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Abstract. In this study, 5.5-kW 1500 rpm IEC-60034-30-1:2014-IE4 super premium efficiency 
class Line Start Permanent Magnet Synchronous Motor (LS-PMSM) was presented with an 
innovative rotor design utilizing two different slot types have been used. The slots offered in two 
different geometries make a significant contribution to the motor in the form of a high starting 
torque thus increasing the synchronization ability. The prototype was manufactured for the 
optimal model obtained via analytical methods and Finite Element Software. Torque ripples that 
pose an important issue for permanent magnet motors were tried to be reduced by way of a skewed 
stator structure. In addition, motor frame and stator main dimensions were acquired from a 
standard IE2 induction motor design during the manufacturing of the prototype. Experimental 
studies for the suggested LS-PMSM topology put forth a 6 % higher efficiency in comparison 
with low efficiency IE2 standard induction motors with the same shaft power. Results for the 
starting performance, torque ripples and back-EMF were presented for the prototype motor under 
a constant load of 0-1.25 p.u. It was verified as a result of the study that LS-PMSMs can be used 
as an alternative to induction motors in pump and fan industrial applications. 
Keywords: AC motors, line start, permanent magnet motors, performance testing. 

1. Introduction 

Testing the performance of electrical motors and determining their efficiency are quite 
sensitive issues. The hardware used, environmental variables (ambient temperature, humidity etc.) 
and the capability of the personnel carrying out the tests have direct impacts on the variables and 
hence an arrangement is made for these variables with the IEC 60034-30-2-1 standard [1]. 

The first LS-PMSM design was suggested in 1955 by Merril under the name of Permasyn 
motor [2]. Researchers such as Dougles, Cahill and Adkins, and Yates also carried out studies in 
later years suggesting different topologies. [3-6]. Previous research on LS-PMSM increased 
following studies by Binns but have not reached the desired level due to the high cost related with 
high-performance PMs [7-8]. However, such PMs can be marketed at reasonable costs with 
today’s technology. Hence, it has now become possible to market LS-PMSMs as an alternative to 
Asynchronous Motors (ASMs) [9-11].  

These motors that are characteristically quite similar with ASMs can start like ASMs but are 
able to operate in the synchronous regime after reaching the synchronous speed. The suggested 
design was prototyped in the present study [12] and performance assessment was carried out in 
accordance with IEC 60034-2-1 standard. Direct measurement method defined as Method A in 
IEC 60034-30-2-1 was used for determining motor efficiency [13]. 

2. Prototyped line start PMSM topology 

The suggested motor design was taken as reference during the present study [12] (The Fig. 1). 
A total of 16 NEMA D class slots with high performance at motor start were placed on the sides 
of the PM taking into consideration the LS-PMSM speeding characteristic of the rotor taken as 
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reference. In addition, 12 NEMA B class closed slots were placed below the PM to provide motor 
start support for helping resynchronization for cases when the motor drops off synchronous speed 
during steady state operation. 

Stator design was taken from a 5.5 kW IE2 ASM at IEC 60034-30-1 standard that is already 
in the market. Moreover, the stator was manufactured with an optimal skew angle of 13° taking 
into consideration the study by [12]. 

 
Fig. 1. Reference motor design 

3. Manufacturing 

LS-PMSMs have the same stator structure with ASM. Hence, the same motor frame, motor 
covers and cooling fan can be used in both motor types. The motor frame and stator core sheet 
metal were obtained from the ASM with 4 poles IE2 5.5kW 132s-4 of a local motor manufacturer 
for reducing the cost of prototype manufacturing (The Fig. 2). 

 
Fig. 2. Manufacturing stages for the test motor: a) stator and rotor plates manufactured  

using M330 50A type steel; b) stator manufactured with a skew angle of 13°;  
c) rotor (PM assembly completed); d) manufactured prototype 

4. Experimental study 

The present section focuses on the assessment of the test studies carried out in accordance with 
the IEC 60034-30-2-1 standard for determining the performance and operating characteristics of 
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the manufactured LS-PMSM prototype. In this scope, studies have been carried out for 
determining the motor winding resistance, steady state – transient regime performance at different 
load profiles, motor efficiency and power factor. The required safety measures were taken prior 
to starting the tests and the terminal connections were made for the motor. In addition, shaft 
alignment was made between the prototype and the load motor in order to obtain accurate test 
data. All tests were repeated 3 times for ensuring the reliability of the results. The mean values 
were calculated for the evaluation of the obtained results. 

4.1. Test hardware 

A computer-controlled test setup with a single load motor enabling motor loading was used 
during the tests. A slide fixture was placed at the center of the test unit located on the aluminum 
sigma profile bench providing mutual connection of the load motor and the test motor along the 
same axis. The Fig. 3 presents the manufactured prototype connected to the test area. As can be 
seen in the Fig. 3, the test unit has a closed working area that facilitates the mutual connection of 
the test motor (1) and the load motor (4). The working area includes a DC current with a shaft 
power of 10 kW that takes on the duty of the load during the tests (4). The maximum rpm of the 
DC load motor is 4000 rpm, nominal torque is 42 Nm in 2270 rpm. The DC motor has a cooling 
unit with internal radial fan (5), an encoder coupled to the motor for measuring motor rpm Baumer 
EIL580 1024 pulse/rpm (7) and a torque sensor (6). An IP66 class load cell connected to the motor 
frame with a torque arm that can operate in the 300°C – +700°C interval with a measurement 
interval of up to 100 Nm was used as the torque sensor. The force generated on the motor frame 
with rotational degrees of freedom along the shaft axis (by way of a sliding bearing shown with 
(3) is transferred to the load cell via the torque arm connected to the motor frame. 

 
Fig. 3. Test setup: 1 – test motor; 2 – laser shaft alignment tool; 3 – sliding bearing;  

4 – load motor; 5 – internal radial fan; 6 – torque sensor; 7 – encoder 

4.2. Determination of the test method and performance 

The motor was operated at different load profiles during the tests and high-resolution data were 
recorded for torque, current, voltage, rpm and position. Motor starting performance, efficiency, 
power factor and current regime in the transient and steady state regimes were tried to be 
determined in the light of the acquired data. Moreover, efforts for determining the back-EMF were 
also included in the tests. The motor was heated up to the operating temperature of 75 °C prior to 
starting the data recording during the tests conducted for determining the steady state performance 
and it was made sure that there was no change of more than 1°C in the motor temperature for half 
an hour. 

The motor was tested for each load during the start performance tests from unloaded operation 
up to 40 Nm at intervals of 5 Nm. In addition, the load of the test motor operating in the steady 
state regime was increased up to 40 Nm by intervals of 2 Nm and the motor synchronous operating 
characteristics were examined separately for each load in order to understand the synchronous 
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operating characteristic better. The prototype motor was accelerated up to 1500 rpm by using the 
PM machine in the test setup when obtaining back-EMF. The voltage induced at the winding tips 
was recorded at high resolution throughout the test duration.  

In addition to the tests carried out, efforts were put in for determining the synchronization 
performance of the motor at the steady state operating regime following a sudden increase and 
decrease in load. The load for the motor operating under nominal load was decreased suddenly 
down to 25 Nm during motor load decrease tests. Whereas the load for the motor operating under 
nominal load was increased suddenly up to 40 Nm during loading tests. 

5. Results and discussion 

After line start, LS-PMSMs have to overcome the braking torque generated by the PMs in the 
rotor in addition to the motor load torque and motor inertia. Moreover, motor inertia and 
mechanical losses should also be taken into consideration. These factors that are effective on 
motor start also have adverse impacts. The PMs in LS-PMSMs that cannot start in a short amount 
of time may be subject to thermal and magnetic demagnetization. Therefore, the motor starting 
regime should be examined in detail. Moreover, the torque quality in the steady state regime for 
such motors is another issue that should be taken into consideration. This section of the study puts 
forth the results acquired from experimental studies with the test motor. The obtained results were 
also compared with the analysis results for the finite elements model presented in Zohra et al. [12].  

5.1. Constant load experiments 

The test motor was tested separately for each constant load from the transient state until 
reaching the synchronous speed at loads ranging from no load up to 40 Nm at intervals of 5 Nm. 
The power, current, power factor, efficiency, torque etc. data for the motor were recorded 
throughout the test period. The changes in efficiency and power factor were examined subject to 
the output power in the light of the acquired data.  

 
Fig. 4. Motor starting performance under different loads 

The graphs in the Fig. 4 present the starting performance curves as a result of the loads. The 
graphs also include the data acquired via FEM analysis. As can be understood from the graphs, 
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the motor could be synchronized at most around 0,6 s for loads of up to 𝑇 = 35 Nm (full load). 
Values below 1 s are quite satisfactory for industrial applications. It can also be observed that the 
motor displays a greater performance with increasing load based on the experimental data in 
comparison with the analysis data. It was observed that the 𝑇 = 40 Nm motor could not be 
synchronized during the starting test in both the experimental and analysis studies. Long 
synchronization times of LS-PMSMs may lead to instabilities in the thermal regime of the motor 
leading to an increase in harmonics of the motor. This in turn makes it more difficult to estimate 
the operating characteristics of the motor. As can be seen from the 𝑇 = 35 Nm and 𝑇 = 40 Nm 
load graphs, increasing synchronization times were effective on FEM analysis results.  

Motor load was increased in multiples of 2 Nm at specific intervals while the motor was at 
synchronous speed (1500 rpm) during the experiments carried out for determining the motor 
synchronous operating performance. Motor data such as power, current, power factor, efficiency, 
torque etc. were recorded for each load value (0 Nm, 2 Nm, 4 Nm…40 Nm) during synchronous 
operation. The changes in efficiency and power factor subject to output power were examined in 
the light of the acquired data. The Fig. 5 presents the data for the load torque applied to the 
prototype for test purposes following synchronization.  

 
Fig. 5. Load torque data applied to the prototype for test purposes after 

The load torque of the test motor operating without load in the steady state regime at 75 °C 
was increased gradually during the experimental studies for examining its operating characteristic 
under different loads. The graphs in the Fig. 6 illustrate the changes in the power factor as a result 
of the loads applied. Moreover, FEM analysis data have also been included in the graphs for 
comparison purposes. As can be understood from the graph, the experimental data and FEM 
analysis results are in accordance as the load torque increases.  

 
Fig. 6. Data for power factor obtained via experimental and FEM analysis results 

The Fig. 7 shows the change in motor efficiency and The Fig. 8 shows the change in the current 
drawn by the motor subject to motor load. It was observed when both graphs were examined that 
there is a significant accordance between the FEM analysis results and experimental data. As can 
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be seen in the Fig. 7, highest efficiency was obtained at full load as 𝜂 = 91.02 %. This value was 
determined in accordance with the direct measurement method defined in the IEC 60034-2-1 
standard. IEC 60034-1 standard section 12 puts forth that motor total losses of up to 15 % are 
tolerated for motors with powers of 150 kW and below [14]. Accordingly, minimum motor 
efficiency for 5.5 kW IE4 50 Hz was calculated as 𝜂 = 89.53 %. The value of 𝜂 = 91.02 % 
that is above the 𝜂 indicates that the manufactured prototype meets the 5.5 kW IE4 50 Hz base 
efficiency values.  

 
Fig. 7. Change in efficiency subject to load torque 

While the motor was fed by an ideal 380 V voltage source during the simulations, it was 
connected directly to the line during the test studies. Hence, it was expected that the current drawn 
by the motor will be slightly higher than the simulation results due to the fluctuations in the line 
voltage. The change in motor current regime can be observed in the graph presented in the Fig. 8. 

 
Fig. 8. Change in the current drawn subject to load torque 

The PMs and stator teeth interacted due to the fact that the PMs are included in the rotor for 
LS-PMSMs leading to ripples in the motor shaft torque. These ripples have adverse impacts on 
the quality of the shaft torque generated by the motor [15]. The ripple ratio in the shaft torque is 
calculated in SI units as shown in Eq. (1). The 𝑇௦ and 𝑇, in the equation denote the RMS 
and mean values of the motor torque respectively: 𝑇ோ = 𝑇௦𝑇. (1)

The graph in the Fig. 9 examines the torque ripples of the motor under a load of 𝑇 = 5 Nm. 
As can be seen from the graph, while the ripples in the shaft torque after synchronization are 
determined via FEM as 𝑇ோ = 2.6212 (SI), this value was calculated during experimental studies 
as 𝑇ோ = 0.4922 (SI). However, it is possible to state that the measured torque ripples are lower 
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than expected because the resolution of the torque sensor is not high enough. 

 
Fig. 9. Comparison of the experiment and FEM analysis results with regard to torque characteristics 

5.2. Determining back-EMF and torque characteristics 

The back-EMF generated by the motors with balanced winding distribution and low torque 
ripples is expected to put forth a regular sinusoidal profile. It is inferred for a motor with 
unbalanced back-EMF that the air gap flux distribution is also unbalanced and a decrease is 
observed in the quality of the torque generated by the motor. 

The prototype motor speed was increased up to 1500 rpm during this step of the tests as a result 
of using the DC machine in the test setup as the motor. Data acquisition was continued for 17 s. 
The speeding graph of the prototype is presented in the Fig. 10. 

 
Fig. 10. Prototype motor back-EMF test – speeding graph 

The test motor is basically operated as a generator in the back-EMF test. Back-EMF voltage 
is induced in the stator winding tips when the stator windings cutoff the PM flux with the speeding 
up of the motor. The voltage value induced at the winding tips and motor speed information was 
obtained in high resolution externally using the National Instrument company cDAQ-9174 cabin 
along with NI9225 and NI9239 modules. The acquired data were recorded by an interface 
designed in the LabVIEW 2011 development environment. A 0.1 s section of the back-EMF 
measured from the winding tips as a result of the test can be seen in the Fig. 11. 

As can be seen from The Fig. 11, all three phases are regular for the voltage obtained from the 
winding tips. It was also found that the angle between all phases was 120°. The highest voltage 
induced at the winding tips was measured as UMAX = 303.3 V, RMS value was measured as 
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𝑈ோெௌ = 214.4 V. The graph presented in the Fig. 12 illustrates the THD value of the harmonics. 
The graph, consisting of the fundamental component, harmonics and unconsidered DC noise 
signals, it was found that the fundamental component is produced at the motor operating frequency 
(50 Hz). It was also set forth that the basic harmonic components are produced at the second, third, 
fourth, fifth and sixth levels. The THD value was calculated as –15.58. 

 
Fig. 11. Back-EMF induced at the winding 

 
Fig. 12. THD graph for the induced voltage, THD: –15.58 dB 

5.3. Sudden load chance test 

These tests were conducted for examining the impact of the sudden decrease/increase of the 
load of the LS-PMSM prototype on motor speed. The behavior of the prototype motor at 
synchronous speed was examined when the motor was suddenly dropped down (reducing the load 
to 25 Nm) as it was operating at a speed of 1500 rpm under a load of 35 Nm or following a sudden 
loading (increasing the load to 40 Nm). The Fig. 13 presents the speed characteristic with the load 
torque profile applied to the motor and the changing load torque of the motor. As shown in the 
speeding graph, the prototype motor is quite tolerant to sudden motor load changes. Therefore, it 
is possible to state that the steady state performance of the motor is quite high. 

6. Conclusions 

3D FEM analysis was used in [12] for obtaining the operating characteristics of the motor 
designed with skewed stator and it was determined as a result of the analyses that torque ripples 
were decreased down to 𝑇 = 2.6212 (SI) by using 𝜅 = 13° skewed stator. It was observed as a 
result of the experimental studies that the skewed stator structure is successful and that the torque 
ripples have been decreased down to 𝑇ோ = 0.4922 (SI). The efficiency was determined as 91,02 % 
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for the motor with a unique rotor design the performance of which has been verified by 
experimental studies. A gain of 6.02 % was obtained in the efficiency compared with the stator 
design of IE2 ASM. It was observed during all stages of the studies that the motor current 
characteristics are within acceptable limits. The starting performance of the motor subject to 
starting performance tests under 2-40 Nm constant load was sufficient for industrial applications 
for operating conditions of up to the nominal load, but the performance under excessive load was 
not sufficient. The experimental results obtained as a result of the tests were mostly in compliance 
with the simulation results. 

 
Fig. 13. Sudden load chance experiment results 

It has been verified as a result of the study that the suggested motor is more suited for 
applications with low load impact at starting. Indeed, it is observed that pumps and fans with this 
load characteristic are mostly used in industrial applications. The study put forth that the tested 
innovative rotor topology can be used for improving motor efficiency of low efficiency motors 
based on the condition that the stator main dimensions (inner diameter and lamination length) are 
in accordance.  

The purpose of the study was to increase the efficiency of ASMs that are widely preferred in 
the market. For this purpose, an economic motor with average efficiency was preferred in stator 
design. It was put forth as a result of studies on the design of LS-PMSMs that the stator design is 
directly related with motor efficiency and torque characteristic. Hence, it is certain that selecting 
an ASM with high efficiency (IE3) for stator design shall be effective in the performance of the 
motor with innovative rotor design.  
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