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Abstract. The extraction of early fault features from time-series data is very crucial for 
convolutional neural networks (CNNs) in bearing fault diagnosis. To address this problem, a CNN 
framework based on identity mapping and Adam optimizer is presented for learning temporal 
dependencies and extracting fault features. The introduction of four identity mappings allows the 
deep layers to directly learn the data from the shallow layers, which alleviates the gradient 
disappearance problem caused by the increase of network depth. A new Adam optimizer with 
power-exponential learning rate is proposed to control the iteration direction and step size of CNN 
method, which solves the problems of local minima, overshoot or oscillation caused by the fixed 
values of the learning rates during the updating of network parameters. Compared to existed 
methods, the identification accuracy of the proposed method outperformed that of other methods 
for bearing fault diagnosis. 
Keywords: Adam optimizer, bearing fault diagnosis, convolutional neural network, identity 
mapping. 

1. Introduction 

Rotating machinery has become one of the key components of the overall system of 
mechanical equipment. Rolling bearing is the basic component in rotating machinery. Early fault 
diagnosis, fault prediction and timely maintenance become an effective means to ensure the safety 
and reliability of rotating machinery. Since the rich fault information in vibration signal can reflect 
the real state of the fault, the vibration-based fault detection method has been applied to early fault 
diagnosis of bearing. Previously, machine learning and statistical inference technology has been 
applied to fault signal analysis, such as artificial neural network (ANN) [1], random forest (RF) 
[2], support vector machine (SVM) [3], fuzzy inference [4, 5], Fuzzy-Neuro network [6] and 
Gaussian process regression (GPR) [7]. Pankaj et al. [8] used a neuro-fuzzy hybrid approach to 
identify transverse cracks in fiber-reinforced composite beams. Koteleva et al. [9] used a classifier 
based on artificial neural network and Park vector method to predict motor bearing wear. 
Harutyunyan et al. [10] developed a fault detection method based on multi-level model by using 
the hierarchical structure of detection and diagnosis methods. Li et al. [11] proposed a new fault 
diagnosis model which combined binarized deep neural network with improved random forests 
for real-time fault diagnosis. Lu et al. [12] presented an innovative diagnosis model using the 
complementary ensemble empirical mode decomposition with kernel support vector machines to 
evaluate the health condition of bearings in terms of defect severity. Nikitin et al. [13] developed 
a model of a fault diagnosis system for electromechanical objects in a robotic workplace by 
combining an electromechanical module based on a fuzzy inference system and a CNC (Computer 
Numerical Control) based machine diagnosis example. Kumar et al. [14] used a Gaussian Process 
Regression (GPR) approach to model prediction of rolling bearing failure and degradation trends. 
Neural network is an effective data-driven feature extraction method for fault identification and 
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feature extraction. The steps of fault diagnosis method based on neural network is as follows: 
firstly, the sample signal is preprocessed. Secondly, the appropriate network is selected and the 
network training is performed on the sample signal. Finally, a suitable network model which can 
automatically complete feature extraction is obtained by updating and iterating of network 
parameters. In recent years, deep learning has many advantages and potential for processing 
non-linear and non-stationary time series data for feature extraction and pattern classification 
[15-17]. Some typical deep learning methods have been reported, such as the deep belief network 
(DBN) [18], the recurrent neural network (RNN) [19] and the convolutional neural network 
(CNN) [20]. DBN is a probability generation model, which uses layer by layer greedy learning 
algorithm to optimize the connection weight of deep neural network. The parameter sharing 
mechanism of RNN has the ability of translation invariant generalization and pattern memory of 
patterns in sequence data. Mandal et al. [21] proposed an online fault detection and classification 
method based on DBN. Veerasamy et al. [22] presented the detection of high impedance fault in 
photovoltaic integrated power system using recurrent neural network-based LSTM approach.  

CNN has the ability of adaptive feature extraction [23], which eliminates the influence of 
expert experience on the feature extraction process. CNN is a feedforward neural network. The 
input signal data can be input into the network without vectorization. The local weight sharing of 
CNN reduces the complexity of the network and avoids the complexity of data reconstruction in 
the process of feature extraction and classification. CNN has great potential in mechanical health 
recognition. Grezmak et al. [24] took the vibration signal as the time series data, which converted 
it into a spectrum image through wavelet transform, classified it with CNN finally. Mukherjee et 
al. [25] proposed a light-weight CNN which utilizes vibration sensor measurements for fault event 
estimation of machines. Kumar et al. [26] adopted a CNN model which combined adaptive 
gradient optimizer and BN to optimize the performance of fault diagnosis. Lomov et al. [27] 
proposed a novel temporal CNN1D2D architecture for various recurrent and convolutional 
structures for process fault detection. Zhu et al. [28] proposed an intelligent fault diagnosis 
algorithm based on CNN, which converts the original signal into two-dimensional image and 
extracts fault features through CNN. Liu et al. [29] proposed a fault diagnosis method based on 
LeNet-5, which realized accurate and stable fault diagnosis of rotating machinery under noise 
environment and variable load conditions. Although CNN has achieved success in fault diagnosis 
in the past few years, the fault classification problem of highly complex nonlinear signals with 
deep network structures is still difficult to solve [30]. Since the parameter update of traditional 
CNN relies on the back-propagation of multi-layer gradients, the increase of CNN depth causes 
the problem of degradation and gradient disappearance, which leads to overfitting of training data 
and degradation of recognition accuracy. To solve the problem, the identity mapping is proposed 
between the layers [31], where the deep layers are copied from the learned shallow layers without 
adding additional parameters and increasing the computational complexity [31, 32]. When identity 
mapping is embedded between layers, the training accuracy and speed can be improved. 

When the CNN is used to train and classify the fault bearing data, it is crucial to obtain an 
optimized deep learning model by adjusting weight parameters of each layer. CNN uses the 
optimizer to calculate and update various network parameters to gradually approach and reach the 
optimal value, so as to minimize or maximize the loss function and improve the iterative 
efficiency. 

Common optimizers include stochastic gradient descent (SGD) algorithms, adaptive gradient 
(AdaGrad) algorithms, root mean square prop (RMSProp) algorithms and adaptive moment 
estimation (Adam) algorithms, etc. The optimizer defines the magnitude and speed of each 
parameter update by setting the learning rate [33]. The learning rate guides how the weights of the 
network are adjusted by the gradient of the loss function. If the learning rate is set too large 
initially, although the learning speed is fast, the training value swings back and forth around the 
optimal value, which is prone to oscillation. Each iteration may have overshoot, which will 
continue to diverge on both sides of the extreme point. If the learning rate is setting too small, the 
convergence speed is slow and over fitting may occur. Although practical optimization methods 



A CONVOLUTIONAL NEURAL NETWORK METHOD BASED ON ADAM OPTIMIZER WITH POWER-EXPONENTIAL LEARNING RATE FOR BEARING 
FAULT DIAGNOSIS. YOUMING WANG, ZHAO XIAO, GONGQING CAO 

668 JOURNAL OF VIBROENGINEERING. JUNE 2022, VOLUME 24, ISSUE 4  

for deep neural networks are based on SGD, some unexpected problems may occur in 
hyperparameter adjustment such as local optimal solution and slow convergence [34]. Adagrad 
[35] can adaptively adjust the learning rate. However, the continuous accumulation of gradient 
square will reduce the learning rate to too small to update effectively. RMSProp [36] algorithm 
combined with the exponential moving average of the square of the gradient to adjust the change 
of the learning rate. Adam optimizer [37-39] combines the advantages of AdaGrad and RMSProp 
optimization algorithms, which dynamically adjusts the exponential decay rate for the 1st moment 
estimates and the 2nd moment estimates to update parameters. Adam algorithm is suited for a 
mass of data and non-stationary objective optimization with noisy and sparse gradients. Deep 
neural networks often contain a large number of parameters. Most of the loss functions in deep 
learning are convex functions [40], which makes it easy to obtain the global optimal solution. 
However, multiple local minima in the model training resulting in weak convergence when the 
loss function is non-convex for Adam optimization of deep learning model. 

In this paper, a novel CNN model with 8 convolution layers based on identity mapping and 
Adam optimizer is proposed for rolling bearing fault diagnosis. By embedding identity mapping, 
the problem of degradation and gradient disappearance caused by the increase of the depth of 
neural network model is solved. According to the characteristics of exponential function, the 
increase of iterative step size will reduce the learning rate, so as to ensure the stability of the model 
in the later stage of training. It is found that the convergence trend of the model is close to the 
change of power-exponential function. In the proposed method, the iteration direction and step 
size of traditional Adam is evaluated by the power-exponential learning rate, where the learning 
rate of deep learning model can be adjusted adaptively by that of the previous stage, so as to 
improve the convergence performance of the network model. 

The rest of this paper is organized as follows. Section 2 introduces some theoretical 
background, including the Adam optimizer and identity mapping. The overall implementation of 
proposed CNN is illustrated in detail. Adam optimizer with power-exponential learning rate is 
further proposed. In Section 3, the MaFaulDa bearing dataset and the Case Western Reserve 
University (CWRU) bearing dataset are used to compare and verify the performance of the 
proposed network, traditional general network and traditional method. The main conclusions of 
this paper are summarized in Section 4. 

2. Convolutional neural network model based fault diagnosis 

2.1. Adam optimizer with power-exponential learning rate  

To accelerate the optimization process  of traditional Adam optimizer in CNN model, an Adam 
optimizer with power-exponential learning rate is used to train CNN model, where the iteration 
direction and step size are controlled by the power-exponential learning rate to reach the optima. 
The power-exponential learning rate can be adjusted adaptively according to the learning rate of 
the previous stage and the gradient relationship between the previous stage and the current stage. 
The previous gradient value is used to adjust the correction factor to meet the requirements of 
adaptive adjustment. This helps to adjust the learning rate in a small range, the parameters of each 
iteration are relatively stable, the learning step is selected according to the appropriate gradient 
value to change the convergence performance of the network model and ensure the stability and 
effectiveness of the network model. 

Adam optimizer is an algorithm that performs a stepwise optimization on a random objective 
function [41]. The gradient update rules for the parameters are: 𝜃௧ାଵ = 𝜃௧ − 𝜂ඥ𝑣ො௧ + 𝜀𝑚ෝ௧ , (1)𝑚௧ = 𝛽ଵ𝑚௧ିଵ + ሺ1 − 𝛽ଵሻ𝑔௧ , (2)𝑣௧ୀ𝛽ଶ𝑣௧ିଵ + ሺ1 − 𝛽ଶሻ𝑔௧ଶ, (3)
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where 𝜃௧, 𝜃௧ାଵ is objective function, 𝑡 is time parameter, 𝛽ଵ, 𝛽ଶ ∈  [0,1) represents the decay rate 
of the moving mean index, 𝜂 is learning rate, 𝜀 is a constant parameter, 𝜀 = 0.9999, 𝑚ෝ௧ and 𝑣ො௧ is 
the first-order and second-order moment estimation after the gradient modification respectively. 
If 𝑚௧ and 𝑣௧ are initialized to zero vector, they will be offset to zero. It is necessary to correct the 
deviation [42], 𝑚ෝ௧ and 𝑣ො௧ will be corrected as: 𝑚ෝ௧ = 𝑚௧1 − 𝛽ଵ௧ ,     𝑣ො௧ = 𝑣௧1 − 𝛽ଶ௧ . (4)

In the original Adam optimizer algorithm, the first-order moment to non central second-order 
moment estimation is modified, and the offset is reduced. However, in the process of rolling 
bearing fault diagnosis and classification, the algorithm has poor effect in fitting the convergence 
state of the model. A correction factor was added to the learning rate to address the shortcomings 
of the original Adam optimizer algorithm. The power-exponential learning rate of the downward 
trend is used as the basis, and the gradient value of the previous stage is used to adjust it to meet 
the requirements of adaptive adjustment, so as to change the convergence performance of the 
network model. The model for power-exponential learning rate is: 𝜂 = 𝜂଴𝑚ି௞, (5)

where 𝜂଴ is initial learning rate, 𝜂଴ = 0.1, 𝑘 is a hyperparameter, 𝑘 = 0.8, 𝑚 is the iterative 
intermediate, 𝑚 is determined by the number of iterations and the maximum number of iterations 
is defined as follows: 𝑚 = 1 + 𝑡𝑅, (6)

where 𝑡 is iteration number, 𝑅 is the maximum number of iterations. When Eq. (6) is combined 
with Eq. (5), the form of learning rate update is: 

𝜂ሺ𝑡) = 𝜂଴ ൤1 + 𝑡𝑅൨ି௞. (7)

The pseudo code of the improved Adam optimization algorithm is shown in Table 1. 

Table 1. Improved Adam optimization algorithm 
Algorithm: Adam with power-exponential learning rate 
Require: 𝜂଴ = 0.1,  𝛽ଵ = 0.9, 𝛽ଶ = 0.999, 𝜀 = 0.9999, 𝑞 = 0.8  
Require: Initialize time step 𝑡, parameter 𝜃௧, first/second moment estimation 𝑚ෝ௧, 𝑣ො௧ 
     while stopping criterion is not met do 
          Update first/second moment 
          𝑚௧ ← 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧, 𝑣௧ ← 𝛽ଶ𝑣௧ିଵ + (1 − 𝛽ଶ)𝑔௧ଶ  
          Moment correction: 
          𝑚ෝ௧ ← 𝑚௧/1 − 𝛽ଵ௧ , 𝑣ො௧ ← 𝑣௧/1 − 𝛽ଶ௧ 
          Power-exponential learning rate 
          𝜂 ← 𝜂଴𝑚ି௞, 𝑚 ← 1 + ௧ோ  

          𝜂(𝑡) ← 𝜂଴ ቂ1 + ௧ோቃି௞ 

          Update parameters: 𝜃௧ ← 𝜃௧ିଵ − 𝜂଴ ቂ1 + ௧ோቃି௞ ௠ෝ೟ඥ௩ො೟ାఌ 
     end while 
Return optimized parameters 𝜃௧ 
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2.2. Convolutional neural network with improved Adam algorithm and identity mapping 

To solve the problems of degradation and gradient disappearance of traditional CNN, the 
identity mapping is embedded between the layers [31]. As shown in Fig. 1, the module is 
composed of several convolution layers and a shortcut connection channel. Identity mapping 𝑥 is 
added through shortcut connection channel. ReLU is used as the activation function to alleviate 
the problem of gradient disappearance caused by network deepening. Shortcut connection channel 
is the difference between identity mapping and ordinary CNN, which enables the data calculated 
from the shallow convolution layer to reach the deep convolution layer directly. This module 
alleviates the vanishing gradient problem caused by increasing the number of convolutional layers 
and improves the training accuracy of multi-convolutional layer CNNs. 

Convolutional 
layer

Convolutional 
layer

ReLU

＋

ReLU

Input：x

F(x)

Output：H(x)

x
identity

 
Fig. 1. Identity mapping module 

The output of 𝐻(𝑥) is converted to 𝐹(𝑥) + 𝑥, that is: 𝐻(𝑥) = 𝐹(𝑥) + 𝑥, (8)

where 𝑥 is the input, 𝐻(𝑥) is the desired output of the underlying mapping, 𝐹(𝑥) is the residual 
mapping. The optimal learning of the network aims to make 𝐹(𝑥) tend to 0. Arbitrary L-layer 
features of deep neural network can be obtained by recursion: 

𝐻(𝑥௅) = ෍ 𝐹(𝑥௜) +௅ିଵ௜ୀଵ 𝑥௅, (9)

where 𝐻(𝑥௅) is the output of the lth layer. Eq. (9) is substituted in back propagation: 𝜕𝐿𝑜𝑠𝑠𝜕𝑥௅ = 𝜕𝐿𝑜𝑠𝑠𝜕𝑥௅ ൬1 + 𝜕𝜕𝑥௅෍ 𝐹(𝑥௜)௅ିଵ௜ୀଵ ൰. (10)

It should be noted from Eq. (10) that the problem of gradient vanishing will not occur even if 
the weight of the intermediate layer matrix is small. 

The CNN model based on identity mapping built in this paper is shown in Fig. 2. The model 
consists of 10 convolution layers, 1 maximum pooling layer and 1 full connection layer. After the 
full connection layer, the improved Adam optimizer is used to update and calculate the network 
parameters which affect the model training and output to make them approximate or reach the 
optimal value. Finally, the data is passed through the softmax classifier and the corresponding 
classification results are output.  
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Fig. 2. Structure of CNN model based on identity mapping 

Eight convolution layers with identity mapping are embedded in the network. In the involved 
convolution layer, different step lengths and output channels are used. The size of the convolution 
kernel is all 3×3. In the fourth convolution layer, the step length is 2, the size of the convolution 
kernel remains unchanged, which can reduce the translation times of the convolution kernel and 
the amount of calculation in the network model. The structural parameter of convolution layers 
with identity mapping is shown in Table 2. In addition, BN layer can not only reduce the number 
of training steps and accelerate the convergence on the premise of reaching the same accuracy, 
but also reduce the disappearance of gradient and improve the generalization ability. When the 
input and output of the shortcut connection have different numbers of channels, zero filling is used 
to match the number of channels. In order to extract significant bearing fault features and improve 
the network training efficiency, the maximum pool is selected. The pooled window size is 2×2. 

Table 2. Structural parameters of eight convolution layers with identity mapping 
Identity mapping convolution layer Convolution layer parameters 

Conv1_1 Conv(3,3,1,64) 
Conv1_2 Conv(3,3,1,64) 
Conv2_1 Conv(3,3,1,64) 
Conv2_2 Conv(3,3,2,64) 
Conv3_1 Conv(3,3,1,128) 
Conv3_2 Conv(3,3,1,128) 
Conv4_1 Conv(3,3,1,256) 
Conv4_2 Conv(3,3,1,256) 

3. Experimental results 

3.1. Data acquisition 

The datasets of the experiments conducted in MaFaulDa [43] and Case Western Reserve 
University (CWRU) [44] are used to verify the effectiveness of the proposed method. MaFaulDa 
bearing test bench is monitored by two different sets of equipment, including three industrial 
sensors, 601A01 accelerometer, a tachometer and a microphone. Three defective bearings, 
including outer ring failure, inner ring failure, and rolling element failure were used in the 
experiments. The experiment parameters of MaFaulDa bearing monitoring are shown in Table 3. 
The rolling bearing test platform of CWRU is shown in Fig. 3. An acceleration sensor with a 
frequency of 12 khz is used to collect CWRU bearing fault data at the driving end. The 
experimental platform includes three fault types of inner ring, outer ring and rolling element faults. 

3.2. Data preprocessing 

For MaFaulDa bearing dataset, 10 types of fault diagnosis signals are selected including no 
fault, the outer ring fault, inner ring fault, and rolling element fault under loads of 6 g, 20 g and 
35 g. The fault categories are labeled 0-9. For the collected sample vibration signals, of which 
80 % are used as the training set and 20 % as the test set. Each sample contains 1024 data points, 
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which are transformed into 32×32 two-dimensional signals by time-frequency conversion of the 
original vibration signals. 

Table 3. MaFaulDa bearing fault diagnosis experiment parameters 
Experimental specifications parameter 

Motor 1/4 CV DC 
Frequency Range 700-3600 rpm 

System weight 22 kg 
Shaft diameter 16 mm 
Shaft length 520 mm 

Rotor 15.24 cm 
Bearing span 

Number of balls 
Ball diameter 

390 mm 
8 

0.7145 cm 
Basic standard frequency 1.8710 CPM/rpm 

Outer loop fault frequency 2.9980 CPM/rpm 
Inner loop failure frequency 5.0020 CPM/rpm 

 
Fig. 3. Rolling bearing test platform of CWRU 

For CWRU bearing dataset, the experimental platform contains three types of faults: inner 
ring, outer ring and rolling element faults. Each fault type includes three damage diameters of 
0.18 mm, 0.36 mm and 0.53 mm. There are 10 fault types in total by adding normal state. There 
are 2000 samples for 10 fault types, the length of each data sample is 4096. The category is labeled 
0-9. 1×4096 one-dimensional data is transformed into 64×64 two-dimensional characteristic 
matrix for processing, which is used as the input of CNN. 

3.3. MaFaulDa bearing dataset fault diagnosis result analysis  

In order to evaluate the performance of the CNN optimized by the improved Adam and identity 
mapping in MaFaulDa bearing dataset, the classification accuracies of different models are 
compared by 5-fold cross-validation. 5-fold cross-validation [45] is used to prevent over-fitting 
caused by complex models, which divides the original data into five groups, each subset data is 
used as a verification set, the other four groups of subset data are used as a training set, five models 
will be obtained. The five models are evaluated in the validation set respectively, and the average 
value of error is obtained as the final evaluation. 3 times of 5-fold cross-validation are carried out 
to calculate the mean value as the estimate of the accuracy of the algorithm. The compared models 
include the CNN with identity mapping, original network LeNet-5 and LSTM. 

Table 4 shows the diagnosis results of the 5-fold cross-validation of the rolling bearing fault 
monitoring for different models. The LeNet-5 model contains 2 convolution layers and 2 pooling 
layers, 2 full connection layers and 1 output layer. On the MaFaulDa bearing fault dataset, the 
average classification accuracy of the LeNet-5 is 86.73 %, while the average classification 
accuracy of the traditional LSTM model is 77.52 %. Compared with the model LeNet-5, the CNN 
model as a deep network after embedding identity mapping has stronger recognition and diagnosis 
ability for MaFaulDa bearing dataset. The classification accuracy of the CNN method optimized 
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by the improved Adam and identity mapping is improved by 3.05 % on the basis of the CNN 
method with identity mapping. 

Table 4. 5-fold cross-validation diagnosis results of rolling bearing  
fault monitoring with different models (%) 
 Experiments times 

Fault diagnosis model 1 2 3 4 5 
Proposed method 

CNN with identity mapping  
One LeNet-5 

LSTM 

99.71 98.69 99.37 99.14 98.25 
96.44 95.31 96.25 95.94 96.07 
86.92 89.44 86.83 86.11 84.27 
76.92 79.65 82.63 80.81 74.36 

Proposed method 
CNN with identity mapping  

Two LeNet-5 
LSTM 

97.68 99.87 98.34 98.36 98.70 
94.17 94.62 96.92 95.09 96.11 
86.92 89.44 86.83 86.11 84.27 
77.42 76.35 81.03 77.68 74.09 

Proposed method 
CNN with identity mapping  

Three LeNet-5 
LSTM 

98.25 99.43 99.62 99.46 98.02 
96.39 95.28 96.37 95.90 96.15 
87.97 86.54 88.21 86.91 84.25 
79.85 80.31 76.55 73.19 72.06 

The error matrix is an index to evaluate the classification accuracy of the algorithm. Each 
column of the error matrix represents the prediction category, the value of each column represents 
the accuracy of the data predicted for that category. Each row represents the real belonging 
category of the data, and the value of each row represents the accuracy of the data classification 
diagnosis of the category. In order to study the performance of the CNN optimized by the 
improved Adam, the TensorFlow framework is used to import the sklearn and seaborn function 
libraries under the combination of test targets and actual bearing combination fault classification, 
the error matrix is drawn by the heatmap. Set the heatmap visualization through the Cmap 
parameter to the greater the probability value, the darker the color. Fig. 4 shows the classification 
error matrix of 10 selected bearing fault diagnosis signals, including outer ring fault, inner ring 
fault and rolling element fault under normal operation state and 6 g, 20 g and 35 g load. 

From Fig. 4(a) and (b), the average fault diagnosis recognition rate can reach 99.3 % and 
94.5 % respectively by embedding the identity mapping. The method which using improved Adam 
optimizer has better diagnostic effect. From Fig. 4(c), LeNet-5 with two groups of convolution 
layers has poor diagnosis effect for outer ring fault under 6 g and 35 g loads and rolling element 
fault under 20 g load. The average diagnosis accuracy is 86.4 %, which is higher than 74 % of 
LSTM network. Compared with other models, on the one hand, the proposed model reduces the 
number of model parameters while extracting high-dimensional features after embedding identity 
mapping. On the other hand, Adam optimizer with power-exponential learning rate changes the 
convergence performance of the network, so that the model has stronger recognition and diagnosis 
ability for MaFaulDa bearing dataset. 

3.4. CWRU bearing dataset fault diagnosis result analysis 

To more intuitively illustrate the adaptive feature learning capability of the CNN optimized by 
the improved Adam and identity mapping, t-SNE algorithm [46] is used to visualize the effect 
characteristics of fault classification. t-SNE is a nonlinear dimensionality reduction algorithm for 
studying high-dimensional data, which maps high-dimensional data to two-dimensional or 
multi-dimensional suitable for observation. It constructs a probability distribution among 
high-dimensional objects, so that similar objects have a higher probability of being selected, and 
different objects have a lower probability of being selected. The test samples are input into the 
CNN trained by the improved Adam and identity mapping, the distribution of fault classification 
features is shown in Fig. 5. 
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a) Proposed method 

 
b) CNN with identity mapping 

 
c) LeNet-5 

 
d) LSTM 

Fig. 4. Error matrix of fault diagnosis results  

Each color in Fig. 5 represents a fault type, including three different specifications of inner 
ring, outer ring, rolling element fault and normal state. The features learned by the model for each 
fault are highly separated. Deep learning is characterized by learning features through multiple 
layers of convolution, which can lead to a loss of detail. Therefore, classification accuracy can be 
improved by adding shortcut connection that combine local information from the first 
convolutional layer with global information from the final convolutional layer. The visualization 
result shows that the CNN optimized by the improved Adam and identity mapping can learn 
different fault features from bearing vibration data with good fault classification ability. 

The common evaluation indexes of bearing fault diagnosis include F1 score, accuracy rate, 
precision rate and recall rate. The level of evaluation index directly affects the diagnostic ability 
and comprehensive performance of the model. In the case study of rolling bearing fault diagnosis, 
the same dataset is selected. The traditional SVM and BPNN methods [47], lenet-5 and LSTM 
methods use the same experimental environment as the proposed method, the experimental results 
are obtained by constructing the corresponding network structure. The experimental results of 
bearing fault monitoring and diagnosis are shown in Table 5. The diagnosis accuracy of CNN 
method optimized by the improved Adam and identity mapping is 98.53 %, which has higher 
diagnostic recognition rate. The average accuracy of SVM and BPNN are 83.77 % and 77.46 % 
respectively, both of which limit the data processing ability of the network and have poor fault 
diagnosis results. Traditional deep learning methods such as LeNet-5 suffer from the gradient 
vanishing problem. The identity mapping in our proposed method allows the deep layer to learn 
data directly from the shallow layer, which alleviates the gradient disappearance and overfitting 
problems associated with increasing network depth, extracts high-level abstract features and 
significantly improves the accuracy of bearing faults. 
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Fig. 5. Distribution of fault classification features 

Table 5. Fault monitoring and diagnosis results of rolling bearing with different models (%) 

 Fault diagnosis model Accuracy 
rate 

Precision 
rate 

Recall 
rate 

F1 
score 

Deep learning 
method 

Proposed method 98.53 98.38 98.02 98.19 
LeNet-5 94.41 93.26 93.14 93.19 
LSTM 95.55 94.61 94.95 94.77 

Traditional 
method 

SVM + EMD + Hilbert 83.77 – – – 
BPNN + EMD + Hilbert 77.46 – – – 

4. Conclusions 

In this paper, a new CNN model with 8 convolution layers based on identity mapping and 
Adam optimizer is proposed to solve the problems of rolling bearing fault diagnosis. By 
embedding identity mapping, the data calculated from the shallow convolution layer can directly 
reach the deep convolution layer without adding additional parameters and increasing the 
computational complexity. The problem of degradation and gradient disappearance caused by 
increasing depth of neural network model is solved, and the training accuracy and speed of the 
CNN is improved. The proposed Adam optimizer implements adaptive changes to the learning 
rate of the optimizer by adding a power-exponential correction factor. The decay mechanism of 
the adaptive power-exponential learning rate guides the parameters to converge towards the global 
minima, which improves the convergence performance of the CNN network model. The 
performance of the proposed network, general network and traditional method are compared and 
verified by using MaFaulDa and CWRU bearing datasets. Compared with LeNet-5, LSTM and 
traditional SVM and BPNN fault diagnosis methods, the proposed method can diagnose the fault 
type of bearing fault data more accurately.  
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