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Abstract. Bearings are integral components of rotating machinery and their failure tends to be a 
catastrophic failure of the machine. Poincare Maps are used to detect bearing failures using the 
concept of non-linear dynamics. Each time-domain vibration signature array has its own Poincare 
Map over a period of time. Fast Fourier Transform (FFT) is a method of analysing the frequency 
plots of a bearing signature. Convolutional Neural Networks (CNN) process the bearing 
Continuous Wavelet Transform images and provide the Remaining Useful Life (RUL) of the 
bearing. The Poincare Maps and FFT plots are used to diagnose the type and location of the fault 
in the bearing, whereas the CNN helps to provide the fraction of Remaining Useful Life. The study 
concludes that a combination of Poincare Maps, FFT analysis and Convolutional Neural Networks 
constitutes a robust and precise method of monitoring bearing conditions. 
Keywords: Poincare, convolutional neural network, fast Fourier transform, condition monitoring, 
remaining useful life. 

1. Introduction 

Rotating machine elements rely heavily upon bearing to make the rotational motion smooth 
and frictionless. These bearings form an integral part of any machine. Failure of roller elements 
has significant contributions towards machine failures and maintenance costs [1]. This fact lends 
great importance to bearing condition monitoring, fault prediction, detection, diagnosis and 
maintenance [2]. Fault diagnosis holds a vital place in the bearing condition monitoring process 
due to the complex nature of the rotating elements. Accurate fault diagnosis can result in better 
maintenance practices and more accurate bearing customisation. The primary tools for fault 
detection and diagnosis are vibration analysis [3], acoustic emissions, lubricant analysis [4], motor 
condition monitoring, infrared thermography [5] and ultrasonic diagnosis. However, the raw 
forms of these analyses are inaccurate due to non linear and unexpected vibrations of components 
due to the complex nature of machines. This noise and irregularities demand for more refined 
methods of processing the data collected by sensors.  

The application of Short Time Fourier Transform (STFT) and Convolutional Neural Networks 
(CNN) in identifying the bearing fault and Remaining Useful Life (RUL) of bearings has been 
explored earlier [6]. Techniques like Machine Learning [7-11] and Deep Learning [12], [13] have 
also been previously utilized to detect the different types of bearing faults.  

This paper investigates the Fast Fourier Transform (FFT) analysis, Poincare Maps and 
Convolutional Neural Networks combined with Continuous Wavelet Transform (CWT) for 
identifying the fault, diagnosing the location and severity of the fault, and predicting the remaining 
useful life respectively. This paper proves that these methods effectively provide accurate results 
and suggest that they be used in combination for holistic condition monitoring.  

https://crossmark.crossref.org/dialog/?doi=10.21595/mme.2022.22364&domain=pdf&date_stamp=2022-01-31
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2. Methods used 

The methods for bearing condition monitoring investigated in this paper statistically analyse 
the bearing vibrational data. The description of these methods is as follows:  

2.1. Modified Poincare maps 

Bearings functioning in complex machines and non linear systems can be considered subject 
to nonlinear dynamics [2], [14]. Traditional signal analysis and FFT based detection methods are 
able to identify the faults in the bearing races to a good degree of accuracy [15-18]. However, this 
method cannot accurately pinpoint the location of the damage in the bearing. The primary cause 
of this is the chaotic nature of vibration signals. This is particularly the case with spin element 
defects. The chaotic nature of the motion of the spin elements results in unpredictable vibration 
signals as there is no periodic contact of the spin element fault with the bearing races [19], [14], 
[20]. Application of Chaotic method of fault detection and diagnosis to bearing systems needs to 
be investigated. Poincare Maps and modified Poincare Maps have previously proved effective in 
some cases to accurately diagnose the bearing defect [21-24]. 

2.2. Fast Fourier transform (FFT) 

Fast Fourier Transform (FFT) is used to find frequency components of a signal. FFT can be 
used to transform a signal from its original time or space domain to frequency domain. Thus, we 
get a frequency spectrum that includes all the signal’s fundamental frequency and its harmonics: 

𝐹ሺ𝜔ሻ = −නஶ
ିஶ𝑥ሺ𝑡ሻ𝑒ି௜ఠ௧𝑑𝑡, (1)

where 𝑥ሺ𝑡ሻ is the time domain response of any system, and 𝐹(𝜔) is the Fourier Transform of 𝑥ሺ𝑡ሻ 
[25]. 

When we apply this method, we assume that the frequency change is negligible in nature 
within a single time interval, such that the necessity of a stationary signal for frequency 
transformation is not violated. The FFT will yield an error in the actual value of the signal, if the 
frequency change is significant within this time interval [25]. 

FFT is easy to implement and the most common vibration signal processing tool. However, 
since the FFT results are averaged over the signal's time length, this approach does not include 
knowledge about the vibration signal's time dependency. When analysing non-stationary signals, 
this becomes a concern. In such situations, obtaining a correlation between the signal's time and 
frequency contents is always advantageous. As a result, FFT analysis is ineffective for detecting 
bearing characteristics, which are an essential component of the vibration signature [26-28]. 

2.3. Continuous wavelet transform (CWT) 

A signal is decomposed into wavelets using the Continuous Wavelet Transform (CWT). 
Wavelets are small oscillations that are highly localised in time. While the Fourier Transform 
decomposes a signal into infinite length sines and cosines, potentially losing all time-localization 
information, the CWT’s basis functions are scaled and shifted versions of the time-localized 
mother wavelet. The CWT is used to create a signal’s time-frequency representation, which 
provides excellent time and frequency localization. 

The CWT is a highly known method for mapping non-stationary signals’ changing properties. 

2.4. Convolutional neural network (CNN) 

Convolutional Neural Network (CNN) is a type of feed-forward artificial Neural Network. It 
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is a type of deep learning model specially designed for extracting features of 2D signal structure. 
It is suitable for feature learning and recognition of time-frequency maps. The forward propagation 
of the loss function through the convolution, pooling, and completely connected layers, as well as 
the backward propagation of updating the network parameters layer by layer using the gradient 
descent algorithm, comprise training of a CNN [6]. 

3. Description of experimental investigations 

All experimental investigations were carried out upon two bearing data packets based on 
experiments by IMS, University of Cincinnati and FEMTO-ST Institute both available at the 
NASA Prognostics Center of Excellence data repository [29], [30]. The descriptions of the data 
sets along with the original experimental setups are as follows. 

3.1. IMS data packet 

The rolling bearing life cycle data sets for this experiment were provided by the Centre for 
IMS, University of Cincinnati [29]. Rexnord ZA-2115 double row bearings were used for the 
experimental study [29] 4 bearings are installed on a shaft. The speed of rotation is at 2000 rpm. 
The radial load applied is 6000 lbs. On the bearing housing, a PCB 353B33 High Sensitivity 
Quartz ICP Accelerometer was installed. Every 10 minutes, a vibration data sample of 20,480 
points was collected with a National Instruments DAQCard-6062E data acquisition card. The 
sampling rate used for the data collection is 20kHz. 

The IMS data packet available at the NASA Prognostics Center of Excellence data repository 
contains three data sets of 4 bearings each describing test to failure experiments [29]. The bearing 
nomenclature follows the experiment number followed by the bearing index number separated by 
an underscore. The prefix IMS has been added to denote the origin of the data packets as follows:  

Test 1: Bearings involved: IMS1_1, IMS1_2, IMS1_3, IMS1_4. 
Result: Inner race defect in IMS1_3 and roller element defect in IMS1_4. 
Test 2: Bearings involved: IMS2_1, IMS2_2, IMS2_3, IMS2_4. 
Result: Outer race failure in bearing IMS2_1. 
Test 3: Bearings involved: IMS3_1, IMS3_2, IMS3_3, IMS3_4. 
Result: Outer race failure in bearing IMS3_3. 

3.2. FEMTO data packet 

The FEMTO dataset [30] is provided by the FEMTO-ST institute in France. For the testing, 
they have used PRONOSTIA. 

The FEMTO data packet contains data from three experiments with varying operating 
conditions of speed & load [30]. The bearing nomenclature follows the serial number of the 
experiment followed by the bearing index number separated by an underscore. The prefix FEM 
has been added to denote the data packet.  

Test conditions 1:  
Rotor speed: 1800 rpm.  
Radial Load: 4000 N. 
Bearings involved: FEM1_1, FEM1_2, FEM1_3, FEM1_4, FEM1_5, FEM1_6, FEM1_7.  
Test conditions 2:  
Rotor speed: 1650 rpm.  
Radial Load: 4200 N.  
Bearings involved: FEM2_1, FEM2_2, FEM2_3, FEM2_4, FEM2_5, FEM2_6, FEM2_7.  
Test conditions 3:  
Rotor speed: 1500 rpm.  
Radial Load: 5000 N.  
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Bearings involved: FEM3_1, FEM3_2, FEM3_3. 

4. Modified Poincare maps 

The primary locations of defects in a ball bearing are the inner race, the outer race and the spin 
elements. The motion of the spin elements is highly non-periodic. Poincare Maps are a statistical 
tool developed for such chaotic motion analysis. Poincare Maps are plotted against a repeating 
time interval which in this case is the accelerometer data collection time interval. The average of 
the vibration characteristic measured by the accelerometers can be plotted for a certain point 
keeping the time interval of data collection constant. The two datasets mentioned in above 
Sections 3.1, 3.2 were used to plot the Poincare Maps in this study. 

Time series accelerometer data for bearings with known faults has been acquired [29], [30]. 
The notation for the data is as follows: 𝑥(𝑡ଵ), 𝑥(𝑡ଶ), ..., 𝑥(𝑡௡), ..., 𝑥(𝑡ே). We shall be representing 𝑥(𝑡௞) as 𝑥௞. Arbitrary data point 𝑥௞ can be determined as follows: 𝑋௞ାଵ = 𝑓(𝑥௞). 

In order to plot the motion discreetly in two dimensions we define another variable 𝑦௞ = 𝑥ሶ(𝑡௞) 
Thus plotting the functions of 𝑋௡ାଵ = 𝑓(𝑥௡,𝑦௡) and 𝑌௡ାଵ = 𝑔(𝑥௡,𝑦௡). 

We get a two dimensional plot of the motion in the form of discrete points at constant time 
intervals. The time data for a Poincare Map is chosen at a specific position of the rotating element. 
This allows us to study the change in the 𝑥(𝑡௞) value for every sample collected and subsequently 
over an extended period of time at the exact same position. The position of the rotating element is 
expressed in terms of 𝜃 (angle of rotation for rotor). In order to collect data at the exact same value 
of 𝜃 we collect data when the sampling frequency is equal to the rotational frequency of the rotor. 
Each vibrational data series collected at a time translates to one point on the Poincare Map. 

The two dimensional nature of the Poincare plots requires two coordinates to be defined. The 
distance of the point from the origin is represented by 𝑑௡𝜃 and the angle of position represented 
by 𝜙. We calculate the average of the 𝑑௡𝜃 for each data series collected in a single interval of time 
and represent it by 𝐷௡௔௩௚. The mathematical relations for the above defined variables are as 
follows: 𝑑௡𝜃 = 𝑥௡ + 𝑦௡, (2)𝐷௡௔௩௚ = ∑௜ୀே௜ୀଵ 𝑑௜𝜃𝑁 , (3)𝜙 = 2𝜋 𝑓௥𝑓௦ , (4)

where 𝑓௥ is the rotor frequency and 𝑓௦ is the sampling frequency. 

5. Results and discussion 

Modified Poincare Maps have been plotted for all bearings in the IMS data packet and the 
FEMTO data packet.  

5.1. IMS data packet 

Fig. 1 denotes Poincare Maps for IMS Data Packet. 
According to the IMS dataset description [29] bearings IMS1_1 and IMS1_2 are healthy at the 

end of the experiment. The distribution of points in Fig. 1(a) and Fig. 1(b) is uniform and 
concentric indicating this fact. The scale of the plot of the healthy bearings is much smaller than 
defective bearings. Bearing IMS1_3 has an inner race defect. The skewed distribution of points in 
figure Fig. 1(c) is evident due to this defect. The scale of the plot is significantly larger. There is 
skewing of the point distribution begins at the later stages of the experiment. Bearing IMS1_4 is 
known to have a spin element defect. The distinctly chaotic distribution of points along with larger 
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than average distances from the origin in Fig. 1(d) clearly indicates the same. The plot remains 
roughly concentric due to the truly arbitrary distribution of points. This arbitrary distribution of 
points shows a spiral nature and it needs to be investigated further. 

 
a) [IMS1_1] 

 
b) [IMS1_2] 

 
c) [IMS1_3] 

 
d) [IMS1_4] 

 
e) [IMS2_1] 

 
f) [IMS3_3] 

Fig. 1. Poincare Maps for IMS datasets 

Bearing IMS3_3 from the 3rd dataset of the IMS data packet and IMS2_1 from the second 
dataset are known to have an outer race failure. The highly skewed distribution of points in image 
Fig. 1(e) and Fig. 1(f) points to this defect. The skewing of the points starts from an earlier stage 
of the experiment compared to bearing IMS1_3 which had an inner race defect. Due to this, the 
skewing is much more pronounced. The scale is significantly larger compared to healthy bearings 
and slightly larger compared to the plot of IMS1_3. 
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5.2. FEMTO data packet 

The FEMTO dataset description does not offer any results regarding the defect identified by 
the end of the experiment. The nature of the defect has been deduced based on IMS results and 
the research presented by Choy, F. K. Zhou et al [6]. This investigation has been carried out only 
on select bearings in the FEMTO data packet due to limited data availability on some of the 
bearing experiments. 

 
a) [FEM1_2] 

 
b) [FEM2_2] 

 
c) [FEM3_2] 

 
d) [FEM1_5] 

Fig. 2. Poincare Maps for FEMTO datasets 

 
a) [FEM1_6] 

 
b) [FEM2_3] 

Fig. 3. Poincare Maps for FEMTO datasets contd. 

Poincare plots of bearings FEM1_2, FEM2_2 and FEM3_2 in the images Fig. 2(a), Fig. 2(b) 
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and Fig. 2(c) show the skewed distribution of points characteristic of an outer race defect. The 
points have a skewed distribution from an early stage. The scale is much larger than that of a 
standard healthy bearing. Poincare plots of the bearings FEM1_5, FEM 1_6, and FEM2_3 in the 
images Fig. 2(d), Fig. 2(e) and Fig. 2(f) show the chaotic distribution of points and presence of 
outliers in terms of distance from the origin which are characteristic of a roller element defect 
[25]. These conclusions are drawn based on the knowledge of Poincare Maps drawn in Fig. 1 and 
known faults described by the experiment. 

For each shaft revolution vibration signature, the Modified Poincare Map generates a 
representative point. Using the available shaft speed information, the Modified Poincare Map 
produces a point for each position of the shaft from 0 to 360. We can then create a series of 
Poincare Maps for each shaft position and use them to create a modified Poincare Map for shaft 
rotational speed. As a result, the approximate position of the defect relative to the shaft reference 
is determined by the start of the skewing of the points on a modified Poincare Map, while the 
extent of the skewing of the point distribution is an approximate measure of the defect severity. A 
prime example of this is Fig. 2(a) FEM1_2. It is clearly visible that the fault occurs at 
approximately 120 in the counterclockwise direction from the reference mark on the outer race of 
the bearing. The relative severity can be judged by the scale of the plot. Similarly, Fig. 2(b) shows 
an outer race defect approximately at the 110 mark from the reference in the counterclockwise 
direction. Fig. 2(c) shows an outer race defect approximately at the 140 mark from the reference 
point. The relative severity can be judged by the scale of the plots. The inner race defect of bearing 
IMS1_3 in Fig. 1(c) can be studied in a similar fashion. The defect is seen approximately at the 
30 mark from the reference point. The location of spin element defects cannot be determined due 
to the chaotic nature of the vibration signature. The points appear arbitrary without a particular 
direction of skewing. Their truly arbitrary nature keeps the plot relatively concentric with a large 
number of outliers. 

6. Fast Fourier transform results 

Each bearing has a unique vibration signature during its life. There are four major frequencies 
to take note of when analysing any bearing over an extended period of time. The Ball Spin 
Frequency (BSF), Fundamental Train Frequency (FTF), and Ball Pass Frequency for the Inner 
race (BPFI) and Ball Pass Frequency for the Outer race (BPFO). 

For analysing the frequency spectrum of the bearing, a Fast Fourier Transform is used. It is to 
be taken note of that even though the dataset descriptions state that the bearings have only one 
defect, it can be seen from the following results that these bearings might have failed due to one 
or more defects. Multiple peaks can be seen in the graph. The ones we are concentrating on are 
FTF, BSF, BPFO and BPFI. But we can see that there are peaks at the multiples of these 
frequencies as well. 

For predicting the fault in the bearing, we have used the IMS Bearing dataset as information 
regarding the bearing is given along with the dataset. The FEMTO bearing dataset is more suitable 
for predicting the RUL as time data is given accurately and no bearing information is provided. 

The FTF, BSF, BPFO and BPFI values as given by the manufacturer [31] are in Table 1. 

Table 1. Frequency values provided by manufacturer 
Vibration frequency fundamental train (FTF)  0.0072 Hz 

Vibration frequency roller spin (BSF)  0.0559 Hz 
Vibration frequency outer ring defect (BPFO)  0.1217 Hz 
Vibration frequency inner ring defect (BPFI)  0.1617 Hz 

Using IMS dataset for test sets 2 and 3, we applied Fast Fourier Transform (FFT) and the 
following graphs (as shown in Fig. 4, Fig. 5 Fig. 6 and Fig. 7) were obtained, similar to what we 
see in [27]. 



FAULT IDENTIFICATION AND REMAINING USEFUL LIFE PREDICTION OF BEARINGS USING POINCARE MAPS, FAST FOURIER TRANSFORM AND 
CONVOLUTIONAL NEURAL NETWORKS. ADITYA MAJALI, ADVAIT MULAY, VENUGOPALAN IYENGAR, ANIRUDDHA NAYAK, PRAVIN SINGRU 

8 MATHEMATICAL MODELS IN ENGINEERING. MARCH 2022, VOLUME 8, ISSUE 1  

6.1. IMS2_1 

We plotted FFT of these two sets at the beginning of test and at the end of life. The FTF 
undergoes a change of 10.0 %, while BSF undergoes a change of 14.65 %. The most notable shift 
in frequency is seen in BPFO where 25.00 % increase is found, while BPFI shifts by 1.67 %. 

As seen from the above graphs (Fig. 4 and Fig. 5, BPFO undergoes the maximum shift in the 
frequency. This matches with the Modified Poincare Map results as shown in Fig. 1(e). Thus, we 
can conclude that for IMS test set 2 and Bearing 1, the fault is Outer Ring/Race Defect. Hence, 
the bearing fault prediction and nature of faults using FFT and Modified Poincare Map matches.  

  
Fig. 4. FFT for IMS dataset – IMS2_1 (Beginning of test) 

  
Fig. 5. FFT for IMS dataset – IMS2_1 (End of Life) 

6.2. IMS3_3 

The FTF undergoes a change of 2.86 %, while BSF undergoes a change of 21.05 %. The most 
notable shift in frequency is seen in BPFO where 36.67 % shift is found, while BPFI shifts by 
3.18 %. 

As seen from the above graphs (Fig. 6 and Fig. 7), BPFO undergoes the maximum shift in the 
frequency. This matches with the Modified Poincare Map results as shown in Fig. 1(e). Thus, we 
can conclude that for IMS test set 3 and Bearing 3, the fault is Outer Ring/Race Defect. 
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Fig. 6. FFT for IMS dataset – IMS3_3 (Beginning of test) 

  
Fig. 7. FFT for IMS dataset – IMS3_3 (End of Life) 

7. Prediction of fraction of remaining useful life (RUL) using convolutional neural networks 

The prediction of RUL has been carried out on the FEMTO dataset since a large amount of 
data is available in the dataset and hence training and testing can be done properly. The path 
followed for predicting the fraction of remaining useful life is given in the Fig. 8.  

  
Fig. 8. Workflow for predicting RUL 
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7.1. Construction of CWT maps 

A Continuous Wavelet Transform (CWT) is used to decompose a signal into wavelets. 
Wavelets are small oscillations with a high degree of temporal localization. The CWT’s basis 
functions are scaled and shifted versions of the time-localized mother wavelet, whereas the Fourier 
Transform decomposes a signal into infinite length sines and cosines, effectively losing all 
time-localization information. The CWT is used to create a signal’s time-frequency representation, 
which provides excellent time and frequency localization. 

The CWT is an excellent tool for mapping non-stationary signals’ changing properties. The 
CWT is also an excellent technique for evaluating whether or not a signal is globally stationary. 
When a signal is assessed to be non-stationary, the CWT can be used to identify stationary sections 
of the dataset. 

While we can use colored CWT maps to feed into the Neural network, using greyscale maps 
or images are proven to increase the accuracy of the model. So, we converted the colored CWT 
images to greyscale images using OpenCV python module [32] and obtained the result that we 
see in Fig. 9.  

   
Fig. 9. Conversion of colored CWT maps to greyscale CWT maps 

7.2. Network construction 

The effect of the network model is directly influenced by the structure of the convolutional 
network layer. As a result, picking the right network structure parameters is crucial.  

  
Fig. 10. Network construction 

The network structure of CNN, as shown in Fig. 10, is composed of 1 input layer, 4 
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convolutional layers, 4 pooling layers, 2 ReLU activation layers, 1 Sigmoid activation layer (it is 
also the output dense layer). The size of the CWT map which was inputted via the input layer is 
48×64. The sizes of the convolution kernels of the convolutional layers are all 3×3. The pooling 
layers are 2×2 in size. The Sigmoid and ReLU are chosen as the activation functions. Optimizer 
used is “Adam” and the loss function is “Mean Squared Error”. The entire CNN model was 
constructed using the Tensorflow [33] and Keras [34] libraries in python. 

We used different convolution layer filters and tried to reach the optimum. In the graphs 
obtained in the Result Analysis section below, we have compared the accuracy of different 
convolution layer filters and activation layer density sets. Three sets are used for comparison 
(Table 2). 

Table 2. Different Sets of network parameters for CNN 
 Set1  Set2  Set3  

Convolution layer filters  768, 256, 64, 32  1024, 512, 128, 64, 32  512, 256, 64, 32  
Activation layer densities  2560, 768, 1  2560, 768, 1  2560, 768, 300, 100, 50, 1  

The best result was obtained with Set 2 parameters and greyscale CWT images and we have 
used these network parameters to obtain the best model for our CNN. 

7.3. Result analysis 

In the Neural Network Functioning a noticeable difference occurred when we used Set 2 
network parameters from Table 2 compared to Set 1 and Set 3. So, using Set 2 parameters yields 
us the maximum accuracy of our CNN model. 

These results are plotted in the Fig. 11.  

  
Fig. 11. Bearing dataset vs % Error in predicting RUL for different Set parameters 

Using CWT and CNN to predict the fraction of Remaining Useful Life gave a 94.00 % median 
accuracy and a mean accuracy of 93.14 % on the test sets. This shows that prediction of End of 
Life using CNNs is a reliable technique to use when we have enough amount of data. 

8. Scope of future work 

Further research and experiments are required in order to use Poincare Maps to preemptively 
predict the fault and its location. Images of Poincare Maps generated from accelerometer data may 
be further used to train AI models for prediction of fault type and location. In future, different 
techniques like LSTM (Long short-term memory), a RNN (Recurrent Neural Network) based deep 
learning or a combination of CNN and LSTM can be used to increase the accuracy of the 
predictions. Techniques like SVM (Support Vector Machine) and Decision Trees can also be 
explored to check if the accuracy can be increased. 
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9. Conclusions 

Prediction of the Bearing Faults using Modified Poincare Maps and FFT is done in this paper. 
Both the methods can provide us a way to detect the different types of bearing faults. Comparison 
of Fast Fourier Transforms (FFTs) to detect the type of bearing fault is a very simple method and 
doesn’t require a lot of technical expertise.  

The study shows that Modified Poincare Map is a reliable method for analyzing the nonlinear 
vibration patterns of a roller bearing being tested until failure. 

1) Non-periodic nature of the motion of spin elements cannot be detected on the frequency 
spectrum analysis. Poincare Maps of vibration signature arrays of large numbers of data points 
resolves this problem.  

2) The Poincare Maps generated from the vibration accelerometer data can be reliably used to 
diagnose the approximate location and severity of the defect.  

3) Poincare Map describes the location of the defect relatively approximately with reference 
to the shaft position.  

4) Using CNN to predict the fraction of RUL gives a very accurate measure of the Remaining 
Useful Life of a bearing. In this paper, the research on RUL of the bearings was conducted using 
the FEMTO dataset. 

5) Using CWT and CNN to predict the fraction of Remaining Useful Life gave a 94.00 % 
median accuracy and a mean accuracy of 93.14 % on the test sets. This shows that prediction of 
End of Life using CNNs is a reliable technique to use when we have enough amount of data.  

6) The methodology of using CWT and CNN can also estimate the life of the bearing at any 
time in the entire cycle from normal operation to failure.  
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