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Abstract. The exhaust devices used by snow removal vehicles are mainly based on hot-blowing 
snow removal. Due to the inherent characteristics of the turbojet engine such as low flow rate and 
high exhaust temperature, the modified hot-blowing snow removal device has problems of low 
snow removal efficiency and the possibility of ablation and damage to the road surface. In order 
to solve the problem, transforming the turbofan engine with a high flow rate and a low exhaust 
temperature into a hot-blowing snow removal device is an important improvement to achieve 
efficient and safe snow removal operations. In order to convert a medium bypass ratio turbofan 
engine into a hot-blowing snow removal device, the computational fluid dynamics (CFD) software 
CFX was used to analyze the internal and external flow field characteristics of the main nozzle of 
an exhaust device under the 60 % rated condition of the engine. The effective area sizes of the jet 
velocity and temperature predicted by the external flow field were used to optimize the layout of 
the main nozzle. 
Keywords: hot-blowing snow removal, exhaust device, jet, numerical simulation, optimization. 

1. Introduction 

Winter in some countries is very long and even lasts for seven or eight months a year. The 
large-scale snowfall has caused many inconveniences to transportation, especially air 
transportation, and therefore a high efficiency, low-cost and low-pollution snow removal vehicle 
has become the key to ensuring transportation safety. At present, the exhaust devices used by snow 
removal vehicles on the market are mainly based on the cold-blowing snow removal and 
hot-blowing snow removal. The hot snow removal device is generally modified by a turbojet 
engine. Its working principle is using the high-speed gas discharged by the turbojet engine to melt 
the snow and blow away them by the high-speed gas flow, with high efficiency, which is not only 
suitable for blowing the dry snow, but also for the wet snow and the ice. The cold-blowing snow 
removal method generally uses compressors to provide high-pressure and low-temperature airflow 
with high-speed flow velocity to blow away the snow. Although its cost is lower than the 
hot-blowing snow removal method, its structure is complex and efficiency is greatly needed to be 
improved with the adaptation of dry snow merely. On the whole, to achieve high-efficiency airport 
snow removal operations, hot snow removal is still the mainstream of current and later 
development. However, due to the inherent characteristics of the turbojet engine such as low flow 
rate and high exhaust temperature, the modified hot-blowing snow removal device has problems 
of low snow removal efficiency and the possibility of ablation and damage to the road surface. 
(The flow rate of the snow removal device generally does not exceed 60 kg/s, and the exhaust 
temperature reaches 600 °C). In order to solve the problem, transforming the turbofan engine with 
a high flow rate and a low exhaust temperature into a hot-blowing snow removal device is an 
important improvement to achieve efficient and safe snow removal operations, while the key point 
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is to design a matching exhaust device. 
The research on the exhaust device of hot-blowing snow removal mainly focuses on its internal 

and external jet characteristics. Wang et al. [1] estimated the energy required by the hot snow 
removal device for different snow thicknesses, which provided a basis for the selection of snow 
removal vehicle devices. Wang et al. [2] pointed out that when the nozzle inlet temperature is 
high, the variable specific heat capacity should be used for simulation according to the numerical 
analysis of the nozzle flow field characteristics. Nakhla and Thompson [3] calculated the trajectory 
of airborne debris that affects visibility during high-speed snow plowing. The results show that 
the trap angle of over plow deflectors should be less than 50° to eliminate snow debris blowing 
over top of the plow onto the windscreen. Eskridge and Thompson [4] calculated the flow around 
trucks. The results show that the fine snow particles can be entrained in a wake that extends several 
vehicle heights downstream. Zhang et al. [5] used software FLUENT to numerically simulate the 
flow field of the jet pipe from a snow removal vehicle, and proved that when the compressed high-
speed air flow passes through the pipe and reaches the exhaust port, its jet velocity meets the snow 
removal requirements. Li et al. [6] conducted a numerical simulation on the flow field 
characteristics of a rectangular nozzle under three flow states: subsonic, supersonic and static 
based on the Frave average N-S equation and B-L turbulence model. Feng et al. [7] used software 
FLUENT to numerically simulate the external flow field of four rectangular nozzles with aspect 
ratios of 1, 2, 4, and 8, and pointed out that the rectangular nozzle with a large aspect ratio has 
obvious advantages in reducing the infrared radiation of the high temperature plume. King and 
Dujmovic [8] investigated the impact of snowflakes on the windshields by solving the potential 
flow equations. Results show that the inertia of the snow affects the likelihood of impact on the 
windshield and that an optimum exists at a speed, where a balance exists between aerodynamic 
and inertial forces. Thompson and Nakhla [9] show that the maximum amount of the snow debris 
blows over top of the plow with the plow blade normal to the direction of travel. Zhang et al. [10] 
conducted an experimental study on the Reynolds stress on the jet symmetry plane of different 
round-turned rectangular convergent nozzles and axisymmetric nozzles, and pointed out that with 
the increase of the aspect ratio, both the swirling intensity and Reynolds stresses of the rectangular 
nozzle jet increase accordingly. 

Based on the heat exchange between the high-temperature jet from the snow removal vehicle 
and the snow which can melt the snow, Rayleigh [11] used the two-phase flow theory to analyze 
its external flow field. The research results show that even at lower speeds, the slender jet will 
eventually break into droplets due to instability. Therefore, the jet instability theory is proposed, 
but the viscous effect of air and liquid is not considered in this work. Qureshi et al [12] studied 
the influence of the aspect ratio of the rectangular nozzle on the jet characteristics in the liquid-gas-
solid three-phase flow and the interaction between the different phases. The Euler two-fluid model 
was used to simulate the gas-solid flow, and the Lagrange trajectory method was adopted to track 
the spray jet. According to the results, under the same flow conditions, the aspect ratio has a 
significant effect on the jet length and trajectory. Under the same nozzle spray area, a vertically 
oriented rectangular nozzle (that is, a nozzle with an aspect ratio of less than 1) has a deeper 
penetration than a horizontally oriented rectangular nozzle (that is, a nozzle with an aspect ratio 
of greater than 1) Mohamed et al. [13] used numerical methods to study the formation and 
development mechanism of cavitation inside the nozzle by changing the shape of the nozzle. The 
results show that the strength of cavitation is directly related to the shape of the nozzle. The 
cavitation strength of the sharp edges, slanted edges and curved edges decreases gradually. For a 
rectangular nozzle with an aspect ratio of 5, Rembold et al. [14] utilized numerical methods to 
study the evolution process of the jet entering a static environment when the ejection Mach number 
is 0.5. The results illustrated that the asymmetry of the velocity distribution of the exit jet with 
respect to the jet axis causes the jet to rapidly diffuse along its short axis in the so-called 
characteristic region. For circular nozzles with the same equivalent diameter and non-circular 
nozzles (including ellipse, rectangle, and triangle with aspect ratios of 1:1 and 2:1), Miller et al. 
[15] studied the spatial development process of the three-dimensional jet at the outlet through 
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numerical simulation. Visualized flow results show that large-scale coherent structures are formed 
in both angular jets and non-angular jets. At the same time, all non-circular nozzles show a better 
mixing effect than circular nozzles, and the mixing effect of the isosceles triangular nozzle is 
optimal. 

Based on the universal computational fluid dynamics software CFX, a simulation is conducted 
on the internal and external flow fields of the main nozzle of a hot-blowing snow removal exhaust 
device modified by a turbofan engine with a medium bypass ratio in this paper. To obtain the best 
jet characteristics, the velocity field and temperature field of the exit jet are optimized from the 
perspective of structural parameters. 

2. Working status analysis 

Fig. 1 shows the schematic diagram of hot-blowing snow removal device, which is composed 
of a car, a turbo-fan aero-engine installed on the chassis, an air intake component, an exhaust 
device, a starting system, a fuel supply system, and a control system. When the snow removal 
vehicle is working, air will enter the aero-engine from the intake component, and then the 
high-speed and high-temperature gas flows out exhaust device. Therefore, the snow and ice 
grounded on both sides of the vehicle body will be removed with the help of the gas from the main 
nozzles. In addition, the blowing distance of the gas on one side can reach tens of meters. When 
the aero-engine remains in the same state, the cross-sectional shape, the outlet inclination angle, 
and the height above the ground of the main nozzle all have effects on the speed and temperature 
distribution of the jet diffusion, which in turn affects the snow blowing effect. For this reason, the 
influence of the above-mentioned nozzle structural parameters on the jet flow have been simulated 
and optimized to achieve the best snow blowing effect. 

 
Fig. 1. The schematic diagram of the hot-blowing snow removal device 

According to the Ref [16], check the performance parameters of a certain type of medium 
bypass ratio turbofan engine under the 60 % rated condition, where the bypass ratio is 2.48, the 
total air flow is 185kg/s, the internal temperature is 708 K, and the external culvert temperature is 
338 K, total turbine inlet pressure is 12.5 atm, turbine drop pressure ratio is 7, external culvert 
pressure is 1.8 atm. According to the relationship between the bypass ratio and the total air flow, 
the air flow of the inner and external ducts can be determined. The specific relationship can be 
expressed as: 𝐵 = 𝑚௢௨௧𝑚௜௡ , (1)𝑚௧௢௧௔௟ = 𝑚௢௨௧ + 𝑚௜௡, (2)

where 𝐵 is the bypass ratio; 𝑚௧௢௧௔௟ is the total air flow; 𝑚௢௨௧ and 𝑚௜௡ are the external and inner 
culvert air flow respectively. 
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According to the inner and outer culvert air flow, inner and outer culvert temperature, and ideal 
gas energy conservation theory, the outlet temperature of the inner and outer culvert mixer (that 
is, the total temperature of the exhaust device inlet) can be determined. The specific calculation 
formula can be expressed as: 𝑚௢௨௧ × 𝑇௢௨௧ + 𝑚௜௡ × 𝑇௜௡ = ሺ𝑚௢௨௧ + 𝑚௜௡ሻ × 𝑇௠௜௫, (3)

where 𝑇௢௨௧, 𝑇௜௡, 𝑇௠௜௫ are the inner culvert temperature, the outer culvert temperature, and the 
outlet temperature of the inner and outer culvert mixer, respectively. 

According to the inlet total pressure and the expansion ratio of the turbine, the total turbine 
outlet pressure 𝑃଺∗ can be determined. Substitute the total turbine outlet pressure 𝑃଺∗ and the 
external culvert pressure into the mixer pressure characteristic diagram in the reference [11] to 
determine the outlet pressure of the mixer, i.e. the inlet total pressure of the exhaust device. Based 
on the calculation theory of one-dimensional pipe flow, the outlet flow state of the exhaust device 
is determined, and the specific calculation formula can be expressed as: 

𝑞ሺ𝜆ሻ = 𝑚௧௢௧௔௟ ⋅ ඥ𝑇௠௜௫ሺ𝑘𝑃଺∗𝐴ሻ, (4)

where 𝑘 = 1.33; 𝐴 is the exit area of the tail nozzle; 𝑞ሺ𝜆ሻ is the non-dimensional dense flow. 
After calculation, for the rated working state being 0.6, 𝑞ሺ𝜆ሻ < 1, indicating that the nozzle is 

in an over-expanded state at this time. Therefore, when the outlet area of the main nozzle of the 
modified hot-blowing snow removal exhaust device is the same as that of the turbofan engine 
exhaust device, the outlet static pressure of the main nozzle of the hot-blowing snow removal 
exhaust device at this time is the atmospheric pressure. After calculation, the inlet and outlet 
boundary conditions of the main nozzle of the hot-blowing snow removal exhaust device in the 
60 % rated condition are shown in Table 1. It should be noted that although thermal snow removal 
devices generally include a main nozzle for the main snow removal function and a front nozzle 
for the auxiliary snow removal function (mainly used for snow removal under the car body), the 
flow rate of the opening nozzle is much smaller than that of the main nozzle. Therefore, the 
influence of the opening nozzle on the flow state of the main nozzle is not considered. 

Table 1. The inlet and outlet boundary conditions 
Boundary parameter Values 

Total inlet temperature (K) 444.3 
Total inlet pressure (atm) 1.7 

Outlet static pressure (atm) 1.0 

3. Simulation of flow characteristics 

Determine the size of the main nozzle of the exhaust device according to the overall size of 
the snow removal vehicle, and use three-dimensional modeling software to design its size. The 
inlet size of the main nozzle is the inlet size of the original exhaust section of the turbofan engine 
(0.83 m2). Seven different outlet sections of the main nozzle with the same cross-sectional area 
being 0.395 m2 are designed for testing, including circular section, square section, 1.25:1 
rectangular section, 1.5:1 rectangular section, 1.75:1 rectangular section, 2:1 rectangular section, 
and 2.5:1 rectangular section. Moreover, in order to ensure the interchangeability of different 
outlet sections of main nozzles, the adaptive tubes between the main nozzles and the outlets with 
the same length (generally less than 200 mm in length) are designed specially, where the inlets are 
the circular section with the same area, and the outlets are circular section or rectangular sections 
with different aspect ratios. The three-dimensional solid models of the main nozzle with a circular 
outlet section and a square outlet section are shown in Fig. 2. 
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a) Circular outlet section 

 
b) Square outlet section 

Fig. 2. Three-dimensional models of the main nozzle with different outlet sections (0.395 m2) 

The internal flow field of the main nozzle of the exhaust device with different exit cross-
sectional shapes has meshed, where 𝑦ା is equal to 10 to meet the requirements of the 𝑘-𝜀 
turbulence model in the simulation of the flow field. According to the mesh requirements of the 
nozzle jet in the reference [17], the flow field has meshed. Use the general computational fluid 
dynamics software CFX to simulate the internal flow field of the main nozzle of the exhaust 
device. The inlet boundary is the total temperature and total pressure, and the outlet boundary is 
the average static pressure, as shown in Table 1. And the main nozzle wall is adiabatic and smooth 
without slippage. Table 2 shows the simulation of the average total pressure, velocity and static 
temperature at the outlet of the main nozzle for different outlet cross-sectional shapes. 

Table 2. The characteristic parameters of the main nozzle outlet 

Outlet cross-sectional shape Average total  
pressure / Pa 

Average  
velocity /m/s 

Average static  
temperature / K 

Circular section 169123 338.47 394.14 
Square section 168533 335.80 394.77 

1.5:1 Rectangular section 168856 339.73 393.92 
2:1 Rectangular section 168185 336.81 394.80 

2.5:1 Rectangular section 168617 340.06 393.51 

It can be seen from Table 2 that different outlet cross-sectional shapes have little effect on the 
overall performance parameters of the main nozzle. Therefore, in the optimization simulation of 
different structural parameters below, the relevant parameters in Table 3 can be directly used to 
calculate the external flow field without further internal flow field simulation. 

Fig. 3 shows the exit velocity distribution of the main nozzle when a circular exit section and 
a 1.5:1 rectangular exit section are used. According to Fig. 2, compared to the circular exit section, 
the size of the core high-speed zone of the rectangular exit section is larger, and as the aspect ratio 
of the exit section increases, the core high-speed zone is elongated, but the length of the low-speed 
zone near the bottom also increases. Therefore, it can be considered that as the cross-sectional 
aspect ratio increases, the width of the effective area of the nozzle jet increases, but the velocity 
dead zone (For the different standards of the effective velocity and temperature, if the values of 
velocity and temperature are lower than the standards, this zone will be defined as dead zone.) 
may also increase accordingly. Since the total temperature in the main nozzle flow is 
approximately constant, the static temperature distribution of the outlet section is opposite to the 
velocity distribution and is not separately given here. 

Considering the accuracy and efficiency in calculating the external flow field of the main 
nozzle, the adaptive tube is horizontally extended to 200 mm, and the external flow field is a 
square domain of 50 m×50 m×25 m. The adaptive tube and the external flow field are respectively 
divided into grids, and the settings of 𝑦ା and the grid density are consistent with those of the 
internal flow field.  

Fig. 4 shows the computational domain and boundary conditions when simulating the external 
flow field of the main nozzle. The details are as follows: the boundary conditions of the adaptive 
tube inlet of the main nozzle are set to the total temperature and total pressure with the specific 
values shown in Table 2; the ground and the main nozzle wall are adiabatic, non-slip, and smooth; 
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the other five interfaces adopt pressure far-field boundary; the outlet of the adaptive tube and the 
inlet of the external flow field are set as the internal interface. It should be pointed out that for the 
following parameter optimization analysis, only the shape of the computational domain is 
fine-tuned, while the boundary conditions remain unchanged. 

 
a) Circular exit section 

 
b) 1.5:1 rectangular exit section 

Fig. 3. The velocity distribution of the main nozzle outlet 

 
Fig. 4. Computational domain and boundary condition of the external flow field 

Based on the circular section outlet with the distance being 200 mm from the outlet section to 
the ground, the external flow field of the main nozzle with the outlet inclination angle being 15° 
is analyzed. Fig. 5 shows the axial and longitudinal distribution of jet velocity in the external flow 
field of the main nozzle. It can be seen from Fig. 5(a) that when the standard of the speed effective 
zone is 60 m/s, the length of the single-sided jet can reach 30 m, which meets the snow removal 
requirement for airport runway with the width of 60 m. According to Fig. 5(b), when the effective 
zone velocity is 60 m/s, the jet height can reach 1.2 m. Fig. 6 shows the axial and longitudinal 
distribution of jet temperature in the external flow field of the main nozzle. According to Fig. 6(a), 
when the standard of the effective temperature zone is 318 K, the length of the single-sided jet can 
reach 30 m, which meets the snow removal requirement for the airport runway with a width of 
60 m. According to Fig. 6(b), when the standard of the effective temperature zone is 318 K, the 
jet height can reach 1 m. Based on the predicted speed and the length and height of the effective 
temperature zone, it can be considered that the design of the main nozzle meets the snow removal 
requirements for the hot-blowing snow removal device modified from the turbofan engine under 
the 60 % rated condition. 

It should be noted that since the inclination angle of the outlet section of the main nozzle is 
15°, there will be a local velocity and temperature dead zone at its outlet. By analyzing the size of 
the dead zone under different speed and temperature standards, it can be seen that: (1) When the 
speed standard is less than 40 m/s, the size of the dead zone, which results from the height of the 
nozzle from the ground and the outlet inclination, is smaller because the outlet jet drives the 
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surrounding air and fills up the local dead zone. However, due to the limited kinetic energy of the 
exit jet, the velocity dead zone gradually appears after the velocity standard over 50 m/s, and as 
the velocity standard increases, the length and height of the velocity dead zone increase 
accordingly. (2) Because the jet temperature of the main nozzle is not high and decays quickly 
(the outlet jet temperature is lower to avoid ablation of the tube surface), the temperature dead 
zone always exists. And as the temperature standard increases, the length and height of the 
temperature dead zone also increase accordingly. Moreover, the length and height basically 
conform to the Pythagorean theorem. Fig. 7(a) and (b) show the dead zone distribution of the exit 
jet with the speed standard being 70 m/s and with the temperature standard being 333 K, 
respectively. 

 
a) Axial distribution 

 
b) Longitudinal distribution 

Fig. 5. The velocity distribution of the external flow field 

 
a) Axial distribution 

 
b) Longitudinal distribution 

Fig. 6. The Temperature distribution of the external flow field 

4. Optimization analysis 

On the basis of the reference nozzle in Section 3, the jet characteristics of the main nozzle are 
optimized from the following three aspects: the height from the outlet section of the main nozzle 
to the ground, the outlet inclination angle, and the outlet section shape. 

4.1. Optimal analysis of jet characteristics affected by the height to ground 

Due to the height limitation of the vehicle body chassis, the height of the outlet section of the 
main nozzle from the ground is generally 150-200 mm. Therefore, the following analysis of the 
jet characteristics for the main nozzle is carried out at the distance of 150 mm and 200 mm. Table 3 
and Table 4 respectively give the effective zone size and dead zone size at the height of 150 mm 
and 200 mm under different speeds (30 m/s, 40 m/s, 50 m/s, 60 m/s, 70 m/s) and different 
temperatures (318 K, 333 K, 343 K), respectively.  
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a) The speed standard 30 m/s 

 
b) The speed standard 40 m/s 

 
c) The speed standard 50 m/s 

 
d) The speed standard 60 m/s 

 
e) The speed standard 70 m/s 

 
f) The temperature standard 318 K 

 
g) The temperature standard 333 K 

 
h) The temperature standard 343 K 

Fig. 7. The dead zone distribution of the outlet jet under different standards 

According to Table 3, for the two heights from the ground, when the effective zone speed 
standard is 60 m/s, the single-side jet length of the main nozzle can reach 30 m, which meets the 
snow removal requirements for the airport runway with a width of 60 m. Notably, when the lengths 
of effective areas are longer than 30 m, the lengths in Table 3 are still chosen as 30 m, and the 
widths of the effective zone are measured at the length of 30 m. When the lengths of effective 
areas are shorter than 30 m, the lengths in Table 3 would be chosen as the real length, and the 
widths of the effective zone are measured at the corresponding length. The single-side jet length 
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is less than 30 m only at 70 m/s, but it can still reach about 25 m, indicating that the hot-blowing 
snow removal device modified by the turbofan engine meets the snow removal requirements. 
Moreover, the width of the speed effective area at the height of 200 mm is larger than that at the 
height of 150 mm. By analyzing the size of the dead zone under different speed standards, it can 
be concluded that the length and width of the dead zone are larger at the height of 200 mm. 
However, the size of the dead zone is relatively close and small below the speed of 50 m/s both at 
the height of 150 mm and 200 mm. It can be seen from Table 4 that the size of the effective area 
is relatively similar at the height of 150 mm and 200 mm under different temperature standards. 
When the temperature standards are 318 K, 333 K, and 343 K, the length of the effective 
temperature zone of the single-sided jet can reach 30 m, 10 m, and 5 m, respectively. Meanwhile, 
the height has a consistent influence on the size of the temperature dead zone and the speed dead 
zone. In general, at the speed standard of 50 m/s (existing hot-blowing snow removal data shows 
that at the exit jet velocity of 50 m/s, the snow removal requirements for runway can be satisfied), 
the jet effect and the vehicle pass ability are better at the height of 200 mm. 

Table 3. The size of the velocity effective zone and dead zone at different heights from the ground 

Speed standard / m·s-1 Height / mm Effective area Dead zone 
Length / m Width / m Length / m Width / m 

30 150 30.00 8.11 0.32 0.01 
200 30.00 8.49 0.32 0.01 

40 150 30.00 6.98 0.34 0.02 
200 30.00 7.36 0.43 0.01 

50 150 30.00 5.66 0.47 0.06 
200 30.00 6.04 0.51 0.07 

60 150 30.00 4.15 0.56 0.09 
200 30.00 4.34 0.56 0.18 

70 150 24.53 3.02 0.64 0.15 
200 25.09 3.30 0.64 0.18 

Table 4. The size of the temperature effective zone and dead zone at different heights from the ground 

Temperature standard / K Height / mm Effective area Dead zone 
Length / m Width / m Length / m Width / m 

318 150 30.00 3.58 0.38 0.17 
200 30.00 3.77 0.41 0.18 

333 150 10.19 1.32 0.56 0.17 
200 10.00 1.60 0.60 0.19 

343 150 5.09 0.94 0.71 0.17 
200 5.66 0.94 0.75 0.19 

4.2. Optimal analysis of jet characteristics affected by outlet inclination angle 

According to the structural limitation to the outlet inclination angle of the main nozzle from 
the hot-blowing snow removal device and the jet flow simulation in Section 4.1, inclination angles 
of 10°, 12.5°, 15° and 17.5° are selected to implement the optimal analysis for the jet 
characteristics. 

Table 5 and Table 6 give the size of the effective zone and dead zone of the velocity and 
temperature at different outlet inclination angles. As illustrated in Table 5, for different outlet 
inclination angles, the single-sided jet length of the main nozzle can reach 30 m at the speed 
standard of 60 m/s in the effective zone, and only at 70 m/s, the length of the single-sided jet is 
less than 30 m but increases with the decline of inclination angle. With the increase of the 
inclination angle, when the speed standard is less than 50 m/s, the width of the effective area 
increases monotonously, and when the speed standard is greater than 50 m/s, the width of the 
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effective area shows a decreasing trend. At the same time, with the increase of the outlet 
inclination angle, the length of the dead zone shows a monotonous decrease. As for the width of 
the dead zone, when the speed standard is less than 50 m/s, it first decreases and then increases, 
and at 15° is the smallest. As shown in Table 6, with the increase of the outlet inclination angle, 
the length and width of the temperature effective zone decrease slightly, while the length of the 
temperature dead zone shows a trend of first decreasing and then increasing, and the minimum is 
at 15°. It is worth noting that the outlet inclination angle has little effect on the width of the 
temperature dead zone. In general, the jet effect is better at the speed standard of 50 m/s and at the 
outlet inclination angle of 15°. 

Table 5. The size of the after velocity effective zone and dead zone at different nozzle angles 

Speed standard / m·s-1 Inclination angle / ° Effective area Dead zone 
Length / m Width / m Length / m Width / m 

30 

10.0 30.00 7.55 0.43 0.01 
12.5 30.00 7.92 0.34 0.01 
15.0 30.00 8.49 0.32 0.01 
17.5 30.00 8.68 0.26 0.03 

40 

10.0 30.00 6.6 0.47 0.05 
12.5 30.00 6.79 0.45 0.04 
15.0 30.00 7.36 0.43 0.01 
17.5 30.00 7.55 0.41 0.09 

50 

10.0 30.00 5.66 0.6 0.09 
12.5 30.00 5.85 0.56 0.09 
15.0 30.00 6.04 0.51 0.07 
17.5 30.00 6.04 0.47 0.18 

60 

10.0 30.00 4.72 0.68 0.19 
12.5 30.00 4.53 0.64 0.18 
15.0 30.00 4.34 0.56 0.18 
17.5 30.00 4.15 0.51 0.18 

70 

10.0 27.36 3.21 0.73 0.19 
12.5 26.42 3.21 0.71 0.18 
15.0 25.09 3.3 0.64 0.18 
17.5 23.58 2.83 0.56 0.18 

Table 6. The size of the temperature effective zone and dead zone at different nozzle angles 

Temperature standard / K Inclination angle / ° Effective area Dead zone 
Length / m Width / m Length / m Width / m 

318 

10.0 30 4.15 0.56 0.19 
12.5 30 4.15 0.45 0.18 
15.0 30 3.77 0.41 0.18 
17.5 30 3.21 0.47 0.18 

333 

10.0 12.26 1.51 0.73 0.19 
12.5 11.32 1.51 0.71 0.19 
15.0 10 1.6 0.6 0.19 
17.5 9.43 1.51 0.62 0.19 

343 

10.0 6.23 1.13 0.9 0.2 
12.5 6.04 0.94 0.88 0.2 
15.0 5.66 0.94 0.75 0.19 
17.5 5.28 0.94 0.77 0.2 

4.3. Optimal analysis of jet characteristics affected by outlet section shape 

According to the optimization results of the height from the ground and the outlet inclination 



OPTIMIZATION ON THE JET CHARACTERISTICS OF THE MAIN NOZZLE OF HOT-BLOWING SNOW REMOVAL DEVICE.  
QINGRUI YU, JINHAI HU, YINGSAN GENG, XIANGYI ZHANG, YAYUN TANG 

1158 JOURNAL OF VIBROENGINEERING. SEPTEMBER 2022, VOLUME 24, ISSUE 6  

angle, the height and the outlet inclination angle is selected as 200 mm and 15° respectively to 
make the effect comparison of seven different nozzle outlet section shapes on the jet 
characteristics, including circular section, square section, 1.25:1 rectangular section, 1.5:1 
rectangular section, 1.75:1 rectangular section, 2:1 rectangular section, and 2.5:1 rectangular 
section. 

Table 7. The size of the velocity effective zone for different outlet section shape  
under various velocity standards 

Speed standard / m·s-1 Outlet cross-sectional shape Effective area 
Length / m Width / m 

30 

Circular Section 30.00 8.49 
Square Section 30.00 8.68 

1.25:1 Rectangular Section 30.00 8.87 
1.5:1 Rectangular Section 30.00 10.38 

1.75:1 Rectangular Section 30.00 11.70 
2:1 Rectangular Section 30.00 13.58 

2.5:1 Rectangular Section 30.00 18.49 

40 

Circular Section 30.00 7.36 
Square Section 30.00 7.55 

1.25:1 Rectangular Section 30.00 7.74 
1.5:1 Rectangular Section 30.00 9.06 

1.75:1 Rectangular Section 30.00 10.00 
2:1 Rectangular Section 30.00 11.32 

2.5:1 Rectangular Section 19.81 12.45 

50 

Circular Section 30.00 6.04 
Square Section 30.00 6.23 

1.25:1 Rectangular Section 30.00 6.42 
1.5:1 Rectangular Section 30.00 6.79 

1.75:1 Rectangular Section 27.92 7.17 
2:1 Rectangular Section 22.64 7.74 

2.5:1 Rectangular Section 13.21 7.74 

60 

Circular Section 30.00 4.34 
Square Section 30.00 4.34 

1.25:1 Rectangular Section 30.00 3.77 
1.5:1 Rectangular Section 24.91 4.72 

1.75:1 Rectangular Section 19.81 7.17 
2:1 Rectangular Section 16.04 5.28 

2.5:1 Rectangular Section 9.43 5.09 

70 

Circular Section 25.09 3.30 
Square Section 23.58 3.30 

1.25:1 Rectangular Section 21.69 3.36 
1.5:1 Rectangular Section 18.49 3.40 

1.75:1 Rectangular Section 14.34 3.21 
2:1 Rectangular Section 11.69 3.21 

2.5:1 Rectangular Section 6.23 3.21 

Table 7 shows the size of the velocity effective zone at different outlet section shape under 
different velocity standards. As displayed in Table 7, when the speed standard is less than 40 m/s, 
with the increase in the aspect ratio of the outlet section, the lengths of the speed effective zones 
do not change greatly, but the widths increase. When the speed standards are 50 m/s and 60 m/s, 
the lengths of the speed effective zones are still 30 m for the circular section, square section and 
1:1.25 rectangular sections, and for the other outlet sections, the lengths decrease quickly and the 
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widths remain basically unchanged. When the speed standards is 70 m/s, the lengths of the speed 
effective zones are all less than 30 m, and with the increase in the aspect ratio of the outlet section, 
the lengths of the speed effective zones decrease seriously. In addition, the width of the airport 
runway is 60 m, the lengths of the effective areas equal to 30 m can meet snow removal 
requirements for the entire runway. Hence, when the lengths of effective areas are shorter than 
30 m, the speed dead zone will be occurred. In general, jets under the 1.25:1 rectangular section 
and 1.5:1 rectangular section are better, and the size of the speed dead zone is smaller at the speed 
standard of 50 m/s.  

Table 8 shows the size of the effective temperature zone predicted by different outlet section 
shape under different temperature standards. According to Table 8, when the temperature standard 
increases from 318 K to 343 K, the lengths and widths of the effective temperature zones decrease 
obviously. In addition, the length of the effective temperature zone for the temperature standard 
318 K is almost twice longer than that of the 333 K, and four times longer than that of the 343 K. 
As the aspect ratio of the outlet section increases, the lengths of the temperature effective zones 
decrease rapidly, while the widths increase slightly, and the influence of the aspect ratio is more 
obvious when the temperature standard is higher. In general, the size of the effective temperature 
zones of the circular outlet section and the square outlet section is the largest, followed by the 
1.25:1 rectangular section. When the aspect ratio is greater than 1.5:1, the temperature effective 
zone attenuates extremely. Therefore, considering the size of the velocity and temperature 
effective zones comprehensively under different outlet section shapes, it can be considered that 
the jet with a 1.25:1 rectangular section has the best effect. 

Table 8. The size of the temperature effective zone for different outlet section shape  
under various temperature standards 

Temperature standard / K Outlet cross-sectional shape Effective area 
Length / m Width / m 

318 

Circular Section 30.00 3.77 
Square Section 27.74 3.77 

1.25:1 Rectangular Section 26.42 3.77 
1.5:1 Rectangular Section 21.70 3.96 

1.75:1 Rectangular Section 16.04 4.15 
2:1 Rectangular Section 14.15 4.15 

2.5:1 Rectangular Section 8.49 3.96 

333 

Circular Section 10.00 1.60 
Square Section 9.81 1.51 

1.25:1 Rectangular Section 8.49 1.51 
1.5:1 Rectangular Section 7.55 1.51 

1.75:1 Rectangular Section 5.66 1.51 
2:1 Rectangular Section 4.91 1.51 

2.5:1 Rectangular Section 2.64 1.70 

343 

Circular Section 5.66 0.94 
Square Section 5.37 0.85 

1.25:1 Rectangular Section 4.33 0.91 
1.5:1 Rectangular Section 3.77 0.94 

1.75:1 Rectangular Section 2.83 0.98 
2:1 Rectangular Section 2.26 1.13 

2.5:1 Rectangular Section 1.51 1.51 

5. Conclusions 

The jet characteristics of the main nozzle of hot-blowing snow removal exhaust device 
modified from a turbofan engine has been studied with the aid of computational fluid dynamics 
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software along with the optimization analysis based on the structural parameters. The following 
conclusions can be drawn: 

1) The numerical simulation method of the main nozzle jet characteristics of the hot-blowing 
snow removal exhaust device can accurately and efficiently simulate its internal and external flow 
field characteristics based on the turbofan engine working characteristics and the one-dimensional 
pipeline flow theory. 

2) Compared with the circular outlet section, the size of the core high-speed zone of the 
rectangular outlet section is larger, and as the aspect ratio increases, the length of the core 
high-speed zone increases, but the size of the low-speed zone near the bottom also increases. 
Therefore, it is necessary to comprehensively evaluate the size of its velocity effective zone and 
dead zone in analyzing the jet characteristics of the main nozzle. 

3) The hot-blowing snow removal device modified from the turbofan engine meets the snow 
removal requirements for the airport runway under the 60 % rated condition. Moreover, compared 
with the hot-blowing snow removal device modified from the turbojet engine, the jet width and 
snow removal efficiency of the proposed devices significantly improved, and the lower exhaust 
temperature is conducive to broaden its application area. 

4) After the simulation and optimization analysis of the jet characteristics of the main nozzle, 
it is considered that the jet effect of the 1.25:1 rectangular section main nozzle with a height of 
200 mm and an outlet inclination angle of 15°is the best. 

Acknowledgements 

This research was funded by National Key R&D Program of China, grant number 
2018YFB1702403. 

References 

[1] W. Shuling, H. Zhijie, Z. Li, and W. Huaichao, “Power requirement calculation of hot blow device for 
an airport pavement snow removal vehicle,” (in Chinese), Mathematics in Practice and Theory, 
Vol. 50, No. 4, pp. 171–175, 2020. 

[2] W. Zhanxue, W. Jianfeng, and T. Diyi, “Calculation for effect of variable specific heat capacity on 
nozzle flow field and performance,” (in Chinese), Journal of Propulsion Technology, No. 4,  
pp. 60–62, 2000, https://doi.org/10.13675/j.cnki.tjjs.2000.04.020 

[3] H. K. Nakhla and B. E. Thompson, “Calculation of debris trajectories during high-speed 
snowplowing,” in European Fluids Engineering Division Conference, 2002. 

[4] R. E. Eskridge and R. S. Thompson, “Experimental and theoretical study of the wake of a block-shaped 
vehicle in a shear-free boundary flow,” Atmospheric Environment (1967), Vol. 16, No. 12,  
pp. 2821–2836, Jan. 1982, https://doi.org/10.1016/0004-6981(82)90033-6 

[5] Z. Jihong, L. Duanxiao, and L. Jifeng, “Analysis on air flow field of jet pipes for snow blower based 
on FLUENT,” (in Chinese), Machinery Design and Manufacture, No. 8, 2011. 

[6] L. Bo and L. Dewang, “Numerical simulation in flow field of a rectangular Nozzel,” (in Chinese), 
Journal of Nanjing University of Aeronautics and Astronautics, 1999. 

[7] F. Yunsong, Jin Wei, H. Chaochao, and L. Yongshun, “Research on the influence of aspect ratio on 
plume temperature field of a rectangular Nozzle,” (in Chinese), Machinery Design and Manufacture, 
No. 12, pp. 224–226, 2012, https://doi.org/10.19356/j.cnki.1001-3997.2012.12.080 

[8] W. D. King and S. Dujmovic, “Fluid flow and particle trajectories around simple bodies: Impaction of 
snowflakes on car windshields,” American Journal of Physics, Vol. 55, No. 2, pp. 149–154, Feb. 1987, 
https://doi.org/10.1119/1.15233 

[9] B. E. Thompson and H. K. Nakhla, “Visibility improvements with overplow deflectors during high-
speed snowplowing,” Journal of Cold Regions Engineering, Vol. 16, No. 3, pp. 102–118, Sep. 2002, 
https://doi.org/10.1061/(asce)0887-381x(2002)16:3(102) 

[10] Z. Bo, J. Honghu, C. Guangzhou, and H. Wei, “Reynolds shear stress characteristics of jets from 
circular – rectangular transition nozzles with different aspect ratios,” (in Chinese), Journal of 
Experiments in Fluid Mechanics, Vol. 26, No. 5, 2012. 



OPTIMIZATION ON THE JET CHARACTERISTICS OF THE MAIN NOZZLE OF HOT-BLOWING SNOW REMOVAL DEVICE.  
QINGRUI YU, JINHAI HU, YINGSAN GENG, XIANGYI ZHANG, YAYUN TANG 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460 1161 

[11] L. Rayleigh, “On the instability of jets,” Proceedings of the London Mathematical Society, Vol. s1-10, 
No. 1, pp. 4–13, 1878, https://doi.org/10.1112/plms/s1-10.1.4 

[12] M. M. R. Qureshi and C. Zhu, “Crossflow evaporating sprays in gas-solid flows: effect of aspect ratio 
of rectangular nozzles,” Powder Technology, Vol. 166, No. 2, pp. 60–71, Aug. 2006, 
https://doi.org/10.1016/j.powtec.2006.05.005 

[13] M. A. E.-A. Mohamed, H. E.-S. Abdel Hameed, R. E. Shaltout, and H. A. A. El-Salmawy, “Prediction 
of the Impact of Nozzle Geometry on Spray Characteristics,” ACS Omega, Vol. 6, No. 9,  
pp. 6218–6230, Mar. 2021, https://doi.org/10.1021/acsomega.0c05767 

[14] B. Rembold, N. A. Adams, and L. Kleiser, “Direct numerical simulation of a transitional rectangular 
jet,” International Journal of Heat and Fluid Flow, Vol. 23, No. 5, pp. 547–553, Oct. 2002, 
https://doi.org/10.1016/s0142-727x(02)00150-9 

[15] R. S. Miller, C. K. Madnia, and P. Givi, “Numerical simulation of non-circular jets,” Computers and 
Fluids, Vol. 24, No. 1, pp. 1–25, Jan. 1995, https://doi.org/10.1016/0045-7930(94)00019-u 

[16] L. Yunjiu, Structure of Engine. Changchun: Publishing House of Air Force 2rd Aeronautics College, 
1996. 

[17] J. Wu and R. Radespiel, “Tandem nozzle supersonic wind tunnel design,” International Journal of 
Engineering Systems Modelling and Simulation, Vol. 5, No. 1/2/3, pp. 8–18, 2013, 
https://doi.org/10.1504/ijesms.2013.052369 

 

Qingrui Yu received the M.S. degree from Xi’an Jiaotong University, Xi’an, China, in 
2005. He is currently pursuing the Ph.D. degree in advanced manufacturing with Xi’an 
Jiaotong University, Xi’an. His current research interests include Computer simulation 
analysis and snow removal device. In this paper he was responsible for conceptualization; 
data curation; formal analysis; investigation; methodology; software; validation; 
visualization; writing – original draft preparation. 

 

Jinhai Hu received the Ph.D. degree from Airforce Engineering University, Xi’an, China, 
in 2007. He is currently a professor of mechanical engineering with Xi’an Jiaotong 
University. In this paper he was responsible for conceptualization; data curation; funding 
acquisition; methodology; project administration. 

 

Yingsan Geng received the Ph.D. degree from Xi’an Jiaotong University, Xi’an, China, 
in 1997. His current research interests include Intelligent theory and technology of 
electrical appliances; computer aided design and simulation of electrical appliances. In this 
paper he was responsible for conceptualization; data curation; methodology; supervision; 
writing – review and editing. 

 

Xiangyi Zhang received the Ph.D. degree in aerospace propulsion theory and Engineering 
from Air Force Engineering University, Xi’an, China, in 2007. He is currently a deputy 
chief engineer of Aero-Engine with Xi’an Aero-Space Engine & Smart Manufacturing 
institute Co., Ltd. In this paper he was responsible for formal analysis; investigation; 
resources; validation; visualization. 

 

Yajun Tang graduated from PLA Air Force No.1 Aviation University in 2004, is currently 
Project Manager of Aero-Engine with Xi’an Aero-Space Engine & Smart Manufacturing 
institute Co., Ltd. In this paper he was responsible for formal analysis; investigation; 
software; validation. 

 




