermal expansion coefficient increases with the increase of fiber 
content. When the defect content in the matrix is small, the change of thermal expansion 
coefficient is small. And with the increase of the defect content in the matrix, the thermal 
expansion coefficient increases significantly. According to the prediction model analysis, if the 
material matrix is uniform, the thermal expansion coefficient of the material will not change when 
only the defects are uniformly distributed in the matrix. When the defects and fibers are regarded 
as two types of inclusion in the matrix at the same time, the prediction result of the effective 
thermal expansion coefficient of composite material exceeds the range of the thermal expansion 
coefficient of the matrix or inclusion itself. When there are multiple inclusions in the composite 
ceramic matrix, the influence of inclusions can always be amplified by defects. 

 
Fig. 2. Thermal expansion coefficient of eutectic composite ceramics  

with different fiber and defect contents 

4. Conclusions 

A mesoscopic model of eutectic composite ceramics with defects was established according 
to the mesostructural characteristics of composites. The effective thermal expansion coefficient of 
eutectic composite containing defects was calculated. And then the influence of defects and 
inclusions on the effective thermal expansion coefficient is discussed in detail. The results show 
that the influence of inclusions will be amplified by defects when there are multiple inclusions in 
the matrix. Therefore, the interaction direct derivative estimate cannot accurately predict the 
influence of defect distribution on thermal expansion coefficient of eutectic composite ceramics. 
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