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Abstract. The multi-power coupling transmission system (MPCTS) is an electromechanical
coupling system, which typically use two or more induction motors to provide its driving torque.
It is used in various industrial applications, such as cutter header driving systems of tunnel boring
machinery, and yaw systems of wind turbines. In practical engineering applications, the loads
borne by the MPCTS are very complex, including both torque loads and non-torque loads. Its
dynamic characteristics are affected by both the gear transmission system and the drive motors.
For this study, an electromechanical coupling dynamic model of the MPCTS, coupled with a gear
transmission system, induction motor, and non-torque load, was constructed to analyze its
dynamic characteristics under a non-torque load condition. The results showed increased offsets
from the gear vibration equilibrium position, as well as deterioration in system load-sharing
characteristics from increases in non-torque load and rotational speed. However, the influence of
the non-torque load was significantly greater than that of the rotational speed.

Keywords: multi-power coupling transmission system, electromechanical coupling, non-torque
load, dynamic characteristics, load sharing.

1. Introduction

The multi-power coupling transmission system (MPCTS) is an electromechanical coupling
system, which typically uses two or more induction motors to provide its driving torque. It is used
in various industrial applications, such as cutter header driving systems of tunnel boring
machinery, and yaw systems of wind turbines, because of its high dynamic performance,
robustness, low cost, reliability, and efficiency [1, 2]. In practical engineering applications,
MPCTS systems are used to provide high driving torque. However, the effects of loading from
both the torque load and the non-torque, axial and radial loads, can be complex. During MPCTS
operation, the non-torque load can lead to unequal loading between gears, and an increase in the
dynamic meshing force among gear pairs, which negatively affect the dynamic characteristics and
load-sharing properties of the system. This indicates that non-torque load is a major contributing
factor in the safety and reliability of MPCTS operation, because it contributes to premature gear
transmission system failures, and internal permanent damage [3]. Therefore, it is necessary to
investigate the effects of non-torque load on MPCTS systems, in order to provide better theoretical
guidance for system design. Researchers have recently begun to pay attention to the influence of
non-torque loads on the dynamic characteristics of gear transmission systems. Tan et al. created a
dynamic model of a wind turbine to investigate the effects of these loads on the performance of
its drivetrain, bearing in mind the effects of non-torque loading caused by platform motion. The
results suggest that the non-torque loads not only introduce additional excitation frequencies, but
also increase the vibration amplitude of the drivetrain [4]. Likewise, Li et al. constructed a
coupling model of a wind turbine drivetrain to analyze its dynamic characteristics under
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non-torque loads, caused by blade gravity, wind shear, tower shadow, and yawed inflow. Those
results indicate that non-torque loads can lead to unequal planet load sharing, which are commonly
carried by carrier 1 bearings [5]. Zhao et al. created a dynamic model of a helical gear system, to
investigate the dynamic behaviors influenced by gear geometric eccentricity. It was found that
there are sideband frequencies around the meshing frequency of gear pairs with geometric
eccentricities [6]. Cao et al. built a dynamic model of a planetary gear set with four planets to
analyze dynamic performance under non-torque loads caused by the gear eccentricities. This study
points out that the non-torque loads caused by gear eccentricity error not only affect the dynamic
response of the planetary gear set, but also deteriorate the load-sharing performance of the
planetary gear set [7]. Zhai et al. studied the dynamic characteristics of one stage helical planetary
gear system, under the influence of non-torque loading caused by errors in carrier assembly. The
results show that those errors tend to increase the dynamic meshing forces of the gear pairs [8].
Park et al. developed two analysis models of a wind turbine gearbox, consisting of two different
load configurations: one with both torque and non-torque loading, and the another with torque
only loading. After investigating the influence of wind fluctuation on the load distribution of gear
tooth flanks, along with the load sharing of planets, it was concluded that the influence of non-
torque forces are very important to consider, to accurately determine the design load for a wind
turbine gearbox [9]. Subsequently, Park et al. built a 3D analysis model of a three-point suspension
gearbox for a 2-MW class wind turbine, to study the effects of axial force, radial force, and
bending moment, on the load sharing of planet gears. The results show that the load sharing of
planet gears is mainly affected by the non-torque factors of moment and radial force [10].
Choudhury and Tandon created a theoretical analysis model of a rotor bearing system to study its
dynamic response under radial load conditions. They concluded that vibration amplitudes in both
healthy and defective bearings increase with increasing speed but that those amplitudes are greater
in defective bearings owing to radial load [11].

Qiu et al. developed a rotational-translational-axial dynamic model of a planetary gear
transmission system, to investigate the effects of gravity, ring support stiffness, and bedplate tilt
angle on the load-sharing characteristics of a planetary gear transmission system [12]. Zhu et al.
created a dynamic model of a multi-floating gear system using the lumped parameter method, and
analyzed the effects of a flexible pin on gear natural frequency and dynamic meshing force [13].
Wei et al. proposed a dynamic modeling method for a multistage planetary gear system by
combining the lumped parameter and finite element methods (FEM). The dynamic response
calculated by the proposed method was compared with the individual results calculated the
individual methods. The results show that the accuracy of the proposed combination method is
higher than that of the lumped parameter method, and lower than that of FEM, although the
calculation efficiency is higher than that of FEM [14]. Frabco et al. developed a dynamic model
of a planetary gearbox by combining the lumped parameter method and FEM, yielding very
similar modal property results from simulation versus experimentation [15]. Zeng et al. built a
nonlinear dynamic model of a gear-shaft-housing system by using FEM, to study the influence of
the meshing and bearing support stiffness on vibration response. It was concluded that if the
bearing support and meshing stiffness increase, the vibration acceleration and velocity of the
housing also increase. However, the influence from the bearing stiffness is greater than that of the
meshing stiffness [16]. Wang et al. created a coupled dynamic model of a spur, gear-shaft-bearing
system, to investigate the effects of the shaft flexibility on bearing response and radiated
noise [17].

In the aforementioned research studies, the focus is mainly on either dynamic characteristic of
a system affected by non-torque loads, or a dynamic modeling method which only considers the
characteristics of the gear transmission system itself. Subsequently, the effects of the time-varying
excitations caused by the induction motor are ignored, although the mechanical and electric
assemblies of the MPCTS cannot be divided into two non-correlated parts. Since the vibration
caused by the time-varying meshing stiffness of the gear transmission system can be transmitted
to the induction motor through the coupling, and the vibration caused by the speed or torque
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fluctuations of the motor can to be transmitted to the gear transmission system through the
coupling. Therefore, in this study, an electromechanical coupling dynamic model of MPCTS with
a gear transmission and induction motor, was used to analyze dynamic characteristic under
non-torque loads. Section 2 presents the development of the MPCTS model used, while Section 3
details its resulting dynamic characteristics under a non-torque load condition. Section 4 presents
the conclusions drawn on the basis of the analysis of the results.

2. Electromechanical coupling dynamic model for MPCTS

The MPCTS, as shown in Fig. 1, is composed of a single-stage planetary gear system and a
parallel shaft gear system. In the parallel shaft gear system, the three pinions are driven separately
by three induction motors, and the wheel is driven by the three pinions, which drive the wheel.
The sun shaft is connected to the wheel via a spline, and the power from the wheel is transmitted
to the single-stage planetary gear system through the sun shatft.

Pinion
T} is torque load

Fyis radial load
in X direction

Fy1is radial load
. in Y direction

Planetary reducer

Fig. 1. Three-dimensional-model of MPCTS
2.1. Dynamic model of Timoshenko beam

The dynamic model of the rotating shafts and gears was developed using the Timoshenko beam
theory proposed by Nelson [18], and is shown in Fig. 2. The subscripts pii and piiw represent the
ith pinion and ith gear pair formed by the ith pinion and wheel, respectively. The subscript w
represents the wheel. The mathematical model of the two-node Timoshenko beam can be
written as:

M;ji1Xijor + CjeaXijor + K je1Xj ju1 = Fjjua (1)

where M; ;.1 denotes the mass matrix of the Timoshenko beam. C;;,, and K ;,, denote the
damping matrix and stiffness matrix of the Timoshenko beam, and their detailed matrix forms are
shown in Ref. [19]. X; ;1 and F; ;. denote the displacement and exciting force column vectors
of the Timoshenko beam.

Y y/"‘ﬂ
| ¥
> eyj+1
/
Zj+] /
El i+
sz+1 \j !
\ 0xj+1
Xj+1

Fig. 2. Timsoshenko beam
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2.2. Dynamic model of parallel shaft gear system

In the parallel shaft gear system, all the gears and shafts are equivalent to the Timoshenko
beam. The basic parameters of the parallel shaft gear system are listed in Table 1. The dynamic
model of the parallel shaft gear system can be obtained using the node finite element method,
which is formed from the bearing, meshing gear pair, and shaft, as shown in Fig. 3(a). Nodes i
and j are assumed to be the meshing nodes of the pinion-wheel gear pair. Nodes i — 2, i + 2, and
i + 3 are the bearing supporting points of the pinion and wheel, respectively. As shown in Eq. (2),
the dynamic model of the supporting bearing can then be expressed in matrix form, using i — 2 as
the bearing supporting point in this example:

CiaXimy + KioaXi2 =0, (2)

where C;_, and K;_, denote the damping matrix and stiffness matrix of the bearing, respectively.
X;_, denotes the displacement vector of bearing supporting point i — 2. The detailed expressions
of the matrices can be found in Ref. [20].

Length unit: mm ;3
A — Bearing
e -—- Node 51 51

146 287.7

-—

Sun D1 Spline
Y D4
[ iX Wheel j+3
0 Z Piniori.
75015/50' 180 D5

a)
Fig. 3. a) Finite element node diagram of parallel shaft gear system;
b) meshing pair model of parallel shaft gear system

The meshing pair model of the parallel shaft gear system is shown in Fig. 3 (b), where the gear
meshing pair is modeled as a stiffness-damping spring system, with the spring acting along the
line of action between the two gears. The deformation along the line of action can be written as:

(Spiiw = _xpiiSin(a - ¢piiw)cosﬁ + ypiiwcos(a - ¢piiw)cosﬁ + wain(a - ¢piiw)cosﬁ
—ywcos(a — qbpiiw)cosﬁ + 1pi0pic0SP — 1,,0,,C08B + Z,;;sin — z,,Sinf — epii,

3)

where x;, y; and z; (j = pii,w) denote the displacement of the pinion and wheel along the x-, y-
, and z-axes, respectively. §; and 7; (j = pii, w) denote the angle displacement around the z-axis
and the base circle radius of the pinion and wheel, respectively. « is the pressure angle, and ¢y,;;,
is the position angle of the pinion. § denotes the helix angle of the gear. e,;;,, is the transmission
error, which can be expressed as:

7

l . 27'[ T e 9 ..
piiw = Epiiw T § €piiwt * COS <—p” =+ Vi>, 4
=1 Popii
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where &,;;,, and &, are the [th harmonic term amplitude and mean transmission error,
respectively, and y; is the ith pinion phase angle.
Hence, the differential equation of the pinion-wheel pair can be deduced as:

(MopiiXpii = CpitwOpiiwSIN(A = it )COSB — Kopiiy OpiinySIN(A — P iy ) COSB = 0,
My Vpii + Cpiiwgpiiwcos(a — Dpiiw)COSP + Kpijw OpiiwCOS(@ — Ppiiw)cosf = 0,
MypiiZpi; + cpiiw(fpiiwsinﬁ + kpiiwOpiwsing = 0,

]piiépii + Cpiiwspiiwrpiicosﬁ + kpiiwOpiiwTpiiCOSB = Toni

myx,, + cpiiWSpiiWsin(a — Dpiiw)COSP + Kpjivy OpiiwSIN(@ — Gpijw)cosf = 0,
mwj}w - Cpiiwé.‘piiwcos(a - ¢piiw)cosﬁ - kpiiw5piiwcos(a - ¢piiw)cos.8 =0,
my,Z, — cpiiWSPiiWsinﬁ = KpiiwOpiiwSing = 0,

Jwkw — Cpiiw5piiwrwcosﬁ - kpiiWSpiiwerOS.B =-T,

©)

where m; and J; (j = pii,w) denote the mass and inertia of the pinion and wheel, respectively.
T and T; denote the input torque and load torque, while ¢y, and kp;;,, denote the meshing
damping and stiffness of the pinion-wheel pair, respectively. They can be expressed as Eq. (6):

7
— ~ l . 27‘[ . ’r' PP 9 o
(kpiiw = kpiiw + Z kpiiwl ' €COS (# + Vi);
=1

Pbpii
k. ..
Coii =2 piiw )
L e { (1/meq,1 + 1/meq,2)

(6)

where &piiw and Epiiw are the [th harmonic term amplitude and mean mesh stiffness, respectively.
¢ is the meshing damping ratio, Meq; = Iy; Jr? (i = pii,w) represents the equivalent quality.
Therefore, the matrix form of the pinion-wheel pair dynamic model can be written as:

7 T g T —
{Mpiinpiiw + Cpiinpiiw(Spiiw + Kpiinpiiwspiiw — Fpiiwy (7)
Spiiw = VpiiWXpiiw — Epiiw »
where, Vy;;,, is the meshing vector of the pinion-wheel pair, which can be written as:
Voiiw = [cosﬁsin(b, cosfBcosd, sinf, 1,;;cosf5, —cosfsin®, cosfcos®, —sing, —rwcosﬁ], (8)

where My, Cpiiw»> and K, denote the mass matrix, meshing damping matrix, and meshing
stiffness matrix of the pinion-wheel pair, respectively. Xp;;,, and Fp;;, denote the displacement
and exciting force vectors, respectively. In Eq. (8), ® = a — ¢y

Table 1. Basic parameters of parallel shaft gear system

Tooth Face Pressure Supporting .
number Module/mm width/mm angle/® stiffness/Nm-! Diameter/mm
Pinion 19 4 146 20 le8 D1 =100; D2=110;
D3 =160; D4 =55;
Wheel 99 4 146 20 led D5 = 50

2.3. Dynamic model of single-state planetary gear system
The dynamic model of a single-stage planetary gear system can also be obtained using the
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node finite element method, consisting of the bearing, sun-planet meshing pair, planet-ring
meshing pair, pin, and carrier. The carrier, ring, planet, sun, and pin are modeled as different
cross-section types of Timoshenko beams, and can be divided into different element nodes, as
shown in Fig. 4(a). The basic parameters of the planctary stage are listed in Table 2. Herein, the
dynamic model of the supporting bearing in a single-stage planetary gear system can be expressed
using Eq. (2) as well.

Table 2. Basic parameters of single-stage planetary gear system
Tooth | Module / | Face width | Pressure | Helix Supporting Diameter/mm
number mm / mm angle /° | angle /° | stiffness / Nm'!
Sun 18 6 146 20 25.5 le8 D6 =260: D7 = 174.6;
Planet 52 6 146 20 25.5 1e9 DS = 268: D9 = 320
Ring 123 6 146 20 25.5 lel0 ’

The meshing pair model of the single-stage planetary gear system is shown in Fig. 4(b). The
subscripts s, 7, ¢, and p; represent the sun, ring, carrier, and ith planet, respectively. There are two
types of meshing pairs existing in the model: an external, sun-planet meshing pair, and an internal,
planet-ring meshing pair. Without loss of generality, the external and internal meshing pairs are
also modeled as a stiffness-damping spring system, with the spring acting along the line of action
between the two gears.

For the sun-planet i meshing pair, the deformation along the line of action can be written as:

Ospi = Xssin(a; + ¢p) cosf — ys cos(a; + ¢p) cosf — xp; sin(a,) cosp
+¥,ic08(a)cosf — 10508 — 1;6,,;c0SP + zp;Sinf — zgsinf — egy;,

)

where x;, y; and z; (j = s, pi) denote the displacement of the sun and planet i along the x-, y-,
and z-axes, respectively. 8; and r; (j = s, pi) denote the angle displacement around the z-axis and
the base circle radius of the sun and planet i, respectively. a; represents the pressure angle, and
¢,, represents the position angle of the planet. eg,; is the transmission error of the sun-planet i
meshing pair, which can be expressed as Eq. (15).

The differential equation of the sun-planet i meshing pair can be deduced as follows:

(meXs + cspiSSpisin(at + ¢p)cosP + kepiGspisin(a; + ¢p)cosf =0,

M5 = CopiBspiCOS(@ + Pn)COSB — Kep;S5piCOS(ar + p)cosB = 0,

meZs — cspiSSpisinB — kgpiOspising = 0,

Js0s — Cspisspi':rscosﬁ — kspiGspiTscoSP = Tip, (10)
MypiXp; — CspiOspiSIN(A)COSP — kgpiOgpisin(a,)cosf = 0,
My Vpi + cspi&picos(at)cosﬁ + Kspidspicos(a,)cosf = 0,
MypiZp; + csm-Sspisinﬁ + KspiOgpiSing = 0,

JpiOpi — CspiSSpirpicosﬁ - kspiaspirpicosﬁ =0,

where m; and J; (j = s, pi) denote the mass and inertia of the sun and planet i, respectively. cgp;
and k,; denote the meshing damping and stiffness of the sun-planet i meshing pair, and can be
expressed as Eq. (15). T;, denotes the input torque of the sun. The matrix form of the dynamic
model of the sun-planet i meshing pair can be written as:

6spi = VspiXspi — Espi and MspiXspi + Cspivsgisspi + KSinST];iéspi = Fspi’ (11)

where Mg,;, Cspi, and K,; denote the mass matrix, meshing damping matrix, and meshing
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stiffness matrix of the sun-planet i pair, respectively. Xs,; and F,; denote the displacement and
excitation force vectors, respectively. Moreover, Vgy,; is the meshing vector of the sun-planet i
meshing pair, which can be written as:

Vepi = [cosﬁsin‘{’,—cosﬁcos‘}’,—sinﬁ, —1,c0sf3, —cosfsina;, cosfcosa,, sinf, —rpicosﬁ], (12)

where ¥ = a, + ¢,,.

Length unit: mm
- Bearing
= Node

One side plate
of carrier

5
Houwseing__ge
a) b)
Fig. 4. a) dynamic model of single-stage planetary gear system;
b) meshing pair model of single-stage planetary gear system

Carrier

For the planet i-ring meshing pair, the deformation along the line of action can be written as:

Gpir = Xp;Sin(a;)cospf + yp;cos(az)cosf — x,.sin(¢p, — a;)cosf
—¥,-c08(¢y, — a¢)COSf + 1p;6p;COSf — 1,.0,.c0SP + Z,;Sinf — z.Sinf — ey,

(13)

where x,., ¥, and z, denote the displacement of the ring along the x-, y-, and z-axes, respectively.
6, and 7, denote the angle displacement around the z-axis and the base circle radius of the ring,
respectively. e, is the transmission error of the planet i-ring meshing pair, which can be
expressed as Eq. (15).

The differential equation of the planet i-ring meshing pair can be deduced as follows:

MpiXp; + cpiré‘pircosﬁsinat + kpirGpircospsina, = 0,

MpiVpi + cpirS'pircosBcosat + kpirOpircospcosa; = 0,

MpiZp; + cpirSPirsinﬁ + kpirGpirsinf = 0,

<]piépi + Cpir(?pirrpicosﬁ + kpir(spirrpicosﬁ =0,

mrjér - Cpir6pircos.85in(¢n - at) - kpir8pircos.85in(¢n - at) =0,
mrj}r - Cpirgpircosﬁcos(d)n - at) - kpirépircosﬁcos((bn - at) =0,

MyZy — CpiyOpirSINP — kpir-Opirsinf = 0,

(14)

\JrOr — Cpir6pirrrcosﬁ - kpir6pirrrcosﬁ =0,
where m,. and J,- denote the mass and inertia of the ring, respectively. ¢,;- and ky;,- denote the

meshing damping and stiffness of the planet i-ring meshing pair, respectively, and can be
expressed as Eq. (15):
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B S yle2mer, -6,
kspi = kspi + Z kspil - S1n [(— + Zslpm + F) + ¢spi] ’

=1 Pbs
7
_ R [/l 2m e - B
€spi = €spi T €spir - SIN [( + Zslpm) + ¢spi] ’
=1 Pbs
7
— ~ . l‘ZT[‘T'pi'gpi
S Kpir = kpir + Z kpiry - Sin T +Zohn + T+ Vs |+ dpir | (15)
pi

_ R . l'ZE'Tpi‘em
€pir = €pir + ) Epiry * SIN T + Zehn + Yor | + bpir |
bpi

j i
v ]
(1/meq,1 + 1/rneq,z)

Cj=2<

= spi, pir,

é; (or k;, i = spil and pirl) and e (or Ej, Jj = spil and pirl) represent the [th harmonic term
amplitude and mean transmission error (or mean mesh stiffness), respectively. Z,. and Z represent
the number of teeth in the ring and sun, respectively. y;, represents the phase angle between planet
[ (or ring) and sun (or planet i) meshing pair. p,s and py,,,; are the base pitch of the sun and planet
[, respectively. I represents the phase difference between e; and k;. z,¢,, and z;1,,, are the phase
relationships between the meshing pairs. m,q; = Iy /17 (i = s,pi,7) represents the equivalent
quality. The matrix form of the dynamic model of the planet i-ring meshing pair can be written as
follows:

(Spi‘r = VpirXpL'r - epi'r and MpirXpiT' + Cpirvzﬂrdpir + Kpirvzﬂrapir = Fpir: (16)
where My, Cpir, and Ky, denote the mass matrix, meshing damping matrix, and meshing
stiffness matrix of the planet i-ring meshing pair, respectively. X,;- and Fy,; denote the
displacement and excitation force vectors, respectively. Further, V,;,- is the meshing vector of the
planet i-ring pair, which can be expressed as follows:

Vpir = [cosﬁsinat, cosfcosay, sinf, 1,;cosff, —cosffsin®, —cosfcosB, —sinf, —rrcos,[i’], 17

where © = ¢,, — ;.

If it is assumed that the number of planets is n in the planetary gear system (Fig. 5), it can be
concluded that the number of pins and connections are also n, respectively, according to the
structural features of the planetary gear system. The stiffness-damping spring system is used to
represent the coupled relationship between the side plate, pin, and connecting plate; ¢, and k¢
represent the coupling damping and stiffness between the side plate and pin, while c., and k.,
represent the coupling damping and stiffness between the side plate and connecting plate. ¢; and
k; (i = pin, cp) represent the damping and stiffness of the pin and connecting plate, respectively.

The matrix form of the dynamic model of the carrier pin can be expressed as:

MCXC + CCXC + KCXC = F;." (18)
where M, C. and K. denote the mass matrix, damping matrix, and stiffness matrix of the carrier

pin, respectively. X, and F. denote the displacement and exciting force vector of the carrier pin,
respectively, and can be obtained using Eq. (13) and (14) in Ref. [19].
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| == — Connecting plate E(ﬁ“ 4K, Cop5 [l/\:/\E/\,_J
| | —o—o-lo R | ORI
\ ‘ Crl ,: Crl
[ | Pin n
%J Eﬁn_z 4n Chd

Right side

~
3
o plate

\
|
|
l
|
I

Connecting | Right ) M
plate \/[’@/side plate Left side plate Plate n

KCZ K(Z
Fig. 5. Dynamic model of carrier pin

2.4. Model of induction motor

Alternating current (AC) induction motors are frequently used in industrial applications, to
provide the driving force for mechanical systems. Therefore, a three-phase AC induction motor
with a rated power of 100 kW was used in this study. The basic parameters of the motor are shown
in Table 3. The mathematical model of such a motor in the d-q coordinate system can be described
as follows [21, 22].

Table 3. Basic parameters of motor

Resistance Rated Voltage / | Current / Leakage Rotating inertial | Magnetizing
/Q speed / rpm \Y A inductance / H / kg-m? inductance / H
Stator | 0.1749 — 1140 59.58 0.0048 — 0.2001
Rotor | 0.1954 1475 — 660 0.0048 10 0.2001

Eq. (19) shows the voltage and flux linkage equations:

[Usq ] [Rs + Lsp _wdqsLs Lmp _wdqsLm] lsq

usq _ wdqsLs Rs + Lsp wdqsLm me isq

Ura| me _wdqu’m Rr + Lrp _wdqu’r ird ’

[trq ] L wdqum me wdqur Rr + Lrp iTq (19)
[Vsa [Lg 0 L, 07l

Usg| _ |0 Ly 0 Lp||is

¢rd B Lm 0 Lr 0 i‘rd ’

gl L0 L, 0 L liyg

where, u; (i = sd, sq,rd,rq) represents the component of the stator/rotor voltage in the d/q-axis.
ir (k = sd,sq,rd,rq) represents the component of the stator/rotor current in the d/g-axis. R; (i =
s,r) denotes the resistance of the stator/rotor. L; (j = s,7,m) denotes the stator/rotor
self-inductance, and the mutual inductance between the stator and rotor, respectively. w;
(i = dgs, dqr) denotes the magnetic speed of the stator/rotor. Lastly, g denotes the differential
operator, while ; (i = sd, sq,rd,rq) denotes the component of the stator/rotor flux linkage in
the d/q-axis.
Eq. (20) shows the equations for both torque and motion:

o o . ) 3 Ly .
T, = anm(lsql‘rd - Lsdqu) = np(lsqlpsd - lsdlpsq) = Enp m [¥s|3py|sing,
sk
T, =T, + J do 0
e 'L n, dt’
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where T, denotes the electromagnetic torque of the motor, 7, denotes the number of winding pole
pairs, o denotes the coefficient of leakage inductance, and 6 denotes the included angle between
the stator flux leakage and rotor flux leakage. Lastly, T; denotes the load torque, while J denotes
the inertia of the rotor.

2.5. Electromechanical coupling dynamic model

Using the node finite element method and the structural features of MPCTS, the system can
be divided into 88 nodes with 352 degrees of freedom. The entire stiffness matrix of the MPCTS
can be obtained using the coupled method described in Ref. [20], and the distribution of nodes
illustrated in Fig. 6; which shows the stiffness of the Timoshenko beam supporting the bearing
and gear meshing.

Motor Bearing  Pinion 1 r_ --Pin  a --Gear Meshing pointI
m | @ -Node — --Connecting plate |

45 | A --Bearing supporting point |

--Support and Meshing piont |

Wheel  Connecting -->upport and Vesis spont
shaft / \

12
Coupling  Pinjon 3

Fig. 6. Dynamic model of MPCTS

The MPCTS dynamic model can be developed after obtaining the mass matrix, stiffness
matrix, damping matrix, and exciting force vector of each sub-element. The components of each
sub-element matrix can be superimposed on the corresponding position of the total matrix [20],
based upon the total number of system nodes, and the relationship between each node. In addition,
the input torques T,,; (i = 1,2,3) actonnodes 1, 11, and 21, respectively, as the driving torques
of the system. The radial loads Fy, Fy, and the torque load T}, act on node 87. The master-slave
control method was used to control the three induction motors, and the torque signal was selected
as the control signal between the induction motors. Finally, the electromechanical coupling
dynamic model of the MPCTS was be deduced as:

MX +CX +KX =F, (21)

where M, C, and K denote the mass, damping, and stiffness matrices of the MPCTS, respectively.
X and F denote the displacement and exciting force column vectors of the MPCTS, respectively.

3. Result and discussion

Two load conditions were selected to investigate the influence of non-torque load on the
dynamic characteristics of MPCTS: (a) the torque load T}, and (b) the non-torque, radial loads of
Fy and Fy in addition to the torque load T}, which is shown in Fig. 7.

The motion trajectories of the pinions and the wheel are shown in Fig. 8. Geometrically, the
motion trajectories of the pinions are linear, as shown in Fig. 8(a) and (b). Marked changes were
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observed in the angle (y) between trajectories and the length (L) of the trajectories. The difference
between the angles is small under the torque load condition, where y; = 120.0020°,
¥, = 120.0007°, and y; = 119.9973°, and the maximum angle difference is between y; and y3,
namely, y; — y3 = 0.0047°. A similar phenomenon also occurred in the length of trajectory under
torque load condition, where L; = 729.17 um, L, = 732.25 um and L; = 749.50 um. The
maximum length difference was between L, and L3, namely, L; — Lz = 20.33 um, as shown in
Fig. 8(a). With regards to the effects of non-torque load, both the angle and the length vary
significantly, but the length varied more, as shown in Fig. 8(b). Owing to the radial loads Fy and
Fy, the difference between the angles was further increased, where y; = 120.7559°,
¥, = 120.2356°, and y3 = 119.0085°. Notably, the maximum difference was still betwee n y; and
y3, which is y; —y; = 1.7474°. Meanwhile, the lengths of trajectories increased to
Ly =1000 um, L, = 1200 pm and L5 = 791.44 um, and increased by 270.89 um, 467.75 um and
41.94 pm, respectively, as compared to the torque load effects. However, some difference
occurred when the maximum length difference was between L, and Lj; reaching
L, — Ly =408.56 um.

8.5 T T T T 8.5 T T T
=7.6F 1 =576} E
X6.7t 1 X 6.7 Mottt AR Tl A A b
25.8¢ 1 B58F .
=249} TL/Nm i 349_ TL/Nm F)(/N _F)’/N
4.0 - - - - 40 srvsraansy
2.0 2.4 2.8 3.2 3.6 4.0 2.0 2.4 2.8 3.2 3.6 4.0
Time t/s Time t/s
a) b)

Fig. 7. Load: a) torque load; b) non-torque load

As shown in Fig. 8(c) and (d), the shape of the trajectory was close to a circle under either the
torque load condition or the non-torque load condition. When non-torque load condition was
considered, the vibration equilibrium positions of the wheel in X and Y directions went from
—0.83 um to 1.22 pum, and from 3.80 pum to 6.02 um — an increase of 2.47 and 0.58 times,
respectively. Moreover, the load-sharing characteristics of the pinion-wheel gear pairs also
changed significantly because of the change in the vibration equilibrium position, as shown in
Fig. 9.

8 10 4 S

> 4 > 6 > 2 > 3 1
- 2 J
= = 4 - =
g2 £ 3 1 g1 ]
£0 g0 ,, £0 £ 0 1
S22 S 5 3.1 o-lr ]
= S - V3N = =221 .
o g4 L] g2 g3t F 1
P78 64202 4 A N086a 20046 23 3T 01 23 24550012345

Displacement X /um Displacement X /um Displacement X/um Displacement X/um

a) b) ©) d)

Fig. 8. Motion trajectories: a) and b) motion trajectories of the pinions under torque load
and non-torque load (the blue solid line, red dotted line and green dash-dotted line are
the motion trajectories of pinion 1, pinion 2 and pinion 3, respectively); ¢) and d) motion
trajectories of the wheel under torque load and non-torque load, respectively

In this study, the maximum load-sharing coefficient (LSC) of the gear pair was selected to
represent the LSC of the corresponding gear pair [23]. The LSC of the pinion-wheel gear pairs
was 1.072 under torque load conditions, and 1.179 under non-torque load conditions — an increase
of 9.98 %. In summary, non-torque load has a significant influence on both the vibration
equilibrium positions of the pinions and the wheel, and the load-sharing characteristics of the
pinion-wheel gear pairs.
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The motion trajectory of the sun was analogous to a circle, as shown in Fig. 10(a) and (b).
Significant changes occurred in the vibration equilibrium position of the sun. When the non-torque
load wass considered, the vibration equilibrium positions of it in both X and Y directions were
markedly offset, as compared with the torque load condition. They changed from —0.04 pm to
3.69 um, and from 0.25 pm to 14.74 um — increases of 93.25 and 57.96 times, respectively. In
contrast, the motion trajectories of the planets were analogous to an ellipse under torque load
condition, and their offsets of vibration equilibrium positions in X and Y directions were about
0.20 pm and —10.52 pm, respectively, as shown in Fig. 10(c). In Fig. 10(d), there was an obvious
difference, as the shapes of the motion trajectories of the planets were analogous to a rectangle
under non-torque load condition, and their vibration equilibrium positions in the X direction were
offset in two different directions. For planet 3, the vibration equilibrium position was shifted in
the negative direction of the X-axis, with an offset of approximately AX; = 24.46 pm; increasing
by 123.42 times. However, the vibration equilibrium positions for the other two planets were
shifted in the positive direction of the X-axis, and their offsets were AX; = 20.33 pm and
AX, = 11.25 pm — increasing by 63.78 and 56.78 times, respectively. In addition, the vibration
equilibrium positions of the planets in the Y direction were shifted in the negative direction of the
Y-axis and change from approximately —10.52 pm to —163.66 um — increasing by 14.56 times.

1.080 1.2
1.045 1.1
O i @)
:)1.010 ::1.0
0.975 0.9
0.940 0.8
2.0 . 2.0 2.4 2.8 3.2 3.6 4.0
Time t/s Time t/s
a) b)
Fig. 9. LSC: a) LSC of pinion-wheel gear pairs under torque load;
b) LSC of pinion-wheel gear pairs under non-torque
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Fig. 10. Motion trajectories: a) and b) motion trajectories of the sun under torque load and non-torque
load, respectively; ¢) and d) motion trajectories of the planets under torque load and
non-torque load (the blue solid line, red dotted line and green dash-dotted line
are the motion trajectories of planet 1, planet 2 and planet 3, respectively)
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Fig. 11. Motion trajectories: a) and b) motion trajectory of the carrier under torque load
and non-torque load, respectively; ¢) and d) motion trajectory of the ring
under torque load and non-torque load, respectively
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When the non-torque load was considered, the same held true in that the motion trajectories of
the carrier and ring, and their vibration equilibrium positions, were hardly affected by it, as shown
in Fig. 11. In addition, their motion trajectories were also analogous to a circle. Given that the ring
is a fixed part, its restraint stiffness is set to be relatively large. As a result, there was an obvious
difference in the offsets of the vibration equilibrium positions of the carrier in the X and Y
directions, as they were markedly larger than those of the ring. Compared with the torque load
condition, the center of motion trajectory of the carrier changes from (0.009, 0.038) to
(12.79, 20.52) when the non-torque load is considered. In other words, the offsets of their vibration
equilibrium positions in the X and Y directions are increased by 1420 and 539 times, respectively,
as shown in Fig. 11(a) and (b). However, compared with Fig. 10(c) and (d), the offsets of the
vibration equilibrium positions of the ring in the X and Y directions are significantly reduced, and
its center of motion trajectory goes from (—0.009, —0.008) to (-0.44, 0.36); increasing by 47.89
and 46 times.

The load-sharing coefficients of the sun-planet gear pairs and planet-ring gear pairs are shown
in Fig. 12. S-Pi (i = 1, 2, and 3) in Fig. 12(a) and (b) represent the external meshing pair formed
by the sun and the ith planet, and Pi-R (i = 1, 2, and 3) in Fig. 12 (c) and (d) denote the internal
meshing pair formed by the ith planet and ring. The vibration equilibrium positions of the sun,
planets, ring, and carrier deviated significantly under the action of the radial loads Fy and Fy
resulting in a deterioration of the load-sharing characteristics of the sun-planet gear pairs and
planet-ring gearpairs. The load-sharing coefficients of the sun-planet gear pair and the planet-ring
gear pair increased from 1.087 to 1.237, and from 1.062 to 1.189, increased by 13.80 % and
11.96 %, respectively. Obviously, the influence of the non-torque load on the load-sharing
characteristics of the sun-planet gear pairs is greater than that of the planet-ring gear pairs. This is
mainly caused by the offset of the vibration equilibrium position of the sun being larger than that
of the ring.
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21.00 %

- 0.9

0.90 ! 1 . A 0.7 . . . )

20 24 28 32 36 40 20 24 28 32 36 40

Time t/s Time t/s
a)

1.080 T T T T

1045 —tPI-R —-P2-R - -P3-R |

Q

21.010 gl

0.975

0.940 . . : . 06l —PIR--P2R - “P3-R

20 24 28 32 36 40 20 24 28 32 36 40
Time t/s Time t/s
c) d)

Fig. 12. Load-sharing coefficient (LSC): a) and b) LSC of sun-planet gear pairs
under torque load and non-torque load, respectively; c) and d) LSC of planet-ring gear pairs
under torque load and non-torque load, respectively

The variations in the vibration equilibrium position of each central member are listed in
Table 4. Obviously, in addition to the ring, the offsets of the other central members in the Y
direction are significantly greater than those in the X direction, when the non-torque load is
considered. This is because the radial load acting in the X direction is significantly less than that
in the Y direction, as shown in Fig. 7. However, it is noteworthy to mention that the increased
multiple of the offset of the vibration equilibrium position in the X direction is obviously higher
than that of the Y direction. Moreover, the increased proportion of the offset of the vibration
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equilibrium position of the carrier is the largest, whether in the X or Y direction, closely followed
by the sun and the wheel. This is because the carrier is closest to the point of the load application,
followed by the sun and wheel. Similar variations can be seen in the LSC of each gear pair, as
listed in Table 5. This indicates that the closer the central members are to the point of the load
application, the more their vibration equilibrium positions and load-sharing characteristics are
affected by it.

The offsets of the vibration equilibrium position of the central members at different non-torque
loads are shown in Fig. 13. For convenience, the relationship between the resultant force Fp and

the offset, shown in the figure, where Fg = \/FZ 4+ F#. It is clear that the offsets of the vibration
equilibrium position increase almost linearly with the increase in the resultant force Fr. Whether
in the X or Y direction, the vibration equilibrium positions of the wheel, sun, and carrier are shifted
in the positive direction of either the X-axis or Y-axis, with an increase in the resultant force Fp,
as shown in Fig. 13(a), (b), and (c). However, with the increase in the resultant force Fy, the
vibration equilibrium position of the ring in the X direction is shifted in the negative direction of
the X-axis, but the vibration equilibrium position of the ring in the Y direction is shifted in the
positive direction of the Y-axis, as shown in Fig. 13(d). As a result, the load-sharing characteristics
of all gear pairs deteriorate further with the increase in the resultant force Fy, as shown in Fig. 14.

Table 4. Variation of vibration equilibrium position of each central member

Offset of vibration equilibrium position Offset of vibration equilibrium position
in X direction / pm in Y direction / pm
Central member Central member
Load condition Wheel | Sun | Carrier | Ring Wheel Sun Carrier Ring
Torque load —0.83 | —0.04 | 0.009 | —0.009 3.80 0.25 0.038 —0.008
Non-torque load 1.22 | 3.69 | 1279 | —-0.44 6.02 14.74 20.52 0.36
Increased multiple 247 |193.25] 1420 47.89 0.58 57.96 539 46
Table 5. Variation of load-sharing coefficient of each gear pair
Load-sharing coefficient
Load condition Pinion-wheel gear pairs Sun-planet gear pairs Planet-ring gear pairs
Torque load 1.072 1.087 1.062
Non-torque load 1.179 1.237 1.189
Increased proportion 9.98 % 13.80 % 11.96 %
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Fig. 13. Offset of vibration equilibrium position at different non-torque loads:
a) wheel; b) sun; c) carrier; and d) ring
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Fig. 16. RMS of LSC at different speeds: a) pinion-wheel gear pairs;
b) sun-planet gear pairs; c) planet-ring gear pairs
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The offsets of the vibration equilibrium position of the central members at different speeds are
shown in Fig. 15. When compared with Fig. 13, similarities can be observed. However, with the
increase in the rotational speed, the offsets of the vibration equilibrium position of all the central
members exhibit an approximate parabolic trend. When the rotational speed changes reaches the
range of 800-1200 rpm, the offsets of the vibration equilibrium position of all central members
increase slowly. The load-sharing characteristics of all gear pairs exhibit a very slow deterioration
trend as well. Once the rotational speed exceeds 1200 rpm, the offsets of the vibration equilibrium
position of the central members increase rapidly with the increase in speed, and the deterioration
trend accelerates further, as shown in Fig. 16. In addition, the comparisons between Fig. 13 with
Fig. 15, and Fig. 14 with Fig. 16, shows that the influence of non-torque load on the vibration
equilibrium position and load-sharing characteristics is significantly greater than that of the
rotational speed.

4. Conclusions

In this study, an electromechanical coupling dynamic model of the MPCTS, based upon the
node finite element method, was established considering motor characteristics. The dynamic
characteristics of the MPCTS are investigated under non-torque load conditions, and include a
detailed study of the resulting motion trajectories and load-sharing characteristics. Based on the
simulations and discussions, the following conclusions were drawn:

1) The motion trajectories of the pinions are linear. The angles and the lengths between the
trajectories increase in different degrees when the non-torque load is considered. Here, the
maximum angle deference and the maximum length deference increased from 0.0047° to 1.7474°,
and from 20.33 um to 408.56 pum, respectively. The motion trajectories of the wheel, sun, carrier,
and ring are analogous to a circular shape. The motion trajectory of the planet is almost elliptical
in shape, under the torque load condition, but is analogous to more rectangular under non-torque
load condition. In addition, when the non-torque load is considered, the offsets of the vibration
equilibrium position of the central members increase significantly, and the offsets in the Y
direction are noticeably greater than those in the X direction.

2) For the central members, under the non-torque load condition, the increased multiples of
their offsets of vibration equilibrium positions in the X direction are clearly higher than those in
the Y direction. The closer the central members are to the applied load, the greater the increase in
offset of the vibration equilibrium position of the carrier, closely followed by the sun and wheel.
Similar characteristics were also observed in the load-sharing coefficient of each gear pair.

3) With an increase in the non-torque load, the offsets of the vibration equilibrium positions
of the central members almost increased linearly, and the load-sharing characteristics of all gear
pairs deteriorated further. However, with an increase in rotational speed, the offsets of the
vibration equilibrium position of the central members exhibit a parabolic-like trend. When
rotational speed is within the 800-1200 rpm range, the offsets increase slowly. However, once the
rotational speed exceeds 1200 rpm, the offsets increase rapidly. Similarly, when the rotational
speed is within the 800-1200 rpm range, the load-sharing characteristics of all gear pairs exhibit a
very slow deterioration trend but accelerates further when the speed exceeds 1200 rpm. Moreover,
the influence of the non-torque load on the vibration equilibrium position and load-sharing
characteristics is significantly greater than that of increased rotational speed.
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