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Abstract. In this paper, the dynamic characteristics of fractional Duffing system are analyzed and 
studied by using the improved short memory principle method. This method has small amount of 
calculation and high precision, and can effectively improve the problem of large amount of 
calculation caused by the memory of fractional order. The influence of frequency change on the 
dynamic performance of the fractional Duffing system is studied using nonlinear dynamic analysis 
methods, such as Phase Portrait, Poincare Map and Bifurcation Diagram. Moreover, the dynamic 
behaviour of the fractional Duffing system when the fractional order and excitation amplitude 
changes are investigated. The analysis shows that when the excitation frequency changes from 
0.43 to 1.22, the bifurcation diagram contains four periodic and three chaotic motion regions. 
Periodic motion windows are found in the three chaotic motion regions. It is confirmed that the 
frequency and amplitude of the external excitation and the fractional order of damping have a 
greater impact on system dynamics. Thus, attention shall be paid to the design and analysis of 
system dynamics. 
Keywords: fractional calculus, bifurcation, chaos, short memory principle. 

1. Introduction 

Fractional calculus was proposed almost at the same time as integer calculus. Its development 
was relatively slow for nearly 300 years due to the lack of a clear physical meaning of fractional 
calculus, and it was mainly studied in the field of pure mathematics. In 1974, Oldham and Spanier 
[1] co-authored the first monograph on fractional calculus titled ‘Applied Fractional Calculus’, 
which paved its way towards the application of fractional calculus. In the 1970s, Mandelbrot [2] 
pointed out that many fractional dimensions exist in nature. Since then, the theory of fractional 
calculus developed rapidly, and numerous applications of fractional calculus emerged [3]-[9]. The 
application of fractional calculus in mechanical engineering gradually increased in recent years 
mainly because many physical objects had fractional characteristics, such as viscoelasticity, 
damping, mechanical friction and impact [10]-[17]. 

Many popular fractional systems, such as the Lorenz system [5], the Rossler system [13], 
Chua’s circuit [6] and the Duffing system [9], were used for research. The Duffing system was 
applied in many fields, including fluid-induced vibration, large-amplitude oscillation of 
centrifugal speed control systems and mathematical modeling [9], [18], [19]. The Duffing system 
that considers fractional differential damping is equivalent to introducing polymer damping into 
the classic Duffing system. Compared with the traditional integer-order damping model, the 
fractional-order damping model can more accurately describe the dynamic behavior of the system 
[20]-[22]. In Reference [23], the nonlinear dynamic behavior of the fractional-order Duffing 
system was studied using the Adams-Bashforth-Moulton predictor-corrector method. The 
Adomian decomposition method was utilized to find the numerical solution to the combined 
fractional differential equation of the Duffing equation and the Van der Pol equation in Reference 
[24]. The Melnikov method transforms a fractional-order system into an equivalent integer-order 
system, which can effectively detect chaos in the fractional-order Duffing system [25]. Based on 
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the definition formula with an amount of calculations, reference [26] studies the bifurcation and 
vibration resonance of fractional double-damping Duffing time delay system driven by external 
excitation signal with two wildly different frequencies. In Ref. [27], phase diagrams, bifurcation 
diagrams and Lyapunov exponents are used to determine the presence of chaos over a wide range 
of fractional orders, based on the Caputo fractional difference form of Duffing maps. 

In this study, the improved short memory principle method is used to study the dynamic 
characteristics of the fractional Duffing system. Firstly, the Grünwald-Letnikov definition of 
fractional calculus is adopted. Secondly, the classical short memory principle is improved, and the 
numerical solution of the system is obtained. Lastly, the influence of excitation frequency on the 
dynamic performance of the fractional Duffing system is studied using nonlinear dynamic analysis 
methods, such as phase portrait, Poincare map and bifurcation diagram. Moreover, the dynamic 
behavior of the fractional Duffing system when the external excitation amplitude and fractional 
order change are investigated. 

2. Fractional duffing system 

2.1. Fractional differential definition 

The three most frequently used definitions for fractional derivatives are Grünwald-Letnikov, 
Riemman-Liouville and Caputo definitions. The Grünwald-Letnikov definition is used in this 
work, as it is expressed as: 

𝐷௧ఈ௧బீ 𝑥ሺ𝑡ሻ = 𝑙𝑖𝑚→ 1ℎఈ  ሺ−1ሻ ቀ𝛼𝑗 ቁሾሺ௧ି௧బሻ ⁄ ሿ
ୀ 𝑥, (1)

where 𝛼 is the fractional order, ℎ is the time step and [∙] means rounding. If the time step ℎ is 
small enough, the above-mentioned formula can be written as: 

𝐷௧ఈ௧బீ 𝑥ሺ𝑡ሻ ≈ 1ℎఈ  𝑤ሾሺ௧ି௧బሻ ⁄ ሿ
ୀ 𝑥ሺ𝑡 − 𝑗ℎሻ, (2)

where 𝑤 is the coefficient of binomial ሺ1 − 𝑧ሻఈ: 𝑤 = ሺ−1ሻ ቀ𝛼𝑗 ቁ. (3)

Eq. (3) is changed to the recursive form: 𝑤 = ൬1 − 𝛼 + 1𝑗 ൰𝑤ିଵ. (4)

Its first item 𝑤 = 1. 

2.2. Improved short memory principle method 

The classical short memory principle truncates the memory time. In Eq. (2), the upper limit of 
summation becomes ሾ𝐿 ℎ⁄ ሿ, where 𝐿 is the fixed memory time length, and the part exceeding 𝐿 is 
discarded. The discarded part often brings errors that cannot be ignored. In particular, when 
fractional order 𝛼 approaches zero, the binomial coefficient changes slowly. 

The improved short memory principle method changes the truncation of the memory time in 
the classic short memory principle to the number of terms of the binomial coefficient. Then, the 
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finite binomial coefficient is repeatedly applied to gradually enlarging time steps for error 
reduction. The expression of a time step being enlarged for the first time is: 

𝐷௧ఈ𝑥ሺ𝑡ሻ = 1ℎఈ𝑤ே
ୀ 𝑥ሺ𝑡 − 𝑗ℎሻ + 1ሺ𝑚ℎሻఈ  𝑤ሾ௧ ሺሻ⁄ ሿ

ୀቂேቃାଵ 𝑥ሺ𝑡 − 𝑗𝑚ℎሻ. (5)

The definition of Grünwald-Letnikov is used in this study, and the formulas are no longer 
marked. In Eq. (5), 𝑁 is the number of binomial truncated terms and 𝑚 is the magnification of the 
step length. Similarly, the expression of the second enlargement of step size is: 

𝐷௧ఈ𝑥ሺ𝑡ሻ = 1ℎఈ𝑤ே
ୀ 𝑥ሺ𝑡 − 𝑗ℎሻ + 1ሺ𝑚ℎሻఈ  𝑤ே

ୀቂேቃାଵ 𝑥ሺ𝑡 − 𝑗𝑚ℎሻ 
      + 1ሺ𝑚ଶℎሻఈ  𝑤ൣ௧ ൫మ൯⁄ ൧

ୀቂேቃାଵ 𝑥ሺ𝑡 − 𝑗𝑚ଶℎሻ. (6)

In the same manner, other expressions of step size can be derived. 

2.3. Basis for step enlargement 

Step enlargement is based on the initial time step. After the step size is enlarged, although the 
interval for taking the function value increases, the binomial coefficient of the function value also 
increases, and the magnification is almost the same as the step size magnification. For example, 
Eq. (5) can be rewritten as: 

𝐷௧ఈ𝑥ሺ𝑡ሻ = 1ℎఈ ⎝⎛𝑤ே
ୀ 𝑥ሺ𝑡 − 𝑗ℎሻ +  𝑤𝑚ఈ

ሾ௧ ሺሻ⁄ ሿ
ୀቂேቃାଵ 𝑥ሺ𝑡 − 𝑗𝑚ℎሻ⎠⎞. (7)

The second term at the right end of the formula above is the result of the step size being 
enlarged for the first time. The binomial coefficient before the function value 𝑥ሺ𝑡 − 𝑗𝑚ℎሻ is 𝑤 𝑚ఈ⁄ . If the step size is not enlarged, the binomial coefficient in front of the function value shall 
be 𝑤. Table 1 shows the ratio of the corresponding binomial coefficients when 𝑁 = 100,  𝛼 = 0.5 and 𝑚 are 5, 10 and 20, respectively. 𝐴 is the ratio of binomial coefficient 𝑤 𝑚ఈ⁄  after 
the first step is enlarged to binomial coefficient 𝑤. 𝐵 is the ratio of binomial coefficient 𝑤 𝑚ଶఈ⁄  
after the second step is enlarged to binomial coefficient 𝑤మ. The ratio is almost equal to step 
magnification 𝑚 and 𝑚ଶ, and the ratio increases with the increase in step magnification. After this 
increase, the first binomial coefficient increases; in particular, when 𝑛 = 20, it is larger than the 
number of initial steps in the enlarged step. A large magnification causes a large error. In addition, 
whether the adopted function value is representative in the interval, that is, whether the adopted 
function value is close to the average value of the function value in the interval, which is also a 
question to be considered. The error in the long-term calculation is limited because expanding the 
step size to derive the function value is a dynamic ergodic process. In summary, it is required to 
try to intercept as many binomial coefficients as possible if the calculation conditions permit, and 
a small step size magnification shall be selected to obtain a highly accurate numerical solution. 
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Table 1. Partial results of ௪ೕ ഀ⁄௪ೕ  and ௪ೕ మഀ⁄௪ೕమ  when 𝛼 = 0.5 𝑚 = 5 𝑚 = 10 𝑚 = 20 𝑗 𝑤 𝑚ఈ⁄𝑤  
𝑤 𝑚ଶఈ⁄𝑤మ  𝑗 𝑤 𝑚ఈ⁄𝑤  

𝑤 𝑚ଶఈ⁄𝑤మ  𝑗 𝑤 𝑚ఈ⁄𝑤  
𝑤 𝑚ଶఈ⁄𝑤మ  

      6 21.302 427.31 
   11 10.3225 103.543 11 20.6804 414.279 

21 5.07335 25.4396 21 10.1649 101.813 21 20.348 407.306 
31 5.04926 25.2953 31 10.1108 101.218 31 20.2338 404.909 
41 5.03708 25.2224 41 10.0834 100.917 41 20.176 403.696 
51 5.02973 25.1783 51 10.0669 100.735 51 20.1412 402.964 
61 5.02481 25.1488 61 10.0558 100.614 61 20.1178 402.474 
71 5.02129 25.1277 71 10.0479 100.527 71 20.1011 402.123 
81 5.01865 25.1118 81 10.0419 100.461 81 20.0885 401.859 
91 5.01658 25.0995 91 10.0373 100.41 91 20.0788 401.654 
100 5.01508 25.0905 100 10.0339 100.373 100 20.0716 401.504 

2.4. Fractional duffing system 

The form of the classic integer-order Duffing system is: 𝑚𝐷ଶ𝑥ሺ𝑡ሻ + 𝑐𝐷𝑥ሺ𝑡ሻ + 𝑘𝑥ሺ𝑡ሻ + 𝑎𝑥ଷሺ𝑡ሻ = 𝑓 sinሺ𝜔𝑡ሻ , (8)

where 𝐷 is the first-order differential operator, 𝐷ଶ is the second-order differential operator, 𝑚 is 
the mass, 𝑐 is the damping coefficient, 𝑘 is the linear stiffness coefficient, 𝑎 is the nonlinear 
stiffness coefficient and 𝑓 and 𝜔 are the amplitude and frequency of external excitation, 
respectively. If the damping term is changed to the fractional order, it becomes a fractional-order 
Duffing system: 𝑚𝐷ଶ𝑥ሺ𝑡ሻ + 𝑐𝐷ఈ𝑥ሺ𝑡ሻ + 𝑘𝑥ሺ𝑡ሻ + 𝑎𝑥ଷሺ𝑡ሻ = 𝑓 sinሺ𝜔𝑡ሻ, (9)

where 𝛼 is the fractional order of the damping of the fractional Duffing system. In this study, the 
improved short memory principle is used to solve the fractional Duffing equation. 

3. Nonlinear dynamic analysis of fractional duffing system 

In this section, several fixed parameters in Eq. (9) are taken as 𝑚 = 1, 𝑐 = 0.9, 𝑘 = –1 and 𝑎 = 1. The initial conditions are 𝑥ሺ0ሻ = 0 and �̇�ሺ0ሻ = 0. 

3.1. Fractional order duffing system with 𝜶 = 𝟏.𝟐 and 𝒇 = 𝟎.𝟔 

Fractional order 𝛼 = 1.2 and excitation amplitude 𝑓 = 0.6 are adopted to analyze the influence 
of excitation frequency on the system. The calculation parameters are as follows: the basic step 
size is ℎ = 0.001, the number of truncated items is 𝑁𝑡 = 10,000, and the step length magnification 
is 𝑚 = 5. Excitation frequency 𝜔 is changed from 0.43 to 1.23 in the experiment to analyze the 
influence of excitation frequency on the fractional Duffing system, and the change step is 0.001. 
A total of 250 cycles is calculated for each frequency point, and the first 150 cycles are discarded. 
The bifurcation diagram of the system obtained with 𝜔 as the control parameter is shown in Fig. 1. 
The figure indicates that excitation frequency 𝜔 has a relatively large impact on the dynamic 
behavior of the system. Three chaotic and four periodic motion regions exist during the change of 𝜔 from 0.43 to 1.22. 

The system performance in response to stable period-1 motion occurs at 0.43 < 𝜔 ≤ 0.487. 
The phase portrait and Poincaré map when 𝜔 = 0.45 are shown in Figs. 2(a1) and 2(a2), 
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respectively. The phase portrait is a universal limit cycle; correspondingly, the Poincaré map 
exhibits an isolated point. Notably, 0.488 < 𝜔 ≤ 0.518 is the first chaotic motion region of the 
system.  

 
Fig. 1. Bifurcation diagram of fractional-order Duffing system with 𝛼 = 1.2, 0.43 < 𝜔 ≤ 1.23 

 
a1) 

 
a2) 

 
b1) 

 
b2) 

 
c1) 

 
c2) 
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d1) 

 
d2) 

 
e1) 

 
e2) 

 
f1) 

 
f2) 

 
g1) 

 
g2) 

Fig. 2. Phase portraits and Poincaré maps of fractional Duffing system. a1) Phase portrait with 𝜔 = 0.45, 
a2) Poincaré map with 𝜔 = 0.45, b1) phase portrait with 𝜔 = 0.509, b2) Poincaré map with 𝜔 = 0.509,  

c1) phase portrait with 𝜔 = 0.55, c2) Poincaré map with 𝜔 = 0.55, d1) phase portrait with 𝜔 = 0.6,  
d2) Poincaré map with 𝜔 = 0.6, e1) phase portrait with 𝜔 = 0.8, e2) Poincaré map with 𝜔 = 0.8,  

f1) phase portrait with 𝜔 =  0.88, f2) Poincaré map with 𝜔 = 0.88,  
g1) phase portrait with 𝜔 = 1.02 and g2) Poincaré map with 𝜔 = 1.02 

The phase portrait and Poincaré map when 𝜔 = 0.509 are shown in Figs. 2(b1) and 2(b2), 
respectively. On the Poincaré map, many discrete points are concentrated in two areas. With the 
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increase in excitation frequency 𝜔, the system enters the period-3 motion region, and its frequency 
range is 0.519 ≤ 𝜔 ≤ 0.577. The phase portrait and Poincaré map when 𝜔 = 0.55 are shown in 
Figs. 2(c1) and 2(c2), respectively. The Poincaré map appears as three isolated points, and 0.578 ≤ 𝜔 ≤ 0.657 is the second chaotic region of the system. The phase portrait when 𝜔 = 0.6 
is shown as Fig. 2(d1), and scattered points can be seen on the corresponding Poincaré map in 
Fig. 2(d2). When 𝜔 ≥ 0.658, the system enters a stable period-5 motion region, and its interval is 0.658 ≤ 𝜔 ≤ 0.848. The phase portrait and Poincaré map when 𝜔 = 0.8 are shown in Figs. 2(e1) 
and 2(e2), respectively. The Poincaré map has five scattered points, and 0.849 ≤ 𝜔 ≤ 0.995 is 
the third chaotic motion region. Fig. 2(f1) shows the phase portrait when 𝜔 = 0.88, and the 
corresponding Poincaré map is given in Fig. 2(f2). As 𝜔 further increases, the system enters 
periodic motion from chaotic motion. Fig. 1 indicates that when 𝜔 ≥ 1.17, the system moves 
stably in period 1. A period-doubling bifurcation transition region exists between the periodic 
motion region and the third chaotic motion region. The phase portrait and Poincaré map of the 
transition region when 𝜔 = 1.02 are shown in Figs. 2(g1) and 2(g2), respectively. 

Notably, periodic motion windows are present in the three chaotic motion regions. The 
bifurcation diagram of the periodic motion window in the first chaotic motion region is shown in 
Fig. 3(a). The chaotic motion transits from period-doubling motion to period-2 motion. The phase 
portrait and Poincaré map when 𝜔 = 0.506 in the period window are shown in Figs. 3(b) and 3(c), 
respectively. The bifurcation diagram of the periodic motion window in the second chaotic motion 
region is shown in Fig. 4(a). In the period window, 𝜔 = 0.635 is period-4 motion, and its phase 
portrait and Poincaré map are shown in Figs. 3(b) and 3(c), respectively. Fig. 5(a) presents the 
bifurcation diagram of the periodic window in the third chaotic region. Figs. 5(b) and 5(c) 
respectively show the phase portrait and corresponding Poincaré map when 𝜔 = 0.904 in the 
window. 

 
a) 

 
b) 

 
c) 

Fig. 3. a) Bifurcation diagram of periodic window in chaotic motion region 1,  
b) phase portrait when 𝜔 = 0.506 and c) Poincaré map when 𝜔 = 0.506 
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a) 

 
b) 

 
c) 

Fig. 4. a) Bifurcation diagram of periodic window in chaotic motion region 2,  
b) phase portrait when 𝜔 = 0.635 and c) Poincaré map when 𝜔 = 0.635 

 
a) 

 
b) 

 
c) 

Fig. 5. a) Bifurcation diagram of periodic window in chaotic motion region 3,  
b) phase portrait when 𝜔 = 0.904 and c) Poincaré map when 𝜔 = 0.904 
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Notably, an interesting change occurs in the periodic window of the second chaotic motion 
region. Although the system moves in period 4 of the window, the bifurcation diagram has eight 
dotted lines instead of four solid lines. Although the system exhibits period-4 motion in the period 
window, the bifurcation diagram has eight dotted lines instead of four solid lines. This observation 
shows that the motion of the system jumps with the change in frequency in the period window, 
but it is still period-4 motion. For example, the phase portraits when 𝜔 = 0.6352 and 𝜔 = 0.6353 
are shown in Figs. 6(a) and 6(b), respectively. The phase portraits of two adjacent frequency points 
are rotated by exactly 180 degrees. When the frequency is further refined, this jumping property 
remains. Figs. 6(c) and 6(d) present phase portraits with 𝜔 of 0.63280 and 0.63281, respectively. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 6. a) Phase portrait with 𝜔 = 0.6352, b) phase portrait with 𝜔 = 0.6353,  
c) phase portrait with 𝜔 = 0.63280 and d) phase portrait with 𝜔 = 0.63281 

3.2. Fractional order duffing system with fractional order 𝜶 or excitation amplitude 𝒇 
fluctuations 

This paper also examines the dynamic characteristics of the system when the fractional order 
changes. The excitation amplitude is 𝑓 = 1, the excitation frequency is 𝜔 = 1, the basic step 
length is ℎ = 0.001, the basic truncation term is 𝑁𝑡 = 10,000, and the step length magnification 
is 𝑚 = 5. its memory weakens as the fractional order increases. Thus, the number of truncated 
items 𝑁௧ is set to decrease by 1000 items with each increase in 𝛼 by 0.2. The bifurcation diagram 
is shown in Fig. 7(a). In the process of changing fractional order 𝛼 from 0.2 to 2, three periodic 
and three chaotic motion regions appear. The transition is from the first chaotic zone to a stable 
period-1 motion region after period-doubling bifurcation. As 𝛼 continues to increase, it enters the 
second chaotic motion region through period-doubling bifurcation. 

Fig. 7(b) presents the bifurcation diagram of the system when excitation amplitude 𝑓 fluctuates 
from 0.1 to 2.1. The fractional order is 𝛼 = 0.8, the excitation frequency is 𝜔 = 1, the basic step 
length is ℎ = 0.001, the basic truncation item number is 𝑁𝑡 = 10,000, and the step length 
magnification is 𝑚 = 5. The figure shows that three periodic and two chaotic motion regions 
appear during the fluctuation of excitation amplitude. The first is a stable period-1 motion; the 
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first chaotic motion region is entered through period-doubling bifurcation, followed by entrance 
to the period-3 motion region. A part of the period-6 movement is contained in the period-3 motion 
region, and the second chaotic motion region is entered from period-3 motion. As the excitation 
amplitude continues to increase, the system transitions from the second chaotic region to the 
period-1 motion region through the period-doubling bifurcation. 

 
a) 

 
b) 

Fig. 7. a) Bifurcation diagram of 𝑥 versus 𝛼, 0.2 < 𝛼 < 2 and  
b) bifurcation diagram of 𝑥 versus 𝑓, 0.1 < 𝑓 < 2.1 

4. Conclusions 

An improved short memory principle method is introduced to solve the fractional Duffing 
system numerically. And based on high computational efficiency, some previously unobserved 
phenomena are obtained. The influence of excitation frequency on the dynamic performance of 
the system is studied using nonlinear dynamic analysis methods, such as phase portrait, Poincaré 
map and bifurcation diagram. The bifurcation diagram has four periodic and three chaotic motion 
regions. The third chaotic motion region exhibits an obvious transition from period-doubling 
motion to stable period-1 motion. In addition, periodic motion windows are found in the three 
chaotic motion regions. The periodic motion of the periodic window in the second chaotic motion 
region has a jumping property. The influence of excitation amplitude and fractional order on the 
dynamic system performance is also studied. The results show that a change in the system 
parameters of the fractional Duffing equation affects the dynamic system performance. Thus, such 
a change shall be considered during the dynamic system design and analysis. 
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