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Abstract. A rolling element bearing is a common component in household and industrial 
machines. Even a minor fault in this section has a negative impact on the machinery's overall 
operation. As a result, the industry suffers significant financial losses, and this damage can 
potentially result in catastrophic failures. Therefore, even a little fault in the rolling element 
bearings must be recognized and remedied as soon as possible. Many ways for detecting REB 
defects have been created in recent years, and new methods are being introduced on a daily basis. 
This article will provide a summary of such methods, with a focus on vibration analysis 
techniques. The newest advancements in this field will be recognizable to readers of this article. 
Anyone interested in defect diagnostics of rolling element bearings can utilize this material. 
Keywords: rolling element bearings, fault diagnosis, signal processing, vibration analysis, 
acoustic emission, artificial intelligence, machine learning, deep learning. 

1. Introduction  

All industries are becoming smarter as part of the fourth industrial revolution. One of the most 
significant aspects of these smart industries is Prognostics and Health Management (PHM). PHM 
is a strategy for monitoring system health that provides comprehensive yet tailored solutions, and 
it is essentially a three-part summary. First and foremost, detecting the presence of a fault is often 
known as fault detection. Defect diagnosis, on the other hand, is the process of determining the 
type of fault and its location. Finally, the prognosis might be defined as an estimate of the 
component's remaining useful life. PHM aids in the cost-effectiveness of all activities in the 
industry, as well as the protection of the machinery. It also aids in the efficiency and reliability of 
an asset [1], [2]. This paper describes the recent advancements in the fault diagnosis of rolling 
element bearings. 

Rolling element bearing (REB) is an inevitable machine element used in rotating machinery. 
The determination of this machine element is to offer an easy movement or rotation of a shaft and 
housing while transmitting the power [3]. Rolling element bearings, like any other moving 
component, are prone to developing faults. Fig. 1 lists the most common bearing defects. A 
damaged bearing can cause serious problems with the machine's operation and, in the worst-case 
scenario, catastrophic failure. Early diagnosis of bearing defects and correct severity level 
assessments is therefore crucial for the machines' smooth operation. Many methods are introduced 
in recent years to find the faults occurring in the bearings. Some of them are vibration analysis, 
acoustic emission measurement, temperature measurement, wear debris assessment, motor current 
signature evaluation, etc. Vibration analysis and acoustic emission measurement, however, are the 
most extensively employed. As a result, these two methods are chosen to create a summary in 
rolling element-bearing fault diagnostics. Although such defect diagnostic procedures include 
several steps, this work focuses on signal processing methods. Even though numerous review 
papers have been published in this field in the past, new review articles are still needed because 
new methods are introduced regularly. 
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In 1999 N. Tandon and A. Choudhury [4] reviewed the techniques used for fault diagnostics 
of REB, they described the vibration and acoustic measurement techniques and compared those 
with some recent methods. In 2014 Y. Hassan Ali et al. [5] published a summary article on fault 
diagnosis (FD) and condition monitoring of REB based on AE analysis with the help of artificial 
intelligence. Soon afterward two researchers [6] wrote a review article about the signal processing 
methods for the diagnostics and prognosis of REB, they discussed the important condition 
monitoring tools and their capabilities in depth. In 2019 a research article [7] summarized the 
techniques used in FD, fault measurement, and fault modeling of REB.  

The objectives of this article are to review the latest developments in fault diagnostics and fault 
classification of REB, to give a brief idea about vibration analysis and acoustic emission 
measurement, to compare different signal processing techniques with their pros and cons, and to 
familiarize the role of artificial intelligence methods in identification and classification of bearing 
faults. The paper's scope aids anyone interested in REB fault diagnostic approaches in learning 
about the current state of the art. The data for this literature survey is taken from various research 
papers published in the leading journals in the last three decades. This paper’s methodology is as 
follows: A brief theory of the vibration and AE analysis is discussed in Section 2. Various signal 
processing methods in FD of REBs are discussed in Section 3. Artificial intelligence techniques 
are described in Section 4. Section 5 contains the summary and discussion; after all, Section 6 is 
where the findings are discussed. 

2. Vibration analysis and acoustic emission measurements 

2.1. Vibration analysis (VA) 

The motion of a body is represented by vibration, which is fundamentally oscillatory around a 
mean position and can be periodic or aperiodic. To use vibration monitoring to detect flaws in 
machines, the machine's vibration must first be recorded, and then the vibration signal must be 
processed to acquire useful information about the machine’s health. Vibrations should be recorded 
in close proximity to the bearings that support the rotating shafts. Vibrations at any location should 
be measured in three mutually perpendicular directions if possible. Vibration monitoring is 
preferred in the majority of rotating machinery. Because every dynamic machine component 
manifests itself in the machine's measured vibration response at its characteristic frequencies, this 
is the case. As a result, for fault diagnosis, signal analysis of the recorded vibrations from the 
machines provides a significant and simple methodology for detecting flaws in operational 
machines [8], [9]. 

Fig. 1. Common bearing defects 
 

Fig. 2. Steps involved in FD of REB 
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2.2. Acoustic emission analysis 

Acoustic emission (AE) is the spontaneous release of transient elastic stress energy when a 
material deforms. Waves of 2 MHz or higher are emitted by materials under stress. 
High-frequency piezoelectric-based AE sensors can detect these waves on a body’s surface. These 
AE waves might be continuous or in bursts, depending on the level of internal stress. The cause 
of the interior defect can be discovered using the triangulation approach, which involves placing 
many AE sensors on the surface of a body and collecting high-speed data on the arrival times of 
these AE waves. This technique is a non-destructive testing method, and it can be used in a variety 
of ways, such as health monitoring of structures, machine tools, gears, bearings, assessing 
tribological and wear behavior, etc. [10]-[12]. The benefits and drawbacks of vibration analysis 
and AE measurement are given in Table 1. 

Table 1. Benefits and drawbacks of vibration and AE analysis 
Techniques Benefits Drawbacks 

Vibration 
analysis 

It is possible to monitor machines 
in real-time. Many well-developed 
signal processing techniques are 

available for use 

High possibility to get noise-contaminated data. 
Difficult to find the proper mounting position 

for vibration sensors 

Acoustic 
emission 
analysis 

The time for analysis is minimal. 
Recognition accuracy is high. It is 

a nondestructive evaluation 

Due to a variety of elements such as 
environmental circumstances, recording 

software parameters, and reflected acoustic 
signals, accurately capturing acoustic signals is 

extremely difficult 

3. Signal processing 

Data acquisition, signal processing, and fault classification are the three pillars of the fault 
diagnostic procedure in vibration and AE analysis, as given in figure 2. Sensors and analyzers can 
be used to collect data. The most often used sensors for collecting vibration data include 
accelerometers, displacement transducers, velocity transducers, and so on. Piezoelectric sensors 
are used to collect AE signals. These collected data will be transferred to the signal processing 
unit, which will process the signals further. The data contain all of the relevant information about 
the bearings' condition. However, the information gathered is a mix of bearing data, information 
about other functioning elements including gears, shafts, etc., and noise. The signal processing 
unit may be required in this case. Signal denoising, signal filtering, signal amplification, feature 
extraction, and fault identification are all examples of signal processing. The signal can be 
processed in a variety of ways. Some of them are wavelet transform, fast Fourier transform, 
envelope analysis, root mean square, empirical mode decomposition, matching pursuit, cepstrum, 
Wigner Ville, etc. [13]. The extraction and selection of features can be conducted particularly in 
three domain techniques and a cyclo-stationary analysis. The three scales are the time scale, 
frequency scale, and time-frequency scale. The next sections go through each of these in-depth. 

3.1. Time domain techniques 

A time-domain analysis is the simplest and most fundamental signal processing technique, 
which gives the information of a signal concerning the time. In the time domain technique, the 
typical characteristic features in particular crest factor, kurtosis value, peak value, root mean 
square value, etc. are investigated to get the idea of fault present in the bearings [14], [15]. The 
RMS value represents the vibration’s power content. The signal's greatest value over time is called 
the peak. The crest factor is the representation of the ratio of the input signal's peak value to its 
RMS value. Kurtosis is a statistical metric that is employed to describe the shape of a signal. In 
essence, it is a metric for determining the “peakedness” of a random signal. Each feature's benefits 
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and drawbacks are listed in table 2. Some researchers [16], [17] published articles on intelligent 
diagnosis techniques of REB faults employing time-domain characteristics and artificial neural 
networks (ANN). The RMS value, kurtosis value, and negative log-likelihood parameters are 
employed as the inputs for ANN, which are obtained from the processed time-domain signals. The 
time-domain analysis technique, on the other hand, is ineffective for higher-order systems. 
Furthermore, employing time-domain analysis to acquire all information concerning the REB’s 
failure is unfeasible. As a result, we'll look into other options. 

3.2. Frequency domain techniques 

In the frequency domain, several characteristics which are not detectable in the time domain 
can be found. The frequency-domain approach plots a signal's information along the frequency 
axis vs its amplitude. Signal feature extraction and selection employing frequency domain include 
fast Fourier transform, power spectrum, Cepstrum, and envelope spectrum. This section explains 
them. 

3.2.1. Fast Fourier transform (FFT) 

The Fourier transform was put forward by Joseph Fourier, a French physicist and 
mathematician in the 19th century. He found that “any periodic function can be decomposed in a 
series of simple oscillating functions, namely sines and cosines”. That means Fourier transform 
separates a vibration signal in the form of complex exponential functions at dissimilar frequencies 
[18]. In 2007 two researchers [19] investigated the fault diagnostics of a rolling bearing employing 
FFT of the Intrinsic Mode Functions (IMF) with the help of Hilbert Huang Transform (HHT). 
This paper addressed the inefficiency of traditional DFT and the inherent problems of Wavelet 
Transform (WT) such as lengthy computational time and inappropriate resolution for investigating 
non-stationary vibration signals coming out of faulty bearings. However, the primary drawback 
of FFT is that it computes over the entire period so that it is impossible to distinguish the stationary 
and transient components of the signal easily. 

Table 2. Benefits and drawbacks of time-domain characteristics 
Time-domain 
characteristics Benefits Drawbacks 

RMS 
A straightforward technique that is 

directly tied to the vibration profile's 
energy content 

Only high-amplitude parts are 
susceptible to changes in RMS 

vibrations 

Kurtosis 
Great sensitivity to shock and high 
performance in detecting periodic 

impulses  
The kurtosis meter is expensive. 

Peak Straightforward technique Noise sensitivity 

Crest Factor The crest factor meter is a simple to use 
and inexpensive device 

Only in the framework of relevant 
impulsiveness is it trustworthy 

3.2.2. Envelope analysis 

Envelope Analysis (EA) is a renowned technique to collect periodic impacts from a machine’s 
vibration or AE signal. The envelope analysis technique's primary idea is to use the envelope 
spectrum to remove the disturbance effect and accentuate the fault feature [20]. Hilbert transform 
(HT) is one of the most extensively employed techniques in envelope spectrum analysis. It has an 
outstanding application in the area of fault identification and diagnostics of machine elements. 
McInerny et al. [21] used EA in 2003 for basic vibration signal processing to detect bearing faults. 
In 2017 C. Mishra et al. [22] studied the defect diagnostics of REB by the application of envelope 
analysis as well as wavelet de-noising along with sigmoid function-based thresholding. As per the 
technique, it was supposed that the vibration signal coming from the defective bearings consists 
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of a specific part indicating a large number of fault features and noise components. For extracting 
these large-scale features from the vibration signal, a Bayesian estimator was used after processing 
the wavelet coefficients.  

3.2.3. Power spectrum 

Power spectral techniques have great applications in the context of fault diagnostics of 
machinery. According to this technique, it is hard to investigate the phase indication of the signal, 
which contains severe diagnostic information. So, for conserving the phase information, the 
collective time-frequency analysis technique is adopted. The power spectrum is frequently 
selected for health monitoring techniques as it efficiently denotes the time, the variant 
time-domain vibration signal into a group of defined length vectors indicating the square values 
of the frequency components [23], [24]. K. F. Al-Raheem et al. in 2007 [25] studied the fault 
diagnostics of REB based on Laplace-wavelet-envelope Power Spectrum. The authors tried to find 
out a unique method for identifying the localized defects present in the inner and outer races of 
the rolling contact bearing through the envelope-power spectrum of the Laplace coefficient. It is 
clear to observe that the peaks of the power spectrum are very sensitive to the shaft fluctuations, 
this is considered as a drawback while processing the signal. 

3.2.4. Cepstrum 

Cepstrum analysis is a nonlinear signal processing procedure that can be used in the detection, 
classification, and removal of harmonic and sideband families from vibration and AE signals. A 
study [26] was conducted on the fault diagnostics of automotive ball bearings at the early stages 
by the application of the Minimum Variance Cepstrum (MVC). The authors presented MVC for 
the investigation of repeated impulse signals present in noisy circumstances. MVC is 
accomplished through a logarithmic-power spectrum, it is intended by the least variance 
procedure. In 2019 D. Ibarra-Zarate et al. [27] proposed a methodology to extract vibration and 
AE signals from faulty bearings based on the cepstrum pre-whitening technique. They found that 
the suggested approach can perform well in defect identification of bearings in medium and late 
stages. Researchers have used the different variance of cepstrum such as MVC and cepstrum pre-
whitening for fault diagnosis of machine elements, but it is computationally expensive. 

Table 3. Different frequency domain techniques with benefits and drawbacks 
Frequency domain 

techniques Benefits Drawbacks 

FFT The technique is simple to use and 
implement 

Unable to examine transient features 
in a timely manner 

Envelope analysis Performs well even when there is a 
minor random fluctuation 

This can result in a major diagnosis 
error 

Power spectrum 

Higher spectrum estimation 
performance than the FFT, which is 

useful for detecting signals that change 
considerably over a short period 

Due to its intricacy, it necessitates the 
expertise of professionals. Peaks of 

the power spectrum are very sensitive 
to shaft fluctuations 

Cepstrum Simple to use and useful for sideband 
analysis 

The variations of the spectrum curve 
are averaged out due to the filtering, 

and it can only be used for well-
separated harmonics. 

Computationally expensive 

3.3. Cyclo-stationary analysis 

A different context is introduced for investigating periodically time-variant signals by 
cyclo-stationary analysis. It is assumed that the signals are static in traditional stationary signal 



RECENT ADVANCEMENTS OF SIGNAL PROCESSING AND ARTIFICIAL INTELLIGENCE IN THE FAULT DETECTION OF ROLLING ELEMENT BEARINGS: A 
REVIEW. A. ANWARSHA, T. NARENDIRANATH BABU 

1032 JOURNAL OF VIBROENGINEERING. SEPTEMBER 2022, VOLUME 24, ISSUE 6  

processing techniques, whereas the cyclo-stationary analysis treats the signal as a periodically 
time-varying element. Nonstationary signals are considered cyclo-stationary when certain of their 
characteristics are periodic [28], [29]. P. K. Kankar et al. in 2013 [30] investigated the defect 
diagnostics of REBs by the combination of cyclic autocorrelation and wavelet transform. The key 
concept of the paper was developing a feature extraction system with the help of a cyclic 
autocorrelation of raw vibration signals coming out of the defective bearings. When the 
non-stationary signals underwent cyclo-stationary analysis, more than a few distinct modulating 
frequencies were present. 

3.4. Time-frequency domain techniques 

The time domain and frequency domain analyses were discussed in sections 3.1 and 3.2. The 
integration of both of these analyses will be discussed in this section. The Time-frequency domain 
gives the information of signals in both time and frequency scales. A vibration signal consists of 
many signal components having different characteristics such as linear and non-linear behavior, 
stationary and non-stationary, etc. So, it is substantial to conduct the time-frequency analysis for 
extracting the fault characteristic properties and eliminating noise components efficiently [31]. 
Important time-frequency practices used are short-time Fourier transform, empirical mode 
decomposition, wavelet transform, empirical wavelet transform, matching pursuit, Wigner-Ville 
distribution, etc. 

 
Fig. 3. List of various signal processing methods used in the FD of REB 
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3.4.1. Short-time Fourier transform (STFT) 

STFT is a basic and straightforward signal transformation technique for converting time-
domain signals to time-frequency space. This approach uses a window function to multiply time 
series in which the non-stationary vibration signal can almost be found to be locally stationary and 
then convert into the time-frequency domain. To improve the signs of localized fault, 
spectrograms of STFT are averaged in the time-frequency domain. The phase underlines the 
energy flow associated with the impacts between defective components of the bearing as well as 
strengthens the signal-to-noise ratio [32], [33]. In 2015 H. Gao et al. [34] studied the vibration 
signal feature extraction procedures for fault diagnostics of REBs by the application of STFT plus 
non-negative matrix factorization (NMF). Researchers adopted a new time-frequency distribution 
(TFD) matrix-factorization by merging the ideas of TFD with NMF. However, STFT gives a 
constant time resolution once the window size is fixed. Hence further investigations are required 
to overcome this drawback in real-time applications. 

Table 4. Different time-frequency domain techniques with benefits and drawbacks 
Time-frequency 

domain techniques Benefits Drawbacks 

STFT 
A simple approach, suitable for 

novices in time-frequency analysis, 
with low computing complexity 

It's challenging to create a quick and 
efficient technique to compute STFT 

with constant frequency resolution for 
the entire signal 

EMD 
Self-adaptive decomposition process. 

Not requiring a preexisting set of 
mathematical functions 

EMD overestimates the number of 
modes so that there is a chance to occur 

the mode mixing problem while 
processing the signal 

EWT 
EWT focuses more on the oscillating 

part It is also faster in terms of 
computing than EMD 

If the input signal consists of two 
chirps that overlap in both the temporal 
and frequency domains, the EWT will 
be unable to distinguish between them 

Matching Pursuit 
MP is a materialistic method that 
finds the best waveform from the 

signal at each iteration 

The dictionary density determines the 
success of the MP algorithm. Increased 
density improves efficiency, but it may 
also result in increased computing time 

and storage space 

WVD 

It has a good frequency and time 
resolution. Its implementation does 
not necessitate the use of a window 

function 

The cross-term interference 
misleadingly indicates the presence of 
signal components between auto-terms 

WT 

Provide better temporal localization at 
high frequencies than STFT, are more 
versatile than STFT, and have a wider 

range of wavelet functions 

Choosing the mother wavelet type is 
challenging 

3.4.2. Empirical mode decomposition (EMD) 

EMD is a time-frequency domain self-adaptive decomposition algorithm that may decompose 
any vibration signal into empirical modes corresponding to the numerous oscillation modes 
implanted in the signal. Any vibration signal could be generated by the linear superposition of 
empirical modes, according to the EMD algorithm. EMD is a signal processing approach that can 
be used to treat non-stationary and non-linear data whose local-time measure is dependent on the 
signal. It can also decompose the signal into a finite number of IMFs [35], [36]. A study [37] was 
conducted to review the application of the EMD procedure in FD of rotating machinery in which 
the authors tried to report the earliest EMD technique alone, advanced EMD, and the combination 
of EMD with other techniques. In 2015 J. Ben Ali et al. [38] studied automated fault diagnostics 
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of the REB from vibration signals. The key concept of the research was the implementation of the 
EMD as well as ANN for fault diagnostics and fault classification. A Health Index (HI) was 
introduced and tested based on the vibration signal of three bearings at different speed and torque 
conditions. However, EMD overestimates the number of modes so there is a chance to occur the 
mode mixing problem while processing the signal. 

3.4.3. Empirical wavelet transform (EWT) 

Vibration signals consist of frequency modulated and amplitude modulated components. EWT 
is utilized to extract the above-said signal components from vibration signals. EWT could be 
applied for fault identification as well as the fault classification of the REB [39]. In 2019 S. N. 
Chegini et al. [40] wrote an article on the de-noising technique for the diagnosis of faulty bearings 
by the application of a new empirical wavelet transform. The authors divided the paper into two 
stages; one was the de-noising stage, and the other was the fault diagnosis stage. In the de-noising 
stage, the EWT method was employed to break down the vibration signal into different empirical 
modes. In the fault-diagnosis phase, the presence of a fault and its location were identified by 
applying the envelope spectra and kurtosis number of the de-noised signal.  

3.4.4. Matching pursuit 

The Matching Pursuit algorithm is able to break down any vibration signal into the linear 
expansion of waveforms, which is suitable for a dictionary of functions. The above said 
wave-forms are carefully chosen for the sake of getting the finest match of signal structures. The 
matching pursuit decomposition provides an interpretation of the signal structures. If a signal 
structure does not correlate well with any dictionary function, it is sub-decomposed into numerous 
functions and its information is diluted. Matching pursuit is a materialistic algorithm that selects 
a waveform at each iteration that would be the best part of the signal [41]. In 2005 H. Yang et al. 
[42] investigated the fault diagnostics of REB by the application of basis pursuit. This paper 
explained the vibration signal feature extraction coming out of a defective bearing with inner-race 
and outer-race defects by using the application of a time-frequency procedure called the Basis 
Pursuit. The interpretation of the analyzed results was easier in the basis pursuit technique because 
it denoted the characteristic properties with excellent resolution in the time-frequency domain. 
However, the success of the MP algorithm depends on the density of the dictionary. If the density 
increases, the efficiency increases, but it could result in an increase in the computational time and 
storage space. 

3.4.5. Wigner Ville distribution (WVD) 

WVD is the time-frequency domain technique coming under Cohen class distribution, which 
could be employed in the space of fault diagnostics and fault classification of the REBs. The 
primary advantage of WVD includes better resolution in time and frequency domains. WVD has 
gained significant consideration in recent years for analyzing non-stationary or periodic signals 
and it could be used in machine condition monitoring, structure bone noise identification, etc. 
[43], [44]. In 2011 Y. Zhou et al. [45] studied the Wigner–Ville distribution by virtue of the Cyclic 
Spectral Density (CSD) to investigate the cyclo-stationary vibration signals coming out of faulty 
bearings. In this process, the CSD of the cyclo-stationary signals was calculated and WVD was 
applied through the inverse Fourier transform. One major disadvantage of WVD is cross-term 
interference. These cross-terms misleadingly indicate the presence of signal components between 
auto-terms. 

3.4.6. Wavelet transform (WT) 

Wavelet transform is a major reliable method in the time-frequency domain for defect 
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diagnostics of REBs. In this method, the feature information would be stored in time-frequency 
domains. The most important step in this technique is to choose a suitable wavelet when 
investigating the vibration signals coming from the faulty bearings. A wavelet function is a tiny 
wave that holds oscillating wave-like features and is required for implementing the wavelet 
transform [46], [47]. In a paper [48], the theory and functions of wavelet transform in defect 
diagnosis of rotating machines were reviewed. WT has four derivatives: CWT, DWT, WPT, and 
TQWT, which are explained below. 

3.4.6.1. Continuous wavelet transform (CWT)  

Wavelet coefficients of the CWT method are the indices of similarity of the chosen wavelet 
and the analyzed signal. It is well known that the real Morlet wavelet is similar to the damped 
oscillating waveform and hence matches the transient vibrations formed due to the impulsive 
engagement of the rolling component with point or line defects of the bearing race. The standard 
manner of representing the CWT is to use a two- or three-dimensional plot called a scalogram 
which plots the modulus of the wavelet transform as functions of location over a range of scales 
[49], [50]. In 2009 H. Hong and M. Liang [51] studied the severity assessment of fault for REBs 
by the combined application of CWT and Lempel-Ziv complexity. The authors tried to measure 
the severity of the bearing fault by using results obtained from the continuous wavelet transform. 
In the first stage, the CWT identified the best characteristic features and eradicated the presence 
of noise and unwanted signals as far as possible. In the second stage, the Lempel-Ziv complexity 
numbers were computed, and the severity of the bearing defect was measured effectively. Even 
though the CWT is shift-insensitive, it is computationally expensive. It should be considered when 
using CWT in FD of machine elements like REB. 

Table 5. The main differences between traditional analysis and AI-based analysis 
Factors Traditional analysis Artificial intelligence 

Time as a factor 

Prediction of a single occurrence 
Effective at non-time changing, 

steady-state occurrences 
In transient events, when time is a 
variable rather than an index, the 

system is unable to cope 

The entire time series is treated as 
though it were a single event 

Excellent for contrasting steady-state 
and transient occurrences 

User expertise 
required 

It is critical to have access to 
appropriate data in order to construct 

a model 
The effectiveness of the model is 
determined by the user's ability 

Relevant data and essential features 
are automatically recognized 

The data is directly linked to the 
process 

Value can be captured right away 

Identification of 
diagnostic data 

The fault diagnostic library must be 
explicitly declared 

For diagnosis, key features are 
estimated by the user and 

incorporated into the model 

Fault diagnostic data is part of the 
event itself 

Features of the first, second, and 
third order are generated 

automatically 
User input is integrated into the 

system so that it can learn from its 
experience 

Model training and 
data pre-processing 

Manually detecting and excluding 
poor points from a data collection is 

used to train a model 

The model automatically detects 
normal behavior and standard 

deviations 

3.4.6.2. Discrete wavelet transform (DWT) 

Wavelets offer time-scale data of the signal empowering the extraction of characteristic 
features that vary with time. This behavior makes the wavelets a perfect means for analyzing 



RECENT ADVANCEMENTS OF SIGNAL PROCESSING AND ARTIFICIAL INTELLIGENCE IN THE FAULT DETECTION OF ROLLING ELEMENT BEARINGS: A 
REVIEW. A. ANWARSHA, T. NARENDIRANATH BABU 

1036 JOURNAL OF VIBROENGINEERING. SEPTEMBER 2022, VOLUME 24, ISSUE 6  

transient or non-stationary signals. The discrete wavelet transform is derivable from a CWT. DWT 
can give results with a higher resolution at different frequencies by removing redundant 
information [52]. S. Sharma et al. in 2015 [53] investigated the fault diagnostics of the rolling 
contact bearing in a variable, invariable speed, and load requirements. The characteristic 
extraction of vibration signal in time and frequency domains was performed by DWT, and the 
character reduction to remove the redundancy of the signal was carried out by Orthogonal Fuzzy 
Neighborhood Discriminative Analysis (OFNDA). The classification of defects and 
prognostication of the conditions of the elements was conducted by the Dynamic Recurrent Neural 
Network (DRNN). Even though the computational speed of DWT is more, it ignores the high-
frequency part of the vibration signal, and it concentrates only on the low-frequency part in each 
decomposition level. This may adversely affect the efficiency of the FD procedure. 

3.4.6.3. Wavelet packet transform (WPT) 

Wavelet packet transform is an innovative time-frequency analysis procedure, which is having 
vast applications in the defect diagnostics of rotating machines. WPT decomposes a signal into 
several wavelet packets in the form of a full binary tree. It enhances the weak transients from noisy 
signals [54], [55]. In 2002 two researchers [56] studied the fault diagnostics of REBs by the 
implementation of wavelet packets. Following the paper, the WPT was employed as a symmetric 
means to analyze vibration signals coming out of the defective bearings. The objective of the 
research included the provision of a time-frequency breakdown of vibration signal and the 
selection of components that carries significant analytical information. This method could be 
conducted with minimal user intervention because of the flexibility of WPT and the efficient 
parameter selection eligibility. WPT resolves the limitations of DWT, it can decompose high-
frequency as well as low-frequency parts of the vibration signal, but WPT is shift-sensitive. In 
2005 Z. K. Peng et al. [57] published an article on the fault diagnosis of REB by comparing an 
upgraded HHT along with a wavelet transform. The researchers proposed an improved HHT 
method with the aid of WPT and intrinsic mode functions. The role of WPT in the suggested 
method was a preprocessor to break down the vibration signal coming from defective bearing into 
a series of narrowband signals. After that, IMFs were generated with the help of EMD. Finally, 
useful IMFs were selected by removing undesired IMFs in the selection process. 

 
Fig. 4. Different classes of Machine learning 

3.4.6.4. Tunable Q-factor wavelet transform (TQWT) 

TQWT is a newly designed, updated version of the wavelet transform that, depending on the 
Q-factor number, may break down any vibration signal into low Q-factor, high Q-factor, and 
residual components [58]. A. Anwarsha and T. Narendiranath Babu wrote a review article on the 
role of TQWT in the fault diagnosis of rolling element bearings [59]. In 2014 H. Wang et al. [60] 
published an article on early weak defect feature extraction of the REB employing Ensemble 
Empirical Mode Decomposition (EEMD) with the application of tunable Q-factor wavelet 
transform. By this technique, the decomposition of the collected signal is carried out by using 
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EEMD. Then the application of TQWT to the selected intrinsic mode functions with the biggest 
kurtosis value. Furthermore, envelope demodulation is employed for the carefully chosen lowest 
Q-factor element. TQWT can overcome the limitations of the conventional WT, the quality factor 
of TQWT can be tuned easily, but it is computationally expensive. 

4. Artificial intelligence for fault classification 

The paper discussed the many types of signal processing approaches used in vibration analysis 
in the preceding sections. All of the approaches require the assistance of a professional. The most 
important aspect of current condition monitoring, however, is the capability to identify and repair 
faults without the assistance of a human. This is where artificial intelligence enters the picture. 
Artificial intelligence techniques have gained great applications in the area of defect diagnostics 
of rotating machines because of their reliability and adaptation capabilities. Furthermore, it does 
not necessitate complete previous substantial familiarity, which might be hard to acquire in actual 
practice. K-nearest neighbor, naive bayes classifier, support vector machine, deep learning, and 
artificial neural network are the important artificial intelligent techniques for fault identification 
[61]. A comparative study [62] was conducted on the effectiveness of ANN, SVM, and Gaussian 
Regression Process in estimating the bearing’s remaining useful life. The numerous artificial 
intelligence methods utilized in the fault diagnostics of REBs are described in this section. 

Artificial intelligence is demonstrated when a machine can execute a task that was previously 
accomplished by a human and was assumed to require the ability to learn, reason, and solve 
problems. Artificial intelligence (AI) is the ability of machines to appear to think for themselves. 
There are two sorts of AI techniques in general utilized in REB fault diagnosis. They're called 
Machine Learning and Deep Learning, respectively. The following section explains these 
concepts. 

4.1. Machine learning algorithms 

Machine learning is a subset of artificial intelligence that focuses on machines' capability to 
receive a collection of data and learn for themselves, modifying algorithms as they get a better 
understanding of the data they're processing. Machine learning and artificial intelligence are 
frequently used interchangeably. Machine learning is divided into three categories: supervised 
learning, unsupervised learning, and reinforcement learning. Supervised learning is a sort of 
machine learning that learns from training data with learning targets that are labeled. It usually 
makes predictions based on a learned mapping that generates an output for each input. There are 
many different types of mapping, such as decision trees, logistic regression, support vector 
machines, etc. There are two types of supervised learning. The first is known as classification, and 
the second is known as regression. When the output variable is a category, such as red or blue, 
faulty or healthy, the problem is called a classification problem. A classification model attempts 
to get some decisions from the examined data. The goal of regression is to predict the value of 
each data point, for example, prediction of temperature, age, etc. As a result, it's a method for 
analyzing the correlation between a scalar dependent variable and one or more explanatory 
variables. Unsupervised learning entails constructing an internal representation of the input, such 
as finding clusters or extracting features. The program must determine the data patterns on its own 
because no information about the correct output labels is available. As a result, the input is 
unlabeled, and the algorithm must figure out what it is. Clustering or dimensionality reduction are 
two examples of unsupervised learning. Clustering is a crucial topic in unsupervised learning since 
it involves identifying a structure or pattern in a set of uncategorized data. The process of lowering 
the number of random variables by establishing a set of principal variables in the problem under 
consideration is referred to as dimensionality reduction. The information available for training in 
reinforcement learning is truly intermediate between supervised and unsupervised learning. As a 
result, instead of training samples that show the proper output for a provided input. The training 
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data are considered to provide merely a rough indicator of whether or not a given action is correct. 
So, we're concerned with the problem of finding the best course of action in a given situation. The 
following are some of the most often utilized machine learning algorithms in REB's fault diagnosis 
field. 

4.1.1. K-nearest neighbors (KNN) 

The k-nearest neighbor technique is a simple pattern recognition methodology; it is particularly 
a multi-class classifier. The KNN technique is based upon the learning analogy and does not 
require any parameters to be chosen carefully. It is highly successful in the identification of 
statistical patterns, and it can accomplish better categorization accuracy for unlabeled distribution 
data. One of the advantages of the KNN algorithm is that it can eliminate the misclassification 
error to a great extent, especially when the training is carried out from a large number of data sets. 
Where K indicates the number of neighbors which affects the categorization accuracy of the KNN 
method [63]-[65]. KNN has better classification accuracy when the training dataset is larger. But 
then it is computationally expensive and requires more storage space. 

Table 6. Suitability and efficiency of various approaches for detecting early faults and low energy defects 

Methods Detection of 
early fault 

Efficiency for low 
energy defects 

The number of 
information sources 

Time domain × Low 4 
Frequency domain √ Low 10 
Cyclo-stationary √ Low 3 

Time- frequency domain √ Medium 19 
Time domain + artificial 

intelligence √ Medium 4 

Frequency domain + artificial 
intelligence √ Medium 17 

Time- frequency domain + 
artificial intelligence √ High 23 

 

  
Fig. 5. Example of k-nearest neighbor and Support vector machine 

4.1.2. Support vector machine (SVM) 

A support vector machine is an efficient tool in the area of machine defect diagnostics, which 
is capable of making a consistent decision for a lesser quantity of datasets and has a better 
generalization ability. In the condition monitoring process, SVM is used to find specific patterns 
in obtained signals, which are subsequently categorized based on the machine's problem incidence 
[66], [67]. In 2018 two researchers [68] proposed a new enhanced support vector machine 
categorization procedure with multi-domain characteristic features. To ameliorate the low 
recognition accuracy and insufficient feature extraction of current processing approaches with a 
single domain feature, they suggested a defect categorization algorithm through enhanced SVM 
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with multiple domain features. In the feature extraction stage, vibration signals’ fundamental 
properties and condition information were extracted by applying statistical analysis, FFT, and 
Variation Mode Decomposition (VMD) approaches. In the feature selection stage, a meaningful 
sensitive feature was selected with the improved calculation efficiency by the Laplace Score 
Algorithm technique. In the fault identification stage, a particle swarm optimization-based SVM 
classification model was applied. The main limitations of SVM are, that it is a time-consuming 
procedure when the training dataset is too large, and it is inappropriate for multi-class 
classification since it is used basically for binary-class classification. 

4.1.3. Naive Bayes (NB) classifier 

The Naive Bayes classifier is a categorization method for defect diagnostics of the REBs, 
specifically based upon the Bayes rule. In other words, the NB classifier is a controlled learning-
classification technique based on probability, it has achieved great popularity because of its unique 
classification model and outstanding classification outcome. One of the advantages of the NB 
classifier is that it evaluates the characteristic features of the signal from a lesser number of 
training data [69]-[71]. However, the NB classifier requires prior probability and strong 
assumptions. Furthermore, it is nearly impossible in a real-time context to assume that all predictor 
features are mutually independent. 

Table 7. Characteristics of various AI algorithms 

Algorithm Prediction 
speed 

Training 
speed 

Memory 
usage General assessment 

Linear SVM, 
Logistic 

Regression 
Fast Fast Small 

For minor situations with linear 
decision boundaries, this method 

works well 

Decision Trees Fast Fast Small Although a good generalist, it is 
prone to overfitting. 

Non-linear SVM Slow Slow Medium 
It works well with high-dimensional 

data and is good for many binary 
problems 

Nearest Neighbour Moderate Minimal Medium Lower precision, but simpler to use 
and comprehend 

Naïve Bayes Fast Fast Medium For multi-class predictions, this 
approach is widely used 

Neural Network Moderate Slow Medium to 
Large 

Classification, compression, 
recognition, and forecasting are 

popular applications 

4.1.4. Artificial neural network (ANN) 

An artificial neural network is an optimization technique inspired by the human brain. It can 
be used for processing information such as data classification and pattern recognition. ANN is one 
of the computational models in artificial intelligence techniques, particularly an interrelated 
assembly of uncomplicated processing components, parts, and nodes. In various ANN operations, 
processing of the data is being conducted through a single neuron, which results in slower 
computation. The advantages of ANN include better learning skills, noise reduction properties, 
and computation capabilities. Nevertheless, the successful execution of ANN-based diagnostics 
heavily is reliant on the appropriate choice of the nature of network structure and the number of 
training data that do not necessarily exist in actual practice [72]-[74]. Some researchers [75] 
published an overview of the application of ANN in defect diagnostics and fault classification of 
REB. Two researchers [76] made a comparison study between ANN and SVM in defect 
classification and FD of bearings. They found that SVM has some advantages in classification 
accuracy over ANN. In 2003 B. Samanta and K. R. Al-Balushi [77] published an article on fault 
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diagnostic of the rolling-element bearing by the implementation of artificial neural networks in 
time-domain features. The characteristic features for ANN inputs were collected from 
time-domain vibration signals of regular and faulty bearings. In a study [78] the remaining useful 
life of slow-speed bearings was estimated by the application of multilayer ANN and linear 
regression classifier by analyzing AE signals. However, the limitations of ANN such as hardware 
dependency, unexplained functioning of the network, the complexity of showing a problem to the 
network, etc. to be considered when selecting ANN for fault classification of machine elements 
like REB. 

 
Fig. 6. Operation of artificial neural network 

 
Fig. 7. Structure of the fuzzy logic system 

4.1.5. Fuzzy logic system 

Fuzzy logic is a potential tool for decision-making to solve problems with imprecision and 
uncertainties. A classical set allows answering two variables either true (1) or false (0), whereas a 
fuzzy set allows answering the range between zero and one [79]. Fuzzy sets can be used as the 
fault classification tool in the area of defect diagnosis of REB. In 2019 F. Gougam et al. [80] 
suggested a hybrid technique for FD of bearings by the combined application of the EWT and 
fuzzy logic system. The proposed method helped them to detect the early-stage fault under 
variable operating conditions. Two researchers [81] put forward a new method for FD of REB by 
taking the advantage of fuzzy sets, hierarchical entropy, and support vector machines. A study 
[82] was conducted on rotating machinery by incorporating the applications of fuzzy logic and 
adaptive filter technique to detect and assess the severity of the faults. However, a major drawback 
of fuzzy logic is that it completely depends on human knowledge and expertise. Moreover, it is 
required to update the fuzzy rules regularly in the control system. 

4.1.6. Particle swarm optimization (PSO) 

Particle swarm optimization is an evolutionary and stochastic optimization technique inspired 
by nature that is used to address computationally difficult optimization issues [83]. Y. Cheng et 
al. [84] used the PSO algorithm in defect identification of REB to solve the inverse filter of the 
deconvolution problem. A study [85] was conducted on FD of REB with the combined application 
of PSO as a feature selection method and SVM as a classification method. In 2016 C. Yi et al. 
[86] conducted experiments on the fault feature extraction of REB by taking the advantage of PSO 
and variational mode decomposition. However, PSO has a low convergence rate in the iterative 
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process, and it easily falls into local optima when it is dealing with high-dimensional problems. 
Moreover, it requires human knowledge and expertise. 

4.2. Deep learning architectures 

With the rise of the Internet of Things, intelligent manufacturing has shifted its attention to the 
collection of massive amounts of data known as big data [87]. Big data analytics is the practice of 
analyzing large amounts of data to find hidden patterns, unknown relationships, and other insights. 
Its main purpose is to assist people or machines in making intelligent decisions by evaluating big 
data streams from many sources [88]. Deep learning technology has been added to address the 
existing issues of prognostics and diagnostics caused by the vast, diverse, high-speed, and variable 
big data generated by industrial systems. PHM technology based on deep learning has been used 
to diagnose faults and assess the health of motors, gearboxes, bearings, and other mechanical 
components, and has outperformed previous methods [89]-[92]. 

Table 8. Different AI-based methods with benefits and drawbacks 
AI-Based 
Methods Benefits Drawbacks 

k-NN 
Simple method. It's versatile, and it can be 
used for regression and classification. High 

precision 

It is computationally expensive and 
requires more storage space 

SVM High accuracy and compatibility with big 
and complicated datasets 

Because it is primarily utilized for 
binary-class classification, it is 

ineffective for multi-class classification 

NB Missing values aren't a problem, and there's 
no need for a lot of storage capacity 

The NB classifier requires prior 
probability and strong assumptions 

ANN Classification accuracy is high, and complex 
nonlinear functions are well approximated 

Complicated design procedure, huge 
network processing takes a long time. 
There are a lot of parameters, and it's 

simple to overfit 

Fuzzy Strong sturdiness, a basic style, and an easy-
to-understand layout 

It's difficult to get the knowledge rules, 
and it's even harder to figure out what the 

correct membership function is 

PSO 
It has a simple premise, is straightforward to 
apply, is robust to control parameters, and is 

computationally efficient 

PSO has a low convergence rate in the 
iterative process, and it easily falls into 

local optima when it is dealing with high 
dimensional problems 

Deep 
Learning 

The feature extractor is not required for 
learning features and spotting flaws, and the 
deep architecture allows for learning more 

complicated structures from data 

It necessitates a significant quantity of 
sample data, it is expensive to train for a 

long time due to the complex data 
models, etc 

The general methods of fault diagnostics of rolling element bearings were discussed in the 
preceding sections. But in this section, we’ll go over some of the most cutting-edge techniques in 
this field. For this, the most recent four years’ worth of research publications has been used. 
Although the benefits of AI approaches used in fault classification are discussed in the previous 
part, this section covers a much larger version of the most powerful deep learning techniques. 
Deep learning is a subset of machine learning in which a model learns to do categorization tasks 
using only images, numbers, text, or voice as input. Neural network architecture is generally 
utilized to execute deep learning. The term “deep” refers to the network’s number of layers; the 
more layers, the deeper the network. Deep neural networks can have more than hundreds of layers, 
whereas conventional neural networks have just two or three.  

Deep learning is state-of-the-art because of its classification accuracy. This level of precision 
is made possible by three factors: One, easier access to large amounts of labeled data, two, 
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increased computer power, and three, expert-built models. Inspired by biological nerve systems, 
a deep neural network integrates numerous nonlinear processing layers, using simple pieces 
functioning in parallel. An input layer, multiple hidden layers, and an output layer make up the 
structure. Each hidden layer utilizes the output of the preceding layer as its input, and the layers 
are linked by the nodes or neurons. The following are some of the most cutting-edge deep learning 
algorithms in the field of rolling element bearing’s fault classification. 

4.2.1. Deep belief networks (DBN) 

A DBN is a generative graphical framework made up of numerous layers of latent variables, 
most of which are binary, that can denote hidden characteristics in input observations. Like an 
RBM (Restricted Boltzmann Machine) model, the link between the leading two levels of a DBN 
is undirected, and so a DBN with one hidden layer is just an RBM. Except for the final, all of the 
remaining connections in DBM are directed graphs to the input layer. J. Tao et al. [93] wrote an 
article on the fault detection of rolling element bearings on the basis of deep belief networks. In 
2020, S. Liu et al. [94] suggested a fault identification procedure of REB based on the enhanced 
convolutional DBN. 

4.2.2. Autoencoders 

Autoencoder is a three-layer neural network that uses its output layer to try to recreate its input. 
As a result, an autoencoder's output layer has an equal number of units as the input layer. There 
are two aspects to the autoencoder technology. Between the input and the hidden layer is the 
encoder, and between the hidden and the output layer is the decoder. As a result, during the 
encoding phase, the input trials are frequently recorded in a lower-dimensional feature space. This 
procedure can be done until the necessary feature dimensional space is obtained. In the decoding 
phase, we use reverse processing to regenerate the true features from the lower-dimensional 
features. In a study [95] an autoencoder-based FD of REB using a deep graph convolutional 
network (DGCN) was proposed. In this method, acoustic signals were collected as graphs and fed 
into DGCN, where the features were extracted. In 2018 A. Prosvirin et al. [96] studied 
autoencoder-based FD of bearings by the application of a convolution neural network with 
kurtogram representation. In this study, they transformed the one-dimensional AE signal into a 
two-dimensional kurtogram representation that allows CNN to extract high-quality features. 
Based on an Improved Stack Autoencoder (SAE) and SVM, M. Cui et al. [97] suggested a solution 
for the FD of rolling bearings. In [98], a unique SAE model for bearing problem diagnostics is 
created employing a dynamic learning rate, which effectively overcomes the fixed learning rate's 
drawbacks. 

4.2.3. Convolutional neural network (CNN) 

The most well-known convolutional neural networks are the next deep architecture. An input 
layer, many alternating convolutions and max-pooling layers, one fully connected layer, and one 
classification layer make up the CNN's overall design. The convolutional layers and the 
subsampling or pooling layers permit the network to pick up filters that are particular to certain 
regions of the data. The convolution layers assist the framework in preserving the spatial 
arrangement of pixels found in any picture. The network can summarize the pixel information 
thanks to the pooling layers. In 2017 L. H. Wang et al. [99] wrote an article on the application of 
a convolution neural network in the fault diagnostics of motors. In this paper, the advantages of 
CNN are that it is highly efficient in pattern recognition, it does not require the pre-treatment of 
input images and it is easily adaptable in the translation of input images. The original signal is 
used as input in [100] to create a unique network structure based on singular value decomposition 
(SVD) and 1DCNN, which allows for intelligent identification of bearing problems. Using a Two-
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Dimensional Convolutional Neural Network (2DCNN), X. Peng et al. [101] devised a method for 
diagnosing rolling bearing faults. For bearing fault diagnostics, A. Khorram et al. [102] presented 
an end-to-end CNN plus LSTM deep learning technique. 

 
Fig. 8. Convolution neural network architecture 

 
Fig. 9. Recurrent neural network architecture 

4.2.4. Recurrent neural networks (RNN) 

RNNs are feed-forward networks that span many time steps. A network node collects existing 
data inputs as well as hidden node values obtaining information from prior time steps at any given 
time. RNNs are special in that they may operate on a sequence of vectors across time. Sequences 
could be used in the input, output, or, in the most common situation, both. The three types of 
RNNs most typically utilized in the FD of REB are Long Short-Term Memory (LSTM), Gated 
Recurrent Unit (GRU), and Bidirectional Recurrent Neural Networks (BRNN). The upgraded 
classic recurrent neural network (RNN), Long Short-Term Memory (LSTM), can acquire the 
whole historical information of input data. However, there are certain drawbacks to RNN, such as 
the possibility of gradient disappearance or gradient explosion during backpropagation. Input, 
output, and forget gates are added to the LSTM to solve these concerns. In recurrent neural 
networks, a gated recurrent unit (GRU) is a gating mechanism that can be employed in both their 
complete form and numerous reduced variations. Because they don't have an output gate, they 
have a smaller number of parameters than LSTM. Bi-directional RNNs forecast or label every 
element of a series on the basis of the element's past and future perspectives using a finite 
sequence. Concatenating the outputs of two RNNs, one processing the sequence from left to right 
and the other from right to left, accomplishes this. 
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For the shortcomings of existing fault detection methods, an end-to-end intelligent fault 
diagnosis procedure for the bearing is suggested in [103], which combines a long short-term 
memory network (LSTM) with a one-dimensional CNN. X. Chen et al. [104] offered a neural 
network with automated feature learning that accepts raw vibration signals as inputs and employs 
two CNNs with varying kernel sizes to collect distinct frequency signal properties. Then, based 
on the learned attributes, LSTM was employed to determine the defect kind. Using a recurrent 
neural network, Z. An et al. [105] proposed a novel bearing intelligent failure diagnostic 
framework for time-varying operating situations. Multi-sensor bearing defect diagnostics based 
on a 1D convolutional LSTM network were proposed in [106]. 

4.2.5. Transfer learning 

Transfer learning is a concept in deep learning that involves taking the knowledge learned 
while addressing one problem and employing it to a similar but different problem. For instance, 
the skills learned while learning to distinguish cars can be applied to recognizing trucks to some 
extent. And this is an exciting breakthrough in the field of deep neural networks. So, there are two 
phases here. The first step is pre-training, which is training a network with a large quantity of data 
so that the model may learn the weights and biases, and then fine-tuning, which entails transferring 
these weights to another network for testing or training a similar new model. In addition, rather 
than starting from scratch, the network can use pre-trained weights. Z. Wang et al. [107] proposed 
a method for the fault detection of REB with the help of transfer learning techniques. Some 
researchers proposed a method for the fault detection of bearings based on the transfer learning 
approach [108]. 

We’re currently discussing different types of deep learning methods. Deep Forward Networks, 
Restricted Boltzmann Machines, Generative Adversarial Networks, Deep Reinforcement 
Learning, and Bayesian Deep Learning are some of the other deep learning methods accessible. 
But we only covered the methods for fault classification of rolling element bearings in this article. 
The deep learning algorithms have better performance in the modeling of high-level data 
processing [109]. However, there are still some drawbacks of deep learning exists such as it 
necessitates a significant quantity of sample data, it is expensive to train for a long time due to the 
complex data models, etc.  

5. Summary and discussion 

Rolling element bearing is an indispensable component in every machine, so its fault diagnosis 
is very important. Data acquisition, signal processing, and fault classification are the three main 
components of the fault diagnostic technique. Some of the approaches used in signal processing 
and fault categorization are described in this paper. Every day, new developments in this field 
emerge. It's nearly hard to construct a summary article that covers all of the papers in the 
collection. However, practically all of the most common ways are covered. The advantages and 
disadvantages of each approach are listed in the tables, making it very easy for readers to 
understand the various methods. 

Until about a decade ago, any of the above-mentioned approaches were used to diagnose and 
classify most faults. However, the current trend is to combine multiple methods to achieve superior 
fault classification findings. Artificial Intelligence (AI) is also becoming more prevalent in this 
field. With the advancement of artificial intelligence in this field, it is now possible to detect flaws 
ahead of time without the involvement of humans. Table 8 summarizes the benefits and drawbacks 
of the most generally used artificial intelligence approaches for defect identification. Today, 
academics are attempting to learn more about deep learning's potential and how to apply it to 
improve defect diagnostics. In addition, this article included table 9 which summarized the work 
of numerous researchers, including the main objectives, techniques used, and their main findings. 

The information for this article was gathered from research and review papers published in 
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peer-reviewed publications. A review of over a hundred research papers reveals that there are still 
some gaps in this field. The majority of papers deal with a single fault, with only a few dealings 
with multiple faults. It's also worth noting that many articles clearly indicate the presence of a 
fault but do not specify the fault's exact size or width. Likewise, when we come to AI-based 
methods, deep learning, has numerous advantages, but its computational complexity remains a 
challenge. To address these issues, new ways must be introduced into the field. 

Table 9. Techniques used by various researchers with their objectives and main findings 
References Main objectives Techniques used Main findings 

[8] Fault diagnostics of 
REB Matching pursuit 

Lowers the redundancy of the 
dictionary, easy interpretation 

of results 

[14] Vibration analysis of 
REB defects Time domain Beneficial in finding tiny faults 

in roller bearings 

[21] Signal processing 
techniques Modified cepstrum analysis Not very sensitive to minor 

Fourier components 

[29] Analysis of REB 
vibration signals Cyclo-stationary analysis More effective, better 

computation capability 

[31] REB fault diagnosis 
Local characteristic-scale 

decomposition-teager 
energy operator 

Better performance under 
fluctuating conditions 

[32] Fault detection of ball 
bearing STFT Effective as a diagnostic tool, 

perfection in spike detection 

[33] Rolling bearing FD STFT + Deep learning Easy to apply, robust, and 
better diagnostic performance 

[36] REB diagnosing method EMD Better fault detection 
capability at the early stages 

[39] 
Compound faults 

detection method for 
REB 

EWT + chaotic oscillator 
Potential and adequate for 
multi-defect diagnostics of 

REB 

[42] FD of bearings WVD + EMD An effective method in bearing 
fault diagnosis 

[48] Singularity analysis for 
bearing fault CWT Powerful in isolating the fault-

related signature 

[52] Detection of ball 
bearing fault DWT Beneficial in single and 

multiple fault identification 

[55] Rolling bearing FD DBN + Dual-Tree Complex 
WPT 

Does not require manual 
feature selection, reliable fault 

detection 

[64] Fault diagnosis of 
bearing KNN + fuzzy C-means More accurate recognition, 

improved efficiency 

[65] Fault diagnostics of 
REB 

AE + Hilbert Huang 
Transform + asymmetric 
proximity function-KNN 

More precise classification, 
More reliable 

[67] Rolling bearing FD SVM + multiscale 
permutation entropy 

Better recognition accuracy, 
efficient in detecting the 

different categories of faults 

[71] Bearing defect 
diagnostics 

NB + enhanced 
independence of data 

Enhanced condition 
monitoring 

[72] REB multi-fault 
diagnosis 

WT + Hidden Markov 
model 

Better output in pattern 
recognition 

[109] Defect pattern 
recognition in REB 

Hierarchical diagnosis 
network + DBN 

More reliable in multi-stage 
diagnosis, efficient to 
eliminate overlapping 

problems 
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References Main objectives Techniques used Main findings 

[111] Damage detection of 
REB 

Discrete impulse frequency 
translation 

The technique is applicable to 
all types of REB 

[114] Diagnosis and 
monitoring of REB 

Power Spectral Density 
analysis + ANN Efficient fault identification 

[115] FD of low-speed 
bearing 

Multiclass relevance vector 
machine 

More suitable in the real 
application, better 

computational ability 

[116] Multi-fault diagnostics 
of ball bearing 

FFT + wavelet energy 
entropy means + RMS 

Good computational 
efficiency, better resolution 

[117] Extracting fault 
characteristics WPT + Kurtogram 

Precisely match the fault 
characteristics for various 

noisy signals 

[118] REB fault diagnosis WPT + manifold learning Effective and reliable for 
early-stage fault detection 

[119] Bearing FD Multi-scale morphology 
analysis 

Can be used to determine 
damage modes 

[120] Diagnostics of REB 
defects Envelope detection + PSO 

Capable of identifying all 
types of faults in incipient 

stages 

[121] Rolling element bearing 
fault classification 

EMD + Multiscale dynamic 
time warping 

Simple and reliable, 
necessitate a smaller number 
of samples, lower the period 

[122] Enrichment of defect 
signature in REB 

Fast non-local means 
algorithm 

Effective bearing diagnostics 
against different signal-to-

noise ratio 

[123] Fault detection of aero-
engine bearing WPT + Rough set theory Quick detection of bearing 

faults 

[124] FD of rolling bearing Discrete Hidden Markov 
Model 

A reliable, on-site diagnosis is 
possible 

[125] Bearing fault diagnosis Wavelet packet 
decomposition + SVM 

High recognition accuracy, 
easy to apply 

[126] Rolling element bearing 
fault diagnostics 

Over-Complete rational 
dilation WT 

Better performance under 
background noise and speed 

fluctuations 

[127] Fault diagnostics of 
REB Sparsogram + Lempel-Ziv Better performance in the 

quantitative diagnostics 

[128] Fault feature extraction 
from bearings 

Improved resonance-based 
signal sparse decomposition 

Better performance compared 
with conventional spectrum 

analysis 

[129] REB incipient defect 
diagnostics 

Adapted dictionary free 
orthogonal matching 

pursuit 

Robust, strong adaptability, 
effective in analysis 

[130] 
Incipient defect 

detection in rolling 
bearing 

WT + Resonance-based 
sparse signal decomposition 

Better fault feature recognition 
ability than regular RSSD 

[131] Fault diagnostics of 
rolling bearings 

Segment tensor rank 
decomposition 

Extract the fault characteristic 
frequency accurately, excellent 

data compression capability 

[132] 
Bearing fault 

diagnostics in variable 
speed conditions 

Acoustic spectral imaging Invariant to fluctuations of 
shaft speed 

[133] 
Assessment of 

remaining useful life of 
REB 

WPT + ANN 
Better accuracy in the 

prediction of remaining useful 
life 

[134] Automated bearing FD Self-normalizing CNN The fault detection rate is 
faster than traditional CNN 
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References Main objectives Techniques used Main findings 

[135] Fault classification of 
low-speed bearings SVM + genetic algorithm 

Effective fault classification at 
low speed and varying load 

conditions 

[136] Fault classification of 
ball bearing 

Vibro-acoustic sensor data 
fusion + KNN 

Increased reliability, accuracy, 
and robustness 

[137] Early fault detection of 
REB 

Optimized Kurtogram 
method 

Effective extraction of early 
weak features, better 

performance 

[138] Low speed bearing FD Adaptive resilient stacked 
sparse autoencoder 

Easy to implement, require a 
smaller number of data 

samples 

[139] Bearing fault diagnosis Fuzzy logic + multiscale 
permutation entropy 

Better performance, Better 
accuracy 

[35], [110] Fault diagnosis of 
bearings EMD + Hilbert Transform Better output in analyzing 

various frequency ranges 

[112], 
[113] 

Early detection of 
defects and diagnostic 

monitoring in REB 

High-frequency resonance 
technique 

Suitable to detect both inner 
race and outer race faults at 

incipient stages 

6. Conclusions 

An attempt has been made to summarize the various vibration analysis methodologies for fault 
diagnosis of rolling element bearings in this work. Every day, a slew of new techniques emerges 
in this discipline. As a result, writing a review paper that covers all of the methods is nearly 
impossible. This article summarized over a hundred peer-reviewed research publications that 
explained how to detect faults in rolling element bearings using time-domain, frequency-domain, 
time-frequency domain, cyclo-stationary analysis, and artificial intelligence-based methodologies. 
RMS in the time domain, FFT in the frequency domain, and WT in the time-frequency domain 
are the most often utilized techniques in REB fault diagnostics, according to the published articles. 
Similarly, in AI-based approaches, SVM is the most often used methodology. However, more 
studies on deep learning have recently been published. In this article, the aforementioned method’s 
advantages and disadvantages are clearly outlined in distinct tables. Therefore, this paper is 
valuable for research students and people who want to learn more about vibration analysis 
methodologies for rolling element bearing failure diagnosis. 
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