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Abstract. Rolling element bearings (REBs) are vital parts of rotating machinery across various 

industries. For preventing breakdowns and damages during operation, it is crucial to establish 

appropriate techniques for condition monitoring and fault diagnostics of these bearings. The 

development of machine learning (ML) brings a new way of diagnosing the fault of rolling 

element bearings. In the current work, ML models, namely, Support Vector Machine (SVM) and 

K-Nearest Neighbor (KNN), are used to classify the faults associated with different ball bearing 

elements. Using open-source Case Western Reserve University (CWRU) bearing data, machine 

learning classifiers are trained with extracted time-domain and frequency-domain features. The 

results show that frequency-domain features are more convincing for the training of ML models, 

and the KNN classifier has a high level of accuracy compared to SVM. 

Keywords: rolling element bearing, condition monitoring, machine learning model, feature 

extraction, fault classification. 

1. Introduction 

Fault detection and diagnosis of rotating machinery play an essential role in maintenance 

planning, human safety, and cost reduction in modern industrial systems. As the rolling element 

bearings are an integral component of rotating machinery, their failure is a leading cause of 

machinery malfunction [1]. Bearing failures account for 30 to 40 percent of total machinery 

failure. These defects, if detected early enough, can help prevent accidents [2]. Various methods 

for diagnosing bearing faults have been employed, such as acoustic emission [3], vibration [4], 

motor current [5], thermography [6] and, so on. The microphone sensor of a mobile phone is used 

to record acoustic data and investigate bearing health issues [3]. However, the approach is limited 

by the weak frequency response of the integrated microphone in low-frequency bands, which is 

especially problematic for low voltage motors. An adaptive noise canceling method is proposed 

for diagnosing bearing faults in induction motors [7]. Vibration-based diagnostics is the most 

extensively utilized technique for early failure identification in induction motors among several 

diagnostic methods [8-9]. An artificial neural network (ANN) was used to estimate the bearing 

condition [8]. It has been discovered that successful bearing diagnosis can be achieved by applying 

suitable measurement and processing of motor vibration signals. Bearing defect detection based 

on Hidden Markov Modeling (HMM) using vibration signal is proposed in reference [10]. An 

amplitude demodulated signal is used for feature extraction and training HMMs to estimate normal 

and faulty bearings. Envelope analysis, often known as High-Frequency Resonance Technique 

(HFRT), is the most widely used frequency-domain approach for bearing defect diagnostics [11]. 

Due to mechanical components, however, the technology suffers from a low signal-to-noise ratio 

and the existence of a high number of frequencies. Furthermore, the procedure necessitates the 

determination of bearing defect frequencies in advance.  

Many research findings support the machine learning approach in machinery fault diagnosis 

as the ML methods are more competitive than signal-based methods [12-15]. Machine learning 

characteristics collected from data are more objective than signal-based methods. Furthermore, 
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the accuracy criterion of fault diagnosis is more helpful in selecting fault diagnosis methods. In 

the current work, vibration signals from a bearing are gathered under both healthy and faulty 

conditions. Various time and frequency-domain features are extracted from the data and are used 

to distinguish different bearing conditions using the SVM and KNN classifiers. 

1.1. Support Vector Machine (SVM) 

Support Vector Machines (SVMs), also known as support vector networks [12], are supervised 

learning models that examine data for classification and regression analysis in machine learning. 

SVM, which is based on statistical learning frameworks, is one of the most reliable prediction 

approaches. An SVM training algorithm creates a model that assigns new examples to one of two 

categories, making it a non-probabilistic binary linear classifier, given a series of training 

examples, each marked as belonging to one of two categories.  

Let some data points are assigned to one of two classes, and the purpose is to determine that a 

new data point will be allocated to which class. A data point is viewed as a 𝑝-dimensional vector 

(a list of 𝑝 numbers) in support-vector machines, and one wants to know if such points can be 

separated with a (𝑝 − 1)-dimensional hyperplane. This is termed a linear classifier. Numerous 

hyperplanes may be used to categorize the data. If such a hyperplane exists, it is called a 

maximum-margin hyperplane. The linear classifier it thus defines is called a maximum-margin 

classifier. The hyperplane that represents the greatest separation, or margin, between the two 

classes is a viable choice as the best hyperplane. As shown in Fig. 1, the classes are not separated 

by the hyperplane 𝐻1. The hyperplane 𝐻2 has a slight advantage, but only by a short margin. With 

maximum success, the hyperplane 𝐻3 separates them by the widest possible margin. 

1.2. K-Nearest Neighbor (KNN) algorithm 

The K-Nearest Neighbor (KNN) algorithm is one of the most basic machine-learning 

algorithms [13]. It is a method of calculating the distance between two points [14]. Due to its 

simplicity and ease of implementation, this is a widely used classifier. It is a non-parametric 

classification and regression method. As seen in Fig. 2, this algorithm assumes that related entities 

are close to one another. 

 
Fig. 1. Different hyperplanes separating  

the two classes of data points 

 
Fig. 2. A demonstration of KNN algorithm 

 

KNN determines the distance between two points using multiple techniques, such as Euclidian 

and Manhattan [15], based on the idea of similarity based on proximity or distance. However, 

Euclidian is the most generally used among all of these ways, and it can be represented by Eq. (1): 

𝑑(𝑚, 𝑏) = √∑ (𝑚𝑖 − 𝑏𝑖)
2𝑛

𝑖=1 , (1) 

where 𝑚, 𝑏 are two points in an 𝑛 dimensional Euclidian space. 
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KNN must be run several times with different values of 𝐾 to determine the chosen number of 

𝐾 (the number of neighbors) for a given dataset. The value of 𝐾 should be selected to decrease 

the number of errors when making predictions from each run.  

2. Bearing data description 

Fig. 3 shows the CWRU test platform, including a 2-horsepower motor, dynamometer, torque 

sensor, and electronic control unit [16]. Experiments are performed with bearings having EDM-

created single point defects with diameters of 7 mils, 14 mils, 21 mils, 28 mils, and 40 mils (1 mil 

= 0.001 inches). SKF bearings are used for the 7, 14, and 21 mils diameter faults, whereas NTN 

bearings are used for the 28 mils and 40 mils diameter faults. 

Vibration data was acquired using accelerometers installed at the 12 o'clock position of the 

motor casing and processed in MATLAB (.mat) format. Signals were captured at a sampling 

frequency of 12 kHz for drive and fan end bearings and 48 kHz for drive end bearing faults. 

 
Fig. 3. Test stand of CWRU bearing data center [16] 

2.1. Fault dataset 

The ensembled dataset considered in this work for the performance analysis of ML models in 

classifying bearing faults comprises four categories of the bearing data: healthy bearing, inner race 

defect, outer race defect lying orthogonal to the load zone, and outer race defect located in the 

load zone. Twenty data samples, each of 3600 data points, are taken from all of the four categories, 

thus making 80 entries in the ensembled dataset. The detailed description of the ensembled dataset 

concerning the location of bearing, shaft speed, and assigned fault codes is given in Table 1. 

Table 1. Details of bearing dataset considered for fault classification 

Bearing 

location 

Motor 

load/shaft 

speed 

Defect 

size 
Bearing condition 

Fault data 

designation 

Fault 

code 

Drive end 
2 HP/ 

1750 rpm 

21 mils 

(0.021″) 

Healthy Normal_2 1 

Defective inner race IR021_2 2 

Defective outer race (Defect lying 

orthogonal to the load zone) 
OR021@3_2 3 

Defective outer race 

(Defect located in the load zone) 
OR021@6_2 4 

2.2. Fault features 

A total of 18 time-domain and frequency-domain fault features extracted are used in different 

combinations to assess the accuracy of SVM and KNN models in classifying the bearing fault 

categories. The time-domain features used are clearance factor, crest factor, impulse factor, 
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kurtosis, mean, peak value, RMS, SINAD, SNR, shape factor, skewness, standard deviation, 

approximate entropy, correlation dimension, and Lyapunov exponent. The features of the 

frequency-domain taken are peak amplitude, peak frequency, and band power. 

3. Procedure 

The step-wise methodology employed in the present work is presented in this section. First of 

all, the bearing data corresponding to fault categories of interest is ensembled. Numerous time-

domain and frequency-domain features are then extracted from this ensembled data and also 

ranked. Finally, these features are selected in different combinations to train ML models to obtain 

their fault classification accuracy. The methodology’s workflow is depicted in Fig. 4. 

 
Fig. 4. The methodology used for bearing fault classification 

3.1. Feature extraction 

The time and frequency-domain features are extracted from the ensembled bearing data in 

MATLAB environment and are ranked in order of their relative significance to be used to train 

the ML classifiers. These features may all be used together or selectively in varying combinations 

to train ML models for the comparison of their accuracy in classifying the bearing faults. The 

accuracy results corresponding to each set of selected features are compared to identify the 

promising features and the classifier providing maximum accuracy. 

3.2. Training of ML models 

In the current study, the ML models are trained using the 𝑘-fold cross-validation approach. 

This method divides a dataset into k folds of equal size at random. The model is then fitted on the 

remaining 𝑘-1 folds after selecting one of the folds as the holdout set. The model is put to the test 

for the observations that were held out in the fold. The method is repeated k times, with a different 

set as the holdout set each time. 5-fold cross-validation is employed in the present analysis, thus 

splitting ensembled data of 80 entries into 5 equal-sized folds, each having random 16 sub datasets. 

4. Results and discussion 

After the features are extracted and the models are trained, the accuracy results of fault 

classification are obtained and presented in terms of scatter plot and confusion matrix with the 

selection of different features. The predictors that may distinguish the classes can be determined 

by plotting several predictors on the scatter plot. A scatter plot depicts the data before training the 

classifier, and the model prediction results are displayed once the classifier has been trained. RMS 

and skewness are considered as predictors in the present case. A confusion matrix can be used to 

detect the areas where the classifier has failed. The True Positive Rate (TPR) is defined as the 

percentage of correctly classified observations per true class. The False Negative Rate (FNR) is 

the proportion of observations that are wrongly categorized per true class. In the last two columns 

on the right, the plot gives summaries for each true class. 
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To train ML models, features both from the time-domain and frequency-domain are selected in 

the first trial. A combination of three non-linear time-domain features, namely, approximate entropy, 

correlation dimension, and Lyapunov exponent, are considered in the second feature set. In the last 

group, three frequency-domain features are used for model training. Figs. 5-7 show the scatter plots 

and confusion matrices for a few results of fault classification of SVM and KNN classifiers with 

three different feature sets. The corresponding accuracies obtained are reported in Table 2. 

  
Fig. 5. Scatter plot and confusion matrix for SVM classifier with the feature set 1 

  
Fig. 6. Scatter plot and confusion matrix for KNN classifier with the feature set 2 

  
Fig. 7. Scatter plot and confusion matrix for KNN classifier with the feature set 3 
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Table 2. Selected features and associated fault classification accuracies of SVM and KNN classifiers 

Feature set Features Classifier Accuracy 

Set 1: Combination of time 

and frequency-domain 

features 

Crest factor, impulse factor, kurtosis, RMS, 

SNR, skewness, peak amplitude, peak 

frequency, Lyapunov exponent 

SVM 95.0 % 

KNN 96.2 % 

Set 2: Non-linear 

time-domain features 

Approximate entropy, correlation dimension, 

Lyapunov exponent 

SVM 88.8 % 

KNN 91.2 % 

Set 3: Frequency-domain 

features 
Peak amplitude, peak frequency, band power 

SVM 96.2 % 

KNN 98.8 % 

5. Conclusions 

The current research, which employs machine learning techniques, demonstrates that the 

specific selection of fault features plays a significant role in training machine learning models for 

bearing defect classification. The set of frequency-domain features has the best performance in 

both SVM and KNN classifiers among the three feature sets. The fault classification accuracy is 

the lowest when just non-linear time-domain features are used for ML model training. However, 

the accuracy increases significantly with a combination of features from time-domain and 

frequency-domain. With only frequency-domain features, the accuracy further improves. This 

trend can be observed in both the SVM and the KNN classifiers. Also, in all three cases, KNN 

outperforms SVM. As a result, frequency-domain is more supportive in identifying rolling 

element bearing defects in terms of fault features, and the KNN model beats the SVM model. 
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