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Abstract. Obtaining vehicle status in real-time and accurately during the driving process is of 
great significance for active safety control of the vehicle. In response to this problem, combining 
a 7-DOF vehicle dynamic model and the magic formula tire model, the research designed a 
time-sensitive and robust double cubature Kalman filter (DCKF) observation algorithm. The 
DCKF algorithm addressed singular value decomposition to optimize the error covariance matrix, 
and connected driving state observer information of the vehicle to update the observation signal 
realizing the real-time estimation of the vehicle state. The DCKF algorithm is verified on the 
simulation platform, and compared and analyzed with the virtual test with CarSim data. The results 
show that the DCKF algorithm has faster response speed, higher precision of the estimation of the 
vehicle state, and stronger real-time performance. 
Keywords: automotive engineering, vehicle state estimation, Cubature Kalman filter, Double 
Cubature Kalman filter, vehicle handling dynamics. 

1. Introduction  

With the development of information technology, more and more information technology 
methods have played an important role in the automotive industry. Since the 1990s, researchers 
have been committed to improving the performance, safety, comfort and other performance of 
automobiles, and developed more and more control systems, and new driving assistance systems, 
such as anti-lock braking systems (ABS), traction control systems, stability control system based 
on lateral control and active body control system, etc.  

Specifically, the onboard control system implements the corresponding control logic according 
to the form state of the vehicle and the corresponding road condition information. And the 
parameters of the state estimation are usually obtained directly from the onboard sensors. But for 
the vehicle, the driving conditions may be very complex. Some parameters may change with 
different driving conditions, and the accuracy of onboard sensors may be greatly affected by 
factors such as temperature, noise, etc. The production cost of the sensor must be taken into 
account. Many parameters that are critical to vehicle control cannot be directly estimated with 
reliable results through sensors. At the same time, onboard sensors also generally have certain 
temperature drift errors and calibration errors. The above-mentioned problems greatly limit the 
development of onboard control systems. At present, real-time accurate estimation of vehicle 
motion status has become a bottleneck problem in-vehicle control systems, driver assistance 
systems, and automatic driving control systems. Therefore, improving the accuracy of state 
estimation algorithms is a key issue in the automotive field. Not only that, accurate perception of 
the driving status, road information, etc., can also provide reliable information for onboard early 
warning and monitoring [1]. 

In the early state estimation algorithm research, many researchers used expensive sensors in 
the vehicle to obtain information about the driving state of the vehicle. For example, the optical 
sensing element is applied to the sensor identifying some road surface information by measuring 
the physical conditions such as the scattering and absorption of light by the road surface. However, 
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the water surface, ice surface, muddy road surface, etc. will significantly affect the adhesion 
coefficient between the tire and the road surface, to obtain the change of the adhesion coefficient 
between the tire and the road surface qualitatively. Sometimes, researchers through a special 
onboard sensor device to study the vehicle’s movement state information and the driving road 
surface information. This kind of sensor has more stringent requirements for the working 
environment, and it is susceptible to external influences. In addition, the production cost is too 
high, and mass production cannot be achieved. So, this kind of sensor can only be used in special 
scenarios. The above various reasons make these sensors unable to be promoted in the automotive 
industry. Researchers are more inclined to use cheap sensors to design state estimation algorithms 
to estimate vehicle motion state parameters and road information [2]. 

For automotive safety systems, a safety strategy model that reflects vehicle and road conditions 
which depend on the accurate grasp of the road adhesion coefficient, driving environment 
information and the vehicle's motion state is a key technology that must be resolved. Among them, 
the real-time judgment of the road adhesion coefficient and the sideslip angle is the most difficult 
to implement [3].  

The problem of vehicle state estimation has been widely studied. A brief review is presented 
in what follows. 

Aiming at improving vehicle dynamics control via the anti-lock braking system (ABS) by 
estimating friction coefficient using video data, Sabanovic et al. [4] contributed to the 
development of the new efficient engineering solution that increased the performance of ABS with 
a rule-based control strategy. Ribeiro et al. [5] solved the tire-road friction coefficient estimation 
method which provided a more efficient method with robust results through the knowledge of 
lateral tire force. Paul et al. [6] developed a rules-based 𝑢-estimation algorithm that was 
independent of any tire model and was validated through implementation in high-fidelity vehicle 
dynamics simulation. Focusing on sliding-mode techniques, followed by the development of a 
novel friction estimation technique, Rajendran et al. [7] presented a review of existing estimation 
methods that was a novel slip-based estimation method and an important tool in developing the 
next generation ABS systems for electric vehicles. Huang et al. [8] proposed a limited-memory 
adaptive extended Kalman Filter that could enhance the filter stability, improve the estimation 
accuracy of algorithm, and increase algorithm robustness to estimate tire-road friction coefficient. 
Lv et al. [9] proposed a practical estimation method for the longitudinal and lateral velocities of 
electric vehicles. With the proposed method the velocities could be estimated under a wide range 
of driving conditions accurately and reliably. To deal with vehicle sideslip angle estimation, 
Selmanaj et al. [10] introduced an industrially amenable kinematic-based approach that was robust 
to a wide range of driving scenarios and did not need tire-road friction parameters or other 
dynamical properties of the vehicle. Marco et al. [11] presented a multi-modal sensor fusion 
scheme to estimate the three-dimensional vehicle velocity and attitude angles. During both regular 
urban drives and collision avoidance manoeuvres, the proposed algorithm was effective. Heidfeld 
et al. [12] developed and validated a state observer that was able to adapt the tire model according 
to the current road conditions for a four-wheel-drive electric vehicle to addressing the problem of 
improvement of modern vehicle dynamic control systems. Reina et al. [13] developed a 
model-based observer that estimated automatically terrain parameters using available onboard 
sensors. The results of the research showed the potential of the proposed observer to estimate 
terrain properties during operations automatically. Wang et al. [14] presented a new method that 
had higher accuracy for state estimation of a vehicle system under various ISO road excitation 
condition to address issues associated with vehicle system state estimation using an unscented 
Kalman filter (UKF). Tian et al. [15] proposed an improved ant lion optimization (IALO) 
algorithm that had a good convergence characteristic and high stability for parameter 
identification of hydraulic turbine governing system. Ali et al. [16] proposed Ant Lion 
Optimization Algorithm (ALOA) for optimal location and sizing of DG-based renewable sources 
for various distribution systems. The research verified the effectiveness of ALOA compared with 
other algorithms. Brembeck et al. [17] discussed a vehicle state observer with a focus on the 
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estimation of the quantity’s position, yaw angle, velocity, and yaw rate. The designed state 
estimators was of high-performance for future autonomous vehicles. Katriniok et al. [18] proposed 
an extended Kalman filter-based estimator adopting a dynamic vehicle model for determining the 
vehicle’s longitudinal and lateral velocity as well as the yaw rate. In the nominal and perturbed 
vehicle parameter case requiring filter adaptation, the proposed estimator was effective. Gao et al. 
[19] proposed a new methodology to address the problem of tightly coupled GNSS/INS (Global 
Navigation Satellite System/Inertial Navigation System) integration. 

The Cubature Kalman filter (CKF) relies on the determined volume points to calculate the 
posterior probability density function, which is a new nonlinear Gaussian filtering method. In 
terms of implementation form, the CKF algorithm does not need to calculate the complicated 
Jacobian matrix like the EKF algorithm. At the same time, it does not need to set complex 
parameters like the UKF algorithm. Compared with the EFK and UKF algorithms, the CKF 
algorithm is more rapid in calculation, having faster convergence speed and higher convergence 
accuracy and having been widely used in nonlinear fields. However, when the CKF algorithm 
calculates the error covariance, the square root method (Cholesky) used to solve it easily leads to 
the loss of the positive definiteness of the error covariance matrix of the CKF filter algorithm. On 
the basis of retaining the good characteristics of the CKF algorithm, the Double Cubature Kalman 
filter (DCKF) uses singular value decomposition (SVD) to solve the error covariance matrix to 
improve the CKF algorithm. So when solving the problem of vehicle state estimation, the DCKF 
algorithm has a faster response speed and higher accuracy as well as stronger real-time 
performance, and the vehicle state and parameters can be better estimated. 

2. Mathematical model of vehicle dynamics 

2.1. Vehicle model 

A 7-DOF nonlinear vehicle model is established as the nominal model for the design of the 
vehicle state estimation observer. The model includes the lateral, longitudinal and yaw motion, as 
shown in Fig. 1. It is assumed that the center of mass of the vehicle is the origin of the body 
coordinate system; there is no pitch and roll motion; the direction of the front wheel angle is the 
same; left and counterclockwise are the positive rotation directions; the vector in the same 
direction as the coordinate axis is positive. 
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Fig. 1. 7-DOF vehicle model 

The 7-DOF vehicle dynamics model equation is as follows. 
The lateral dynamic equation is: 𝑣ሶ = 𝑎௬ − 𝜔𝑢, (1)𝑚𝑎௬ = ൣ൫𝜇ଵ𝐹௫ଵ + 𝜇ଵ𝐹௫ଵ ൯sin𝛿 + ൫𝜇ଵ𝐹௬ଵ + 𝜇ଵ𝐹௬ଵ ൯cos𝛿 + 𝜇ଶ𝐹௬ଶ + 𝜇ଶ𝐹௬ଶ ൧. (2)
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The longitudinal dynamic equation is: 𝑢ሶ = 𝑎௫ + 𝜔𝑣, (3)𝑚𝑎௫ = ൣ൫𝜇ଵ𝐹௫ଵ + 𝜇ଵ𝐹௫ଵ ൯cos𝛿 − ൫𝜇ଵ𝐹௬ଵ + 𝜇ଵ𝐹௬ଵ ൯sin𝛿 + 𝜇ଶ𝐹௬ଶ + 𝜇ଶ𝐹௬ଶ ൧. (4)

The yaw dynamic equation is: 𝐼௭𝜔ሶ  = 𝑎(𝜇ଵ𝐹௫ଵ + 𝜇ଵ𝐹௫ଵ )sin𝛿 + 𝑎(𝜇ଵ𝐹௬ଵ + 𝜇ଵ𝐹௬ଵ )cos𝛿 − 𝑏(𝜇ଶ𝐹௬ଶ + 𝜇ଶ𝐹௬ଶ )     −𝑡2 ൫𝜇ଵ𝐹௫ଵ − 𝜇ଵ𝐹௫ଵ ൯cos𝛿 + 𝑡2 ൫𝜇ଵ𝐹௬ଵ − 𝜇ଵ𝐹௬ଵ ൯sin𝛿 − 𝑡2 ൫𝜇ଶ𝐹௫ଶ − 𝜇ଶ𝐹௫ଶ ൯, (5)

where, 𝑢 and 𝑣 are the longitudinal and the lateral speed; 𝜔 is the yaw rate, 𝑎௫ and 𝑎௬ are the 
longitudinal and lateral acceleration; 𝐼௭ is the moment of inertia around the 𝑧-axis of the vehicle; 𝑎 and 𝑏 are the distances of front and rear axles from the center of gravity; 𝑚 is the vehicle mass; 𝛿 is the front steering angle, 𝑡 and 𝑡 are the tracks of the front and rear wheels respectively. 

The wheel dynamic equation of the wheel is: 𝐽ఠ𝜔ሶ  = 𝑇ௗ − 𝑇 − 𝐹௫𝑅ఠ, (6)

where 𝐽ఠ is the moment of inertia of each wheel; 𝑇ௗ is the drive torque for each wheel; 𝑇 is 
the braking torque. 

2.2. Tire model 

The tire is the only part of the vehicle that comes into contact with the ground. The accuracy 
of mathematical modeling of tires directly affects the results of vehicle dynamics simulation. This 
article adopts the “Magic formula” tire model which expression is: 𝑦 = 𝐷sinሼ𝐶arctan[𝐵𝑥 − 𝐸(𝐵𝑥 − arctan(𝐵𝑥))]ሽ + 𝑆, (7)𝑌(𝑋) = 𝑦(𝑥) + 𝑆௩, (8)𝑥 = 𝑋 + 𝑆, (9)

where 𝐵 is the stiffness factor; 𝐶 is the shape factor; 𝐷 is the amplitude factor; 𝐸 is the curvature 
factor; 𝑆 is the offset of the curve on the 𝑥-axis; 𝑆௩ is the offset of the curve on the 𝑦-axis; 𝑋 is 
the input variable; 𝑌(𝑋) is the output variable. 

All the parameters in Eqs. (7)-(9) use the “Magic formula” tire model parameters provided in 
the CarSim software. 𝑌(𝑋) in the magic tire model can be a lateral force, or it can be a normalizing 
moment or longitudinal force. The independent variable 𝑋 can represent the tire’s slip angle or 
longitudinal slip rate under different conditions. The coefficients 𝐵, 𝐶, and 𝐷 are determined by 
the vertical load and camber angle of the tire in turn. 

According to the 7-DOF vehicle dynamics model, it is necessary to know the longitudinal and 
lateral force of the tire when predicting the state of the vehicle. The input used to calculate the tire 
lateral and longitudinal forces are the sideslip angle and the longitudinal slip rate of the tire 
respectively. The calculation formula can be derived from the vehicle model: 

⎩⎪⎨
⎪⎧𝛼ଵଵ,ଵଶ = 𝛿 − arctg 𝑣 + 𝑎𝜔𝑢 ± 𝐿2 𝜔 ,
𝛼ଶଵ,ଶଶ = −arctg 𝑣 − 𝑏𝜔𝑢 ± 𝐿2𝜔 ,  (10)
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⎩⎪⎪⎨
⎪⎪⎧𝑢ଵଵ,ଵଶ = ඥ𝑢ଶ + 𝑣ଶ ± 𝜔 ቆℎ2 ቇ ± 𝑎𝛽,𝑢ଶଵ,ଶଶ = ඥ𝑢ଶ + 𝑣ଶ ± 𝜔 ൬ℎ2 ൰ ∓ 𝑏𝛽,𝑠 = 𝑟𝜔 − 𝑢𝑢 ,  
𝛽 = 𝑣𝑢, 

(11)

where 𝑢 is the center speed of each wheel; 𝜔 is the angular velocity of each wheel; 𝑠 is the 
longitudinal slip rate of each wheel; 𝛼 is the sideslip angle of each wheel; 𝑌(𝑋) is the output 
variable; ℎ and ℎ are the track of front and rear wheels; 𝑟 is the rolling radius of the wheel; the 
subscript 𝑖𝑗 represents 11, 12, 21, 22; 𝛽 is the sideslip of the center of mass. 

2.3. Nonlinear vehicle system containing noise 

The vehicle driving state variable is: 𝐗௦ = [𝑎௬,𝜔 ,𝛽]் . (12)

The system input is: 𝐔 = [𝛿,𝑎௫]் . 
The observation vector is: 𝐲 = [𝜔 ,𝑎௬]் . (13)

The adhesion coefficient variable is: 𝐗 = [𝜇ଵ,𝜇ଵ,𝜇ଶ,𝜇ଶ]் . 
The measurement output variable is: 𝐙௦ = 𝐙 = [𝑎௫,𝑎௬,𝜔]் . 
The standard form of the state equation is: 𝐗ሶ ௦,(𝑡) = 𝑓൫𝐗௦(𝑡),𝐗(𝑡),𝐔(𝑡), 𝑡൯. (14)

The standard form of the measurement equation is: 𝐙௦, = ℎൣ𝐗௦(𝑡),𝐗(𝑡),𝐔(𝑡), 𝑡൧. (15)

3. The DCKF observation algorithm 

The DCKF algorithm cyclically links the vehicle responses to form closed-loop feedback of 
the information, realizing mutual correction and real-time update of the information, and 
improving the real-time utilization of the information. At the same time, based on the DCKF, the 
singular value decomposition is used to solve the error covariance matrix to improve the CKF 
algorithm, to realize the real-time and accurate estimation of the states. 

The steps of the DCKF algorithm for vehicle state observation are as follows: 
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Step 1: Time updating (𝑋). 
a) Singular value decomposition optimization: 𝑃,ିଵ = 𝐴,ିଵΛ,ିଵ𝐴,ିଵ் , (16)Λ,ିଵ = diagൣ𝑆ଵଶ ,𝑆ଶଶ ,⋯𝑆ଶ ൧, (17)𝑋,ିଵ = 𝐴,ିଵ𝑆𝜁 + 𝑋,ିଵ∧ , (18)ቐ𝜁 = ට𝑚2 [1] ,𝑚 = 2𝑛,  (19)

where 𝑃,ିଵ is the error covariance matrix; the column of 𝐴 and 𝑆 are the unit orthogonal 
eigenvector and eigenvalue of 𝑃,ିଵ respectively; Λ,ିଵ is the diagonal matrix; 𝜁 is the volume 
point; 𝑚 is the total number of volume points; 𝑛 is the state dimension; [1] represents the 𝑗th 
element among them. And the volume point set can be obtained: 

൞൦1000൪ ൦0100൪ ൦0010൪ ൦0001൪ ൦−1000 ൪ ൦ 0−100 ൪ ൦ 00−10 ൪ ൦ 000−1൪ൢ. 
b) Volume point 𝑋,/ିଵ∗ : 

𝑋,/ିଵ∗ = 𝑓 ൬𝑋,ିଵ൰. (20)

c) Updating forecast value: 

𝑋,/ିଵ∧ =  1𝑚
ୀଵ 𝑋,/ିଵ∗ , (21)

𝑃,/ିଵ =  1𝑚
ୀଵ 𝑋,/ିଵ∗ 𝑋,/ିଵ∗் − 𝑋,ିଵ∧ 𝑋,ିଵ∧் + 𝑄. (22)

Step 2: Time updating (𝑋௦). 
a) Singular value decomposition optimization: 𝑃௦,ିଵ = 𝐴௦,ିଵΛ௦,ିଵ𝐴௦,ିଵ் , (23)Λ௦,ିଵ = diag[𝑆௦ଵଶ , 𝑆௦ଶଶ ⋯𝑆௦ଶ ], (24)𝑋௦,ିଵ = 𝐴௦,ିଵ𝑆௦𝜁௦ + 𝑋௦,ିଵ∧ , (25)ቐ𝜁௦ = ට𝑚2 [1]௦ ,𝑚 = 2𝑛,  (26)

where 𝑃,ିଵ is the error covariance matrix; the column of 𝐴௦,ିଵ and 𝑆 are the unit orthogonal 
eigenvector and eigenvalue of 𝑃,ିଵ respectively; Λ௦,ିଵ is the diagonal matrix; 𝜁௦ is the volume 
point; 𝑚 is the total number of volume points; 𝑛 is the state dimension; [1] represents the 𝑗th 
element among them. And the volume point set can be obtained: 
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⎩⎪⎨
⎪⎧
⎣⎢⎢
⎢⎢⎡100000⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡010000⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡001000⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡000100⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡000010⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡000001⎦⎥⎥
⎥⎥⎤

⎣⎢⎢
⎢⎢⎡−100000 ⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡ 0−10000 ⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡ 00−1000 ⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡ 000−100 ⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡ 0000−10 ⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡ 00000−1⎦⎥⎥

⎥⎥⎤
⎭⎪⎬
⎪⎫. 

b) Volume point 𝑋௦,/ିଵ∗ : 

𝑋௦,/ିଵ∗ = 𝑓 ቆ𝑋௦,ିଵ𝑋,ିଵ∧ ,𝑈ቇ. (27)

c) Updating forecast value: 

𝑋௦,/ିଵ∧ =  1𝑚
ୀଵ 𝑋௦,/ିଵ∗ , (28)

𝑃௦,/ିଵ = 𝜔ഥ௦
ୀଵ 𝑋௦,/ିଵ∗ 𝑋௦,/ିଵ∗் − 𝑋௦,ିଵ∧ 𝑋௦,ିଵ∧் + 𝑄௦. (29)

Step 3: Measurement updating (𝑋): 

ቊ𝑃,/ିଵ = 𝐴,/ିଵΛ,/ିଵ𝐴,/ିଵ் ,𝑋,/ିଵ = 𝐴,/ିଵ𝑆,/ିଵ𝜁 + 𝑋,/ିଵ∧ ,  (30)𝑍,/ିଵ = ℎ ቆ𝑋,ିଵ,𝑋௦,ିଵ∧ ,𝑈ቇ, (31)

𝑍,/ିଵ∧ =  1𝑚
ୀଵ 𝑍,/ିଵ, (32)

𝑃௭௭,/ିଵ =  1𝑚
ୀଵ 𝑍,/ିଵ𝑍,/ିଵ் − 𝑍,ିଵ∧ 𝑍,ିଵ∧் + 𝑅, (33)

𝑃௫௭,/ିଵ =  1𝑚
ୀଵ 𝑋,/ିଵ𝑍,/ିଵ் − 𝑋,ିଵ∧ 𝑍,ିଵ∧் , (34)𝐾 = 𝑃௫௭,/ିଵ𝑃௭௭,/ିଵିଵ , (35)𝑋,∧ = 𝑋,/ିଵ∧ + 𝐾 ቆ𝑍,𝑍,ିଵ∧ ቇ, (36)𝑃, = 𝑃,/ିଵ − 𝐾𝑃௭௭,ିଵ𝐾், (37)

where 𝑃,/ିଵ is the error covariance matrix; 𝑍,/ିଵ is the volume point; 𝑍,/ିଵ∧  is the mean 
value; 𝑃௭௭,/ିଵ is the innovation association variance matrix; 𝑃௫௭,/ିଵ is the cross-covariance 
matrix; 𝐾 is the gain matrix; 𝑋,∧  is the adhesion coefficient variable; 𝑃, is the error covariance 
matrix. 

Step 4: Measurement updating (𝑋௦): 
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ቐ𝑃௦,/ିଵ = 𝐴௦,/ିଵΛ௦,/ିଵ𝐴௦,/ିଵ் ,𝑋௦,/ିଵ = 𝐴௦,/ିଵ𝑆௦,/ିଵ𝜁௦ + 𝑋௦,/ିଵ∧𝑖 = 1,2,⋯ ,𝑁,     𝑗 = 1,2,⋯ ,𝑀, ,     𝑆𝑉𝐷 (38)

𝑍௦,/ିଵ = ℎ ൬𝑋௦,ିଵ൰, (39)𝑍௦,/ିଵ∧ =  1𝑚
ୀଵ 𝑍௦,/ିଵ, (40)

𝑃௦௭௭,/ିଵ =  1𝑚
ୀଵ 𝑍௦,/ିଵ𝑍௦,/ିଵ் − 𝑍௦,ିଵ∧ 𝑍௦,ିଵ∧் + 𝑅௦, (41)

𝑃௦௫௭,/ିଵ =  1𝑚
ୀଵ 𝑋௦,/ିଵ𝑍௦,/ିଵ் − 𝑋௦,ିଵ∧ 𝑍௦,ିଵ∧் , (42)𝐾௦ = 𝑃௦௫௭,/ିଵ𝑃௦௭௭,/ିଵିଵ , (43)𝑋௦,∧ = 𝑋௦,/ିଵ∧ + 𝐾௦ ቆ𝑍௦,𝑍௦,ିଵ∧ ቇ, (44)𝑃௦, = 𝑃௦,/ିଵ − 𝐾௦𝑃௦௭௭,ିଵ𝐾௦், (45)

where 𝑃௦,/ିଵ is the error covariance matrix; 𝑍௦,/ିଵ is the volume point; 𝑍௦,/ିଵ∧  is the mean; 𝑃௦௭௭,/ିଵ is the innovation covariance matrix; 𝑃௦௫௭,/ିଵ is the cross-covariance matrix; 𝐾௦ is 
the gain matrix; 𝑋௦,∧  is the vehicle driving state variables; 𝑃௦, is the Error covariance matrix. 

The detailed optimization process is shown in Fig. 2. 

δ,xaβω ,r

 
Fig. 2. DCKF algorithm flow 
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4. Numerical simulation and experimental verification 

4.1. Numerical simulation 

To verify the performance of the proposed algorithm, a certain type of vehicle is verified by a 
simulation test on the CarSim software. And the virtual vehicle model in Carsim is established 
according to the given real test vehicle. The simulation parameters in the CarSim vehicle model 
which are the same as our real test vehicle are shown in Table 1. 

Carsim software is professional vehicle dynamics simulation software. The software has the 
characteristics of fast running speed, accurate calculation and easy operation. It combines people, 
vehicles and roads organically, and can simulate the braking and acceleration of vehicles under 
different road conditions. It can draw professional curves, express the trajectory of the vehicle and 
other difficult-to-measure quantities of the vehicle in the form of curves, and analyze various 
responses of the vehicle. Carsim has been widely used in the development and virtual testing of 
electronic control units. Carsim software is mainly used to analyze and simulate vehicle handling 
stability, dynamics, ride comfort and economy, etc. It can also be co-simulated with various 
software and hardware (such as MATLAB, lab VIEW, etc.) to provide researchers with a visual 
interface. It is widely used in the development process of modern automobile control system. 
Carsim, as one kind of vehicle simulation software specially designed for vehicle dynamics 
research, has many advantages over other vehicle simulation software. Automobile simulation, 
especially the related simulation of dynamics, plays an extremely important role in the design, 
improvement and upgrade of the whole vehicle, and even plays a decisive role in the design of 
some dynamic functions and the value enhancement of the whole vehicle. Compared with 
ADAMS and other software, Carsim models and designs the parameters of the entire vehicle. It 
does not need to define the specific physical structure of each component in the software, but only 
needs to define the performance of each component. Therefore, it is very convenient for 
application, and it can also avoid errors caused by solid modeling to a large extent. And the built 
model is very close to the characteristics of the real vehicle. In addition, in terms of dynamics, 
steady-state response, and road conditions, Carsim can realize the response of vehicle to driver 
input, aerodynamic input, road friction coefficient, etc. When performing vehicle dynamics 
simulation and testing, it can not only realize the test of vehicle handling stability, power, 
economy, braking and ride comfort, but also realizes real-time hardware-in-the-loop testing, and 
can perform co-simulation with a variety of software and hardware. 

Table 1. Simulation parameters 
Parameter 𝑚 (kg) 𝐼௭ (kg∙m2) 𝑎 (m) 𝑏 (m) ℎ (m) 𝑡 (m) 𝑡 (m) 𝑟 (m) 
Value 1525 2440 1.48 1.08 0.432 1.52 1.59 0.33 

The vehicle parameters and simulation conditions in the test specification module of CarSim are 
set firstly. The vehicle travels at an initial speed of 80 km/h, and the steering wheel input steering 
angle is set to a sinusoidal signal input with a period of 4 s and amplitude of 60°. And also, it is 
assumed that the vehicle is driving on roads with road adhesion coefficients of 0.9 and 0.4. 

Fig. 3 shows the estimation results of the vehicle states when 𝜇 = 0.9. It can be seen from 
Fig. 3 that the sine input of the steering angle works during 2 s-6 s. Fig. 3(a)-(b) shows the trend 
and status of the lateral acceleration and yaw rate changing according to the trend of the sinusoidal 
signal. It can be seen from Fig. 3(a)-(b) that the estimated changing trend of the lateral acceleration 
and the yaw rate is consistent with the virtual test value with CarSim indicating the good 
estimation performance of the algorithm. It can be seen from Fig. 3(c) that under the condition of 
sinusoidal signal input, the DCKF designed in the paper can accurately and effectively estimate 
the change of the side slipangle. And also, the estimation error is very small. The method provided 
in this paper considers the actual conditions of different roads, which is beneficial to solve the 
problems of poor real-time performance or insufficient accuracy in other sideslip angle estimation 
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algorithm, adapting to various road conditions, and having better real-time performance and 
robustness. 

  
a) Estimated lateral acceleration 

 
b) Estimated yaw rate 

 
c) Estimated side slip angle 

Fig. 3. Comparison results of the estimated values between the state variables  
and the virtual test value for a vehicle passing road with road adhesion coefficient 0.9 

Fig. 4 shows the estimation results of the vehicle states when 𝜇 = 0.4. Fig. 4(a)-(b) shows the 
trend and status of the lateral acceleration and yaw rate changing according to the trend of the 
sinusoidal signal. It can be seen from Fig. 4(a)-(b) that the estimated changing trend of the lateral 
acceleration and the yaw rate is consistent with the virtual test value with CarSim indicating the 
good estimation performance of the algorithm. It can be seen from Fig. 4(c) that the estimated 
value of the side slipangle of the center of mass at this time can also follow the change of the 
virtual test value with CarSim well, and has better real-time performance. In the state of sinusoidal 
signal input, the DCKF algorithm designed in this paper can accurately and effectively estimate 
the change of vehicle sideslip angle, and the estimation error is very small. Its accurate estimation 
can provide valid vehicle status information. Compared with the good road condition, the sideslip 
angle value is relatively increased, but the accuracy of the estimation is still very good, and the 
error is small. 

Fig. 5 shows the estimation error of the slip angle under different road conditions. It can be 
seen from Fig. 5 that under different road conditions, the state observer designed in the paper can 
estimate the vehicle slip angle well with small estimation error, which can provide reliable vehicle 
state information for stability control. And also, under different road conditions, the estimated 
value obtained by the method in this paper can follow the change of the actual value in real time, 
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which can meet the requirements of control system design. The research in this paper is of great 
significance for the in-depth research on the lateral stability control of vehicles in the later stage. 

The performance of typical driving conditions can more faithfully reflect the handling stability 
of the vehicle. And also, in real traffic conditions, the double lane change road and the slalom road 
are the basic working conditions. 

  
a) Estimated lateral acceleration 

 
b) Estimated yaw rate 

  
c) Estimated side slip angle 

Fig. 4. Comparison results of the estimated values between the state variables  
and the virtual test value for a vehicle passing road with road adhesion coefficient 0.4 

4.1.1. Double lane change road 

Fig. 6 is the simulated results of the lateral acceleration, yaw rate, sideslip angle in the double 
lane change road condition with different speeds. 

It can be seen from the Fig. 6(a) that the estimated values of the three state values are in good 
agreement with the virtual test values at 80 km/h. Sideslip angle and yaw rate follow slightly less 
at the peaks and valleys. As can be seen from the Fig. 6(b), the degree of agreement between the 
estimated value and the virtual test value shows that generally speaking, it still has better 
estimation accuracy after the vehicle speed is increased. At this time, the estimated value of the 
sideslip is not as good as the virtual test values, especially at the position of the peaks and valleys. 
This is because the change of the state value is more severe at high speed, resulting in poor 
follow-up of the estimated value. In addition, the lateral acceleration and yaw rate still have high 
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estimation accuracy relative to the low-speed situation. 

 
a) 𝜇 = 0.9 

 
b) 𝜇 = 0.4 

Fig. 5. Estimation error of sideslip angle 

 
a) 𝑢 = 80 km/h 

 
b) 𝑢 = 120 km/h 

Fig. 6. Simulated results of the lateral acceleration, yaw rate,  
sideslip angle in the double lane change road condition 
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4.2. Slalom road 

Fig. 7 is the simulated results of the lateral acceleration, yaw rate, sideslip angle in the slalom 
road condition with different speeds. 

 
a) 𝑢 = 80 km/h 

 
b) 𝑢 = 120 km/h 

Fig. 7. Simulated results of the lateral acceleration, yaw rate,  
sideslip angle in the slalom road condition 

It can be seen from the Fig. 7(a) that when the vehicle travels at a speed of 80 km/h along the 
slalom road, the maximum lateral acceleration has reached about 8 m/s2, and the tire has entered 
the nonlinear region. Generally speaking, the estimated values of the three state values are in good 
agreement with the virtual test values. From Fig. 7(b), it can be seen that the lateral acceleration 
does not change much with the increase of the vehicle speed indicating that the estimation 
accuracy of the lateral acceleration is not greatly affected by the vehicle speed. And also, the yaw 
rate of the vehicle decreases at higher speeds, which indicates that the yaw moment of the entire 
vehicle decreases. The estimation accuracy of the sideslip angle is roughly equivalent to that at 
low speeds. 

The comparing results between the proposed algorithm and the UKF method (involved in 
reference 12) is also shown in Fig. 7(b). From Fig. 7(b) it can be seen that the accuracy and 
real-time performance of the DCKF estimation algorithm are better than those of the UKF 
estimation algorithm. This is because that the DCKF algorithm relies on the determined volume 
points to calculate the posterior probability density function without calculating the complex 
Jacobian matrix and also avoids truncation errors. 
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4.3. Experimental verification 

In order to verify the effectiveness of the algorithm, a real vehicle test was established on a 
slalom test road with the speed of 65 km/h collecting the yaw rate and lateral acceleration of the 
vehicle with a gyroscope (Fig. 8(a)) and lateral speed with a GPSSD-20 (Fig. 8(b)) speed 
instrument. 

Fig. 9 is the comparison of the estimated and test values of the lateral velocity, the lateral 
acceleration and the yaw rate. 

 
a) 

 
b) 

Fig. 8. Measurement equipment: a) gyroscope, b) GPSSD-20 speed instrument  

  
a) Test and estimated values of the lateral velocity 

  
b) Test and estimated values of the lateral acceleration 

 
c) Test and estimated values of the yaw rate 

Fig. 9. Comparison of the estimated and test values 

From the figure it can be seen that the estimated value and the experimental value are basically 
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consistent with the curve trend. The DCKF algorithm has a better filtering effect on the yaw rate 
and lateral acceleration observations in the slalom road test. However, because of the adopted 
“Magic formula” tire model still having a certain deviation in simulating the actual tire mechanical 
properties and the measurement error and installation position of the sensor, there is a certain 
deviation in the amplitude between the estimated value and the experimental value. 

5. Conclusions 

We proposed a vehicle state parameter estimator to establish vehicle estimation in real-time. 
Finally, based on a 7-DOF vehicle model and the Magic formula tire model as well as the 
MATLAB simulation platform, the effectiveness of the estimation method in this paper is verified. 
The results show that under different road conditions, the estimated value obtained by the method 
in this paper can follow the change of the actual value in real-time, and can meet the requirements 
of the control system design. At the same, the experimental results show that under different road 
conditions, the estimated value obtained by the method in this paper can follow the change of the 
actual value in real time, and can meet the requirements of vehicle state estimation. The designed 
DCKF algorithm uses SVD to solve the error covariance matrix, which can update the vehicle 
states information in real-time. And also, the proposed DCKF algorithm is better than CKF in 
terms of accuracy and real-time performance, and can realize the real-time estimation of the 
vehicle state and parameter more accurately.  

The research in this paper is of great significance to the in-depth study of the lateral stability 
control of electric vehicles in the later stage. The DCKF algorithm has theoretical guiding 
significance for the design of the estimator in the vehicle dynamic control system, and can also 
provide theoretical reference for the research on the testing method of the key states and 
parameters of the vehicle. 
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