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Abstract. There is an ever-increasing need to optimise bearing lifetime and maintenance cost 
through detecting faults at earlier stages. This can be achieved through improving diagnosis and 
prognosis of bearing faults to better determine bearing remaining useful life (RUL). Until now 
there has been limited research into the prognosis of bearing life in rotating machines. Towards 
the development of improved approaches to prognosis of bearing faults a review of fault diagnosis 
and health management systems research is presented. Traditional time and frequency domain 
extraction techniques together with machine learning algorithms, both traditional and deep 
learning, are considered as novel approaches for the development of new prognosis techniques. 
Different approaches make use of the advantages of each technique while overcoming the 
disadvantages towards the development of intelligent systems to determine the RUL of bearings. 
The review shows that while there are numerous approaches to diagnosis and prognosis, they are 
suitable for certain cases or are domain specific and cannot be generalised. 
Keywords: Bearing faults, time/frequency analysis, machine learning, diagnosis, prognosis, 
remaining useful life. 

1. Introduction 

In recent years, condition monitoring, fault diagnosis and prognosis of equipment have become 
of increasing concern to industries using rotating machines. Early fault detection in rotating 
machines can avoid risks of damage and thus save expensive emergency repair costs. When 
operating as expected, all mechanical and electrical systems create a characteristic signal. If the 
operating conditions of a machine changes, this will lead to variance in that signal. In fact, 
differences in a normal signal can be considered an indication of an incipient fault. However, these 
changes may be so small that the signals are masked by the ambient noise produced by the 
system’s normal operation [1].  

Machine Condition Monitoring (CM) is the procedure of monitoring several parameters being 
an indication of the mechanical condition of a rotating machine whilst it is in operation, such as 
vibration and temperature. Most new Condition Monitoring Systems are comprised of sensors and 
a system for acquiring data, integrated with software for signal analysis.  

A reliable online machinery CM system permits maintenance or corrective actions to be 
scheduled to prevent degradation of the machine’s performance, malfunctions, or even 
catastrophic failure [2]. The key purpose of a CM strategy is to enable immediate detection of any 
new damage in rotating machinery, such as bearings or gears. After the initial detection the CM 
should determine the location of the fault and its severity and predict the RUL of the component. 
CM offers the following benefits [3, 4]: 

1) Avoid catastrophic failure, unscheduled maintenance and loss of production. 
2) Reduce maintenance costs by minimising unnecessary interventions and overhauls.  
3) Increase lifespan of components.  

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2021.22100&domain=pdf&date_stamp=2021-11-26
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As CM has matured and its benefits become more widely appreciated, the number of CM 
techniques available has increased [5, 6]. The condition of all dynamic system components 
changes with operating time; hence their signature signal level will also change providing useful 
information about the condition of their components which can be used as a tool to predict the 
presence of a possible failure mode. However, the signals are often masked by background noise. 
There are several signal processing techniques which can be applied in order to separate unwanted 
trends from the original signal and thus extract those significant trends indicating an incipient 
failure. Doing so is clearly beneficial in safety critical components but also avoids protracted 
down-time which can be costly if the component is critical to a production process. In short, CM 
presents a reliable early warning of component failure. 

2. Diagnosis of roller element bearings 

Diagnosis firstly involves the extraction of vibration data followed by preparation of vibration 
data which can be achieved through a number of techniques which are reviewed here. 

Modern technology has made CM of rotary machines’ bearings and gears more effective, and 
reliable at detecting the presence of defects. It can now be used to identify the cause of the damage 
in advance before a serious development in the fault [6, 7]. Measurement of vibration, acoustic 
emission, lubricant properties, current, temperature, voltage, humidity, and pressure can all be 
employed for monitoring the rolling element bearing health.  

Correct fault diagnosis depends on using appropriate methods of data collection and signal 
analysis techniques. CM techniques including Acoustic Emission measurement, vibration 
measurement, oil analysis, and thermography are possibly applicable in rotating machinery. The 
capabilities as well as limitations for monitoring rotating machinery are considered here. 

2.1. Vibration analysis  

Vibration is considered the most commonly measured parameter in CM of rotary machines, 
and it is extensively used in various industrial applications because vibration has easy to sense as 
an effect of faulty machine components. The vibration analysis is commonly used in many 
applications including material handling, aerospace and power generation [8]. 

Vibration signals are generated by the interaction between the rolling elements and a damaged 
area. The signals’ nature is affected by both the size and location of the damaged area [9, 10]. 
Thus, a vibration measurement can be an effective tool for diagnosing faults of bearings, shafts, 
and gearboxes and for all kinds of machine faults. Moreover, vibration-based methods offer 
advantages in their low cost of equipment, simple setup, and ability to generate detailed figures of 
the damage location leading to more results that are correct.  

Understanding sources of vibration is essential in understanding vibration signatures towards 
achieving fault detection. Even if bearings are geometrically perfect there will still be vibration, 
however, this is expected and is referred to as variable compliance [11]. Where there is 
geometrical imperfection as a result of the manufacturing process vibration is a result of surface 
roughness and this is measured in terms of wavelength [11]. Specifically, surface roughness results 
in asperities breaking through the film and reacting with the opposing surface leading to vibration. 
Another source of vibration is waviness whereby surface features exhibit longer wavelengths and 
there is a complex relationship between the vibration and the surface geometry, and this waviness 
takes place at higher frequencies at 300x rotational speed [11]. 

Even small bearing defects can cause defects and affect bearing life, these include indentations, 
scratches, pits and abrasive particles [11]. Other sources of vibration include raceway defects.  

There are different approaches to vibration analysis. Howard [12] identifies techniques that 
use vibration signals that are obtained from accelerometers which measure and process analogue 
signals. Saruhan et al. [13] identified a vibration analysis technique using vibration data that is 
used to determine and validate faults, the signal is obtained from four different defect states which 
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include inner and outer raceway defects, ball defects and bearing elements defects. State of the art 
signal processing includes techniques capable of denoising and processing vibration signals to 
detect faults [1]. 

Abboud et al. [1] identifies two effective bearing diagnostics techniques. The first involves 
pre-processing the random part of the vibration signal after deterministic components have been 
removed, this technique uses the minimum entropy deconvolution method (MED) and spectral 
kurtosis to analyse the signal envelope. The second technique uses cyclostationary to model the 
bearing signal, it uses a bi-variable map to identify fault components in the distribution [1]. 

2.1.1. Time-domain techniques 

The time-domain signal shows the history of the energy content of the signal. Time-domain 
signal processing is based on extracting statistically significant behaviour from the waveform of 
the time-domain signals and has been applied successfully to numerous complex problems [14]. 
Using the time-domain signal, a defect can be detected and its magnitude assessed using statistics 
indicators such as the energy content (Root Mean Square – RMS), crest factor (CF), kurtosis (KU) 
or energy index (EI). Several of these indicators, including KU and CF are more sensitive if the 
defect size is larger, their values could reduce to the healthy state level when the damage is clearly 
developed [15].  

Time-domain techniques use vibration data as a function of time, simply where time is plotted 
against the amplitude of the vibration signal. This technique reveals whether the vibration signal 
is random, repetitive, sinusoidal or transient, however, this technique produces a significant 
amount of data to be processed [16]. The main statistical techniques in the time-domain approach 
also include peak value, impulse factor, shape factor and K-factor [16].  

2.1.1.1. Mean and standard deviation  

Obtained signals can be described using parameters such as standard deviation (𝜎) or the mean 
(𝜇). Numerically, the mean value is the sum of the events divided by the number of events. [17]. 
The standard deviation is a tool used for measuring the dispersal in a certain signal. 
Mathematically, it is the variance under the square root, see Eqs. (1) and (2) [17]. For an event 
(𝑋௜) and size of sample (𝑁), 𝜇 and 𝜎 are calculated using the following equations respectively: 

𝜇 = ∑ 𝑋௜ே௜ୀଵ𝑁 , (1)

𝜎 =  ඨ∑ ሺ𝑋௜ − 𝜇ሻଶே௜ୀଵ 𝑁 . (2)

2.1.1.2. RMS 

RMS is concerned with the energy of the vibration signal and is suitable for the detection of 
deteriorating bearings, however, the initial peaks in the signal at the beginning stages of the fault 
cannot be detected using RMS, furthermore, RMS is not suitable for identifying the location of 
the fault. However, RMS is suitable for measuring the severity of the fault. It is also worth noting 
that RMS is not sensitive to transient changes that can last for only milliseconds. 

Detection with RMS considers the increase in the value of the vibration signal against a normal 
operations signal. RMS is calculated as follows: 

𝑅𝑀𝑆 = ඨ𝐴ଶ2 ≈  0.707𝐴. (3)
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𝐴 represents sample amplitudes of the vibration signal. 
Seryasat et al. [18] presented a method for diagnosing bearing faults using RMS and FFT, the 

RMS of the vibration signal changes for different frequency bands when the fault occurs, thus the 
method was tested using faulty bearings at various loads and speeds whereby the RMS indicates 
the type of the fault.  

2.1.1.3. Kurtosis 

The Kurtosis technique is sensitive to impulsiveness and can detect vibration signals associated 
with faults in their early stages [12]. Kurtosis is calculated as follows: 

𝐾 = 1𝑛  ∑ ሺ𝑦௜ −  𝑦ିሻସ௡௜ୀଵ 𝜎ସ , (4)

where 𝑦௜ denotes the instant amplitude, 𝑦ି represents the mean and 𝜎 is the standard deviation of 
the data and 𝑛 is the length of the sample.  

Spectral kurtosis analysis is used to identify the energy content of decomposed signals [19]. 
The main disadvantage of kurtosis is that it cannot detect the fault at the later stages. Tian et al. 
[20] presented a method for detection of bearing faults using spectral kurtosis with 
cross-correlation, they extracted features that represent faults which are combined to create an 
index using principal component analysis (PCA) and 𝑘 – nearest neighbour (KNN), their method 
successfully detected incipient faults and identified the location, importantly, it was able to 
provide a health index to track the degradation of faults. Saidi et al. [21] use a spectral kurtosis 
data-driven approach for health prognosis of shaft bearings, the method was validated using 
monotonicity and trendability and real data from a wind turbine drivetrain and it was shown that 
the method could detect the early failure and improve the estimation of degradation. Liao et al. [7] 
extract repetitive transients by using frequency domain multipoint kurtosis to diagnose bearing 
faults, computational accuracy was improved through redefining the kurtosis in the frequency 
domain. 

2.1.1.4. Crest factor  

The CF is defined as the ratio of peak signal value to the RMS level, this indicator is frequently 
used to characterize vibration data. Values of CF for healthy bearings are typically in the range of 
2.5 to 3.5, increasing when a defect is present [22]. Crest factor can be calculated using Eq. (5): 

𝐶𝐹 =  𝑆௣௘௔௞𝑅𝑀𝑆 . (5)

Reference after name “Heng and Nor [23] performed a comparative study using statistical 
parameters including CF and KU applied to the sound and vibration signals from bearings to assess 
their relative abilities to detect defects [ 23]. Their results confirmed that statistical methods may 
be employed to identify the type of defect in the bearings. Moreover, their results showed that 
there is no significant advantage in using more advanced beta function parameters applied to the 
vibration signals to identify faults in rolling element bearings than KU of CF. 

2.1.1.5. Peak value 

Peak value is the maximum value of the wave, from the average to the highest points is a 
simple measurement that shows when impacts happen and is useful for low level faults. 
Specifically, the peak values are observed throughout discrete sequential time intervals and then 
analysed, the analysis involves the peak values, the spectra from the peak value time waveform 
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and the autocorrelation coefficient [3]. Wang et al. [24] use peak-based multiscale decomposition 
for fault detection in rolling element bearings. Their novel peak-based approach combines 
envelope demodulation with multiscale decomposition and was validated by using rolling bearing 
element faults and it was found to enhance fault features and detection.  

2.1.1.6. Energy index  

As mentioned above as the magnitude of the defect or fault develops the amplitudes of the CF 
and KU reduce back to more normal values. The Energy Index (EI) is a technique that is used to 
overcome this inadequacy. Al-Balushi et al., [25] have defined the EI as: “a ratio of the root mean 
square of the segment of the signal (RMS segment) to the overall root mean square (RMS overall) 
of the same signal” [25]. They successfully applied the EI technique to detect the presence of a 
defect in both simulated and experimental data for a bearing. EI can be calculated using Eq. (6): 

𝐸𝐼 =  ൬ 𝑅𝑀𝑆𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑅𝑀𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ൰ே. (6)

We have explored various time-domain techniques to extract signal features and make 
condition assessments. Several of the presented techniques are available off-the-shelf. The 
simplicity of these techniques means they can often be computed in real time and can identify the 
moment at which a change to the time series takes place.  

2.1.2. Frequency domain techniques 

Frequency domain analysis involves extraction of features that can be found in a particular 
frequency band [26]. Zhou et al. [27] showed that frequency domain analysis techniques can give 
intuitive and distinct defects in bearings. 

Bearing defects are categorised as either localised or distributed [28]. This research 
concentrates on local faults, or defects, that develop on bearing raceways. Single-point defects 
have the useful feature that they produce a characteristic frequency determined by bearing 
geometry and rotational speed, and which can be easily calculated.  

Defects such as deformations occurring during manufacture or installation, or prolonged wear, 
tend to be referred to as generalised roughness. Defects such as these usually generate a broad 
spectrum of machine vibrations, and the raw data cannot locate the defect. Thus, to detect their 
location needs specialised processing techniques [29].  

Each element of a roller bearings has a frequency uniquely corresponding to its dynamic 
behaviour. There will be a characteristic frequency for each of: the outer race (𝐵𝑃𝐹𝑂); the inner 
race (𝐵𝑃𝐹𝐼), the roller/ball (𝐵𝑆𝐹), and the cage / train (𝐹𝑇𝐹).  

It is useful to calculate of the characteristic frequencies of a bearing because they may indicate 
the location of a fault. The defect in the bearing will generate vibration impulses at regular 
intervals. These impulses contain energy over a wide band of frequencies and will excite the 
fundamental or resonant frequencies of each of the elements, these are the fundamental vibration 
frequencies. For rolling element bearings in which the outer race is stationary and the inner race 
rotates, there are four characteristic defect frequencies, see Eqs. (7-10) [28]. 

Train/Cage fundamental frequency (FTF): 

𝐹𝑇𝐹 = 𝑛2 ൬𝑁௦60൰ ൬1 − 𝑑𝐷 cos𝛼൰  Hz. (7)

Ball fundamental frequency inner (BPFI): 
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𝐵𝑃𝐹𝐼 =  𝑛2 ൬𝑁௦60൰ ൬1 + 𝑑𝐷 cos𝛼൰   Hz. (8)

Ball fundamental frequency outer (BPFO): 

𝐵𝑃𝐹𝑂 =  𝑛2 ൬𝑁௦60൰ ൬1 − 𝑑𝐷 cos𝛼൰   Hz. (9)

Ball circular/Spin frequency (BSF): 

𝐵𝑆𝐹 = 𝐷𝑑 ൬𝑁௦60൰ቆ1 − 𝑑ଶ𝐷ଶ  cosଶ𝛼ቇ  Hz, (10)

where 𝑁௦ is the speed of the shaft in Hz, the rolling element and bearing pitch diameters are 𝑑 and 𝐷 respectively, 𝑛 represents the number of rolling elements, and 𝛼 represents the contact angle.  
For a single defect on one bearing component, each time the inner race rotates axially, the 

impact generates an impulsive force of each rolling element. The impulsive force has a frequency 
of occurrence which corresponds with the fundamental frequency of the faulty component. 

2.1.2.1. Fourier transform (FT)  

Fourier transform is used for mapping the time-domain function into the frequency-domain 
[30, 31]. Today, the Fast Fourier transform (FFT) is a commonly used technique to obtain the 
frequency-domain signal from the time-domain. However, time information is lost in the process, 
so that the Fourier transform (FT) cannot indicate when a particular event occurred. Such a loss 
can be vital when exploring the growth of faults, because transient events can be the most 
important element in the signal.  

In an attempt to make good this deficiency, Gabor [32] portioned the signal into contiguous 
sections (known as windows), so the FT analysed a small section of the signal each time [32]. The 
time-domain signal within each window was then transformed into the frequency-domain. Note 
that the time window acts as a multiplying function and must be tailored mathematically so as not 
to introduce bogus results [33].  

An important characteristic of these windows is that their final and initial values are zero, or 
close to zero, to avoid the time signal appearing as a sequence of rectangular step functions. Today, 
a wide range of such windows is readily available. The Short-Time Fourier Transform (STFT) 
reveals a spectrum for each window. The time interval for each of the windows is known, so the 
individual spectra can be combined into a 3-D map with co-ordinates: frequency, time and 
amplitude.  

This method has two shortcomings: (i) it is not possible to simultaneously have high-quality 
resolution in both frequency and time-domains because of the uncertainty principle, (ii) the 
duration of the window is fixed, once chosen it cannot be changed, but in many signals the 
frequency content does change with time, requiring greater precision at some times than others, 
[34]. Suppose the signal to be of brief duration, clearly a short window will be chosen, however, 
the shorter the window is the wider the corresponding frequency band and the less the resolution 
of the frequency.  

Wavelet analysis has attracted extensive interest as a diagnostic tool for condition monitoring 
of bearings. The FT is limited to presenting the time-domain signal as sine and cosine functions, 
however, wavelet analysis can describe a signal for the entire spectrum of interest by using wavelet 
functions (WFs) of different, or variable, scales. 
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2.1.2.2. Envelope analysis 

With envelope analysis, a high pass filter is employed to remove the lower frequencies from 
the high-frequency part of the spectrum [35]. As a result, envelope analysis can detect peaks that 
usually cannot be found in the noise carpet or noise floor [35]. Envelope analysis is recognised as 
a well-known algorithm for bearing fault analysis and Feng et al. [36] study several envelope 
techniques including spectral correlation, Hilbert transform and band-pass squared rectifier which 
showed similar levels of accuracy. In the case of a fault, such as a spall, each time the bearing 
passes over the spall there is a small click, the number of clicks and the rpm provide the clicks per 
minute on the FFT (fast Fourier transform). Here the click would normally be visible, however, 
the low-frequency part of the spectrum is crowded so it is not easy to identify smaller peaks. The 
envelope technique overcomes this by a process of modulation which takes the click frequency 
away leaving the trace which is at a lower frequency from which the envelope analysis identified 
the defective bearing [35]. Thus, through employing envelope analysis it is possible to amplify 
the fault frequencies through demodulation which reveals the envelope signal [37].  

 
Fig. 1. Signal and envelope signal from local bearing fault. Source: Randall and Antoni [37] 

2.2. Limitations of traditional diagnosis techniques  

The development of the proposed system or the justification for the need to develop the system 
is based on the limitations of the individual techniques. Although it should be noted that the 
advantages of these techniques are still required to be integrated with the use of other techniques 
towards a comprehensive system that draws on the advantages of all adopted techniques and 
resolves their disadvantages.  

Disadvantages associated with the FFT include that the spectrum is not clear enough for the 
identification of fault peaks. Furthermore, it cannot identify non-stationary signals because they 
are based on a peak signal [38]. Because of this limitation, the time-frequency technique is more 
suitable for non-stationary signals.  

2.3. Machine learning algorithms 

Artificial intelligence methods have been applied to pattern recognition in machine 
diagnostics. However, training data and knowledge about the faults are needed to train the models 
[39]. A lack of efficient procedures for gaining this data has made the application of appropriate 
AI techniques more difficult. Widely used AI techniques for machine diagnostics include artificial 
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neural networks (ANNs), fuzzy logic systems (FLSs), expert systems (ESs), and evolutionary 
algorithms (EAs).  

An increasingly popular approach to defect detection and diagnosis is the use of ANNs used 
for modelling engineering systems. The feed-forward neural network (FFNN) is extensively used 
for diagnosis of machine faults [40, 41]. The multi-layer perceptron is a particular class of FFNNs 
which, when trained with the back-propagation (BP) algorithm, is very widely used for pattern 
recognition, classification and machine defect diagnosis [42, 43]. 

For machine learning algorithms there are two main approaches, classical methods and deep 
learning-based approaches both having various advantages for the diagnosis and prognosis of 
RUL in bearing elements. 

2.3.1. Classical methods  

2.3.1.1. Artificial neural network 

An artificial neural network (ANN) is essentially a model with a set of interconnected 
relationships between inputs and desired outputs. ANNs are based on the behaviour of the neural 
networks that are found in the human brain. As such an ANN can be considered as a machine 
learning system that contains neurons that form interconnected links between inputs and outputs 
for processing information. It is possible to train these connections.  

More specifically, the ANN involves functions which include multiplication, summation and 
transfer. Multiplication is carried out by neurons by assigning a weighting to the inputs and then 
adding them together, the sum of the weights is the inputted to transfer function. Weights are 
changed automatically to improve compliance of the model in relation to the data [4]. Data-driven 
ways for machine learning in prognostics employ numerical algorithms including neural networks 
[44] and a popular data-driven method is artificial neural networks.  

However, ANN models are not suitable for constant and rapid fluctuations found in a system 
[38]. Thus, they are not suitable in this way and to improve prognosis models it is important to 
consider the physics of the wear evolution process where model-based approaches offer better 
results compared to data-driven approaches [38].  

Dharmawan et al. [45] developed a fault diagnosis system for rotating machines using a 
combination of ANN and continuous wavelet transform (CWT). Feature extraction for the CWT 
involved putting the data into different types which included root mean square, kurtosis and power 
spectrum density as inputs for the ANN, their methods returned an accuracy for damage detection 
of 99.72 % [45]. Gomez et al. [46] developed an automatic condition monitoring system for 
detecting cracks in rotating machines, they combined ANN with Wavelets Packet transform 
together with Radial Basis Function which is applied to vibration signals, these additions to ANN 
optimised the success rate, returning close to 100 % probability of detection with 1.77 % false 
alarms. Beretta et al. [47] validate a method for predicting bearing faults based on an ensemble of 
an ANN. 

2.3.1.2. Principle component analysis (PCA) 

PCA analyses data using a multivariate technique to derive observations that are described by 
inter-correlated dependent variables [2]. PCA is essentially an algorithm that shows the data’s 
internal structure in a way that makes the variance in the data clear and explainable.  

The use of PCA increases the accuracy of the fault diagnosis, this is where PCA identified 
features are used instead of the normal 13 features, where the increase in accuracy is from 88 % 
to 98 %. This efficiency is achieved with a limited amount of input features in comparison to using 
original features. 

Where a dataset is multivariate and is seen as a set of coordinates that are found in a 
high-dimensional data space, the PCA will give the user a projection that has a lower dimension. 
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The features of bearing defects are characteristically sensitive and may change due to different 
conditions, and PCA is an effective way for feature selection and it provides a way of manually 
choosing representative features for the purposes of classification. De Moura et al. [48] employed 
PCA and neural networks to investigate pre-processed signals from Detrended Fluctuation 
Analysis (DFA) and Rescaled-Range Analysis (RSA) in the detection of the severity of bearing 
faults. PCA and ANN were used for pattern recognition, however, it was determined in their study 
that pattern recognition from vibration analysis using PCA was inferior to that of ANN [48]. PCA 
models have been improved by incorporating two statistical process monitoring properties, 
namely, static and dynamic [49]. 

Mohanty and Raju [19] in averting bearing failure studied the vibration acoustics of ball 
bearings using a wavelet-Based Multi-Scale Principle Component Analysis with FFT. The 
algorithm derives the frequency range from the ball bearing operation which helps to determine 
the frequency of the vibration without the perplexing frequency components [19]. The main 
advantage that they gained from using this approach was that it allowed feature segmentation from 
the channels that were independent to the direction of the propagation of the bearing fault, 
essentially the PCA simultaneously auto-correlates and cross-correlates the signal [19]. Wang et 
al. [50] demonstrated a method for reliability assessment of rolling bearings using kernel principal 
component analysis, using this approach feature extraction is achieved using time, frequency, and 
time-frequency domains and it was found that using KPCA accurately reflected the performance 
of the degradation process. 

2.3.1.3. K-nearest neighbours (k-NN) 

k-NN is an algorithm that is a non-parametric way for classification or regression. Specifically, 
in this method, the class of an object is the output which is shown by a majority vote of the nearest 𝑘-neighbour. Early use of the k-NN algorithm has been used for data mining, furthermore, k-NN 
has also been used for distance analysis for each data sample to find out if it should belong to a 
certain fault class. Baraldi et al. [51] present a diagnostic system for detecting the beginning stages 
of fault degradation through isolation of the bearing and then classification of the defect, this 
system was based on a hierarchy of k-NN classifiers, the system was found to be satisfactory in 
diagnostic performance.  

Wang et al. [52] proposed a real-time fault diagnosis system for predictive maintenance of 
rolling bearings using a k-NN algorithm. Their system used a pre-processed signal and feature 
parameter extraction thereafter training and optimisation of the fault diagnosis model and it was 
found that a diagnosis model that uses a k-NN algorithm was more effective than diagnosis based 
on other algorithms such as C.45 and CART and therefore, is suitable for predictive maintenance 
of rolling bearings [52]. 

Weighted 𝐾 nearest neighbour (WKNN) is a new methodology within k-NN developed by 
Sharma et al. [53]. It is a squared inverse feature weighting technique that improves the 
performance of the k-NN classifier and can optimise the computation complexity and 
classification accuracy [53]. 

Yan et al. [54] presented a hybrid intelligent fault diagnostic model for rolling bearings that 
combines a k-NN classifier with a stacked sparse auto-encoding network (SSAE). Their model 
used the advantage of the k-NN algorithm that it can deal with multi-classification problems and 
improve the accuracy of their model [54]. Overall, in comparison to traditional methods using 
deep neural networks for feature extraction avoids being overly dependent on professional 
knowledge and improves the accuracy of the fault classification [54]. 

2.3.1.4. Ensemble learning 

Zhang et al. [55] predict RUL of rolling element bearings using ensemble learning which is 
considered to be a typical machine learning approach and has been promising in pattern 
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recognition. However, this approach had been very rarely used for RUL and Zhang et al. [55] 
propose to achieve this through merging multi-piece information and then updating it dynamically. 

In response to the problem of strong ambient noise interfering with the collection of bearing 
signals making it difficult to accurately identify faults, Liang et al. [56] presented an improved 
ensemble method using deep belief network (DBN), their method was shown to significantly 
improve the fault diagnosis. 

To improve rolling bearing fault diagnosis Li et al. [57] presented an enhanced selective 
ensemble deep learning method. The ensemble learning was implemented using enhanced 
weighted voting together with class-specific thresholds and the results showed that their method 
was more accurate and more robust in recognising the different types of faults in comparison to 
other ensemble learning methods [57].  

Table 1. Summary of machine algorithms – classical methods – architecture,  
description and characteristics 

Architecture Description and characteristics 

 

Artificial Neural Network 
– Based on behaviour of neural 
networks in human brain 
– Uses multiplication, summation 
and transfer functions 

 
Pros: 

– Can learn independently 
– Input is stored in network and 
not on database 

Cons: 
– Not suitable for constant and 
rapid fluctuations 

 
Baraldi et al. [51] 

K Nearest Neighbour (KNN) 
– Non-parametric method for 
classification and regression 

 
Pros: 

– Simple and easy to implement 
– Does not require offline training 

Sharma et al. [53] 

 
Ma and Chu [58] 

Ensemble learning 
– Uses the advantages of each 
member model as an ensemble 
strategy 

 
Pros: 

– Promising for pattern 
recognition 
– Accurate and robust in 
recognising different types of 
faults 
– More adaptable than single deep 
methods 
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Abdi and Williams [2] 

Principle Component Analysis 
(PCA) 

– Multivariate technique for 
analysing data tables 
– Describes intercorrelated 
quantitative dependent variables 
– Extracts important information 
from tables 

 
Pros: 

– Variance in the data is clear and 
explainable 
– Shows internal structure of data 

Abdi and Williams [2] 

In response to the issue of there being a broad application of technology for fault diagnosis 
and the associated limitation of the application of a single deep model, Ma and Chu [58] proposed 
an ensemble deep learning diagnosis method using multi-objective optimisation which was shown 
to be more adaptable in comparison to other ensemble and single deep methods. Furthermore, Xu 
et al. [59] recognised that most fault diagnosis methods find it difficult to learn representative 
features from raw data. In response to this issue, Xu et al. [59] proposed that deep learning with 
its ability to perform automatic feature extraction should be combined with ensemble learning, in 
this case, random forest (RF) ensemble learning, due to its ability to improve generalisation 
performance and accuracy of classifiers. 

2.3.2. Deep learning-based approaches  

Predicting remaining useful life (RUL) for rotating equipment is increasingly important for 
condition-based maintenance and it has been shown that deep learning prognosis methods are 
showing promise for bearings and gears. Deep belief networks and associated deep learning 
methods are a popular way for approaching the processing and analysis of big data and it has the 
ability to provide important features from the data that can be used for prediction of RUL [60]. 
Furthermore, due to the deep nature of these approaches, they can mine hidden information 
because of its multiple-layered structure [60].  

Deep learning (DL) is an area within machine learning and is based on algorithms that are 
inspired by neural networks of the human brain. Deep learning is about improving the learning 
algorithm and making it easier to use [5]. A benefit of deep learning is that it can carry out 
automatic feature extraction from raw data through the ability of algorithms to learn 
representations using feature learning through exploiting the unknown structure of the input in 
order to reveal good representations [5]. It is important to note that DL approaches are essentially 
large neural networks that use large amounts of data and require large computers [5]. 

Furthermore, they are promising in the prediction of RUL for rotating equipment [61]. 
Concerning this, the deep learning approach proposed by Deutsch [61] was designed to overcome 
the limitations associated with signal processing and feature extraction requiring specific 
modelling and expertise. Specifically, their method which used vibration and acoustic emissions 
together with state transition modelling and a data-driven particle filter was validated using real 
bearing and gear run-to-failure test data [61]. 

It is important to make a distinction between the idea of deep learning and artificial network. 
The ‘deep’ refers to the idea that there many hidden layers in the network. The transition from the 
classic ‘shallow’ machine learning algorithms to deep learning is the result of many reasons. 
Firstly, data explosion, this is where there is an explosion in the amount of available data which 
means there has been a return of large-scale datasets in some domains. For the numerous 
applications which include diagnosing bearing faults these large data sets are not easily accessible, 
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they are difficult to acquire which can also take some time. 
With smaller datasets, classical machine learning algorithms can be equal in performance or 

even outperform DL networks. Where there is an increase in the data the deep learning can 
outperform classic machine learning algorithms. Secondly, there has been an evolution in 
algorithms as there has been an increase in techniques that have matured in control of the training 
process for deeper models for achieving greater speed and improved convergence as well as 
improvement in generalisation. Thirdly, there has been an evolution in hardware. To train deep 
networks extensive computation is required and performing this with the GPU accelerates the 
training process. GPU facilitates the parallel functioning of computational compatibility with 
computational capability together with deep neural networks, this makes GPU invaluable in 
training deep learning algorithms, furthermore, more powerful GPUs allow for quicker setup 
times.  

These aforementioned factors allow the application of deep learning algorithms to a number 
of applications that are data related. There are a number of advantages associated with using deep 
learning algorithms and they include the following: 

2.3.2.1. Convolutional neural network (CNN) 

Convolutional neural networks are inspired by animal visual cortices and were first used for 
the detection of image patterns hierarchically including simple and complex features. The lower 
layers will have lower level features, and higher levels will detect features that are higher level, 
built on the lower level features. 

About the architecture of CNN, the one-dimensional temporal raw data is taken from the 
accelerometers and are stacked in a two-dimensional vector-like image representation before a 
convolutional layer conducts feature extraction, thereafter, down sampling takes place in the 
pooling layer. This convolution and pooling combination are repeated numerous times to make 
the network deeper. The output from hidden layers is passed to connected layers and the output is 
then passed to a top classifier based on Sigmoid or Softmax for bearing fault detection. 

Xu et al. [59] propose a fault diagnosis method based on CNN and random forest ensemble 
learning and achieved a high level of accuracy in bearing fault diagnosis and was an improvement 
on standard deep learning methods and traditional methods. CNN can learn features automatically 
from the inputted data and has the potential to overcome traditional methods [62]. 

Belmiloud et al. [5] use CNN as part of their method for determining RUL of rolling element 
bearings. Specifically, extracted features are fed into a deep CNN to construct a health indicator. 
Hoang and Kang [62] propose a method for bearing fault diagnosis using CNN where vibration 
signals are used directly as input and therefore, there is no need for feature extraction. Their 
method was found to be highly accurate even in noisy environments [62]. Specifically, the method 
transformed 1-D vibration signals into 2-D images taking advantage of CNN effectiveness in 
image classification [62]. The issue of noise was also addressed by Zhao et al. [39] who said that 
diagnosis is difficult for planetary gearboxes due to planetary noise. They propose a diagnosis 
method using synchrosqueezing transform (SST) and deep CNN together with envelope 
time-frequency representations, their method automatically recognised the planet bearing fault 
type and also removed interference from the time-frequency spectrum effectively avoiding 
misdiagnosis [39]. 

The problem of traditional time or frequency domain analysis, in that they cannot extract 
features effectively, has been addressed by Zhang et al. [63] who introduce an enhanced CNN 
method using short-time Fourier transform, scaled exponential linear unit and hierarchical 
regularisation, the results of their experimentation showed that the method had higher accuracy of 
fault diagnosis than other deep learning methods [63]. 

Liu et al. [64] solve the problem of information losses when using the fusion process through 
an ensemble CNN model for diagnosing bearing faults, specifically, the model used one multi-
channel fusion convolutional neural network branch and two 1 dimensional CNN branches, the 
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former extracts features from sensory data and the latter extracts from the inherent features which 
reduces the loss of information, overall the model was found to be more effective and robust than 
other models [ 64]. 

2.3.2.2. Auto-encoders 

Autoencoders have their origins in pre-training methods used for artificial neural networks. 
After years of development this approach has become popular as a method of feature learning, 
furthermore, it has been described as being a greedy layer-wise method for pre-training. 

An ANN is used to train the auto coder which is comprised of an encoder and a decoder 
whereby the encoder’s output is the input for the decoder. The mean square error between input 
and output as the loss function is taken by the ANN to generate the output through imitation of 
the output. Once the ANN has been trained the decoder is discarded and the encoder is retained. 
This means that the feature representation is the output of the encoder, and it is this that is used in 
the classifier in the next stage. 

However, although autoencoders was an early approach, more modern and state-of-the-art 
approaches are more focussed on deep neural networks with many layers that employ a 
backpropagation algorithm [5]. Haidong et al. [65] presented a novel method for intelligent 
bearing fault diagnosis using ensemble learning which analyses experimental vibration signals 
together with a combination strategy to achieve an accurate diagnosis. The results showed the 
method removes the need to depend on manual feature extraction and overcomes limitations 
associated with deep learning models [65].  

2.3.2.3. Deep belief network (DBN) 

In deep learning, a deep belief network (DBN) is considered as a compilation of unsupervised 
networks, for example, restricted Boltzmann machines or auto-encoders, whereby the hidden layer 
of each sub-network acts as a visible layer which is used to train the DBN. Furthermore, for SAE 
the fused features are inputs into the DBN for the classification of faults. 

Deutsch [61] validated deep learning prognosis methods using big data collected from bearing 
test rigs to determine bearing RUL predictions. One of the methods used by Deutsch [61] was the 
Deep Belief Network. Specifically, the DBN was trained using FFT features and upon completion 
of training a fine-tuning layer was added to the DBN, the results were promising as the approach 
added robustness to the architectures and reduced the probability of poor results [61]. 

Shao et al. [66] propose a novel continuous deep belief network optimised with the use of a 
genetic algorithm in order to adapt the characteristics of signals, the proposed method was tested 
using bearings and it was found to be superior in terms of accuracy and stability than traditional 
methods. Shen et al. [67] recognise the limitations of diagnosis mechanisms that use manual 
feature extraction, as a solution deep learning can learn representative features in the data without 
the need for much prior knowledge. Shen et al. [67] presented a new method for bearing fault 
analysis named hierarchical adaptive DBN optimised by using the Nesterov momentum, their 
model was validated using vibration signals from bearings and it was found that the method shows 
more satisfactory performance than conventional DBN and support vector machine [67]. 

2.3.2.4. Recurrent neural network (RNN)  

Data in the recurrent neural network method is processed in a recurrent behaviour as opposed 
to a feed-forward neural network. The flow path of this goes from the hidden layer back to the 
flow path when it is sequentially unrolled. Because it is a sequential model it can capture and 
model any sequential relationship that can be found in time series or sequential data [68]. 

A recent approach that used deep recurrent neural network (DRNN) was proposed by Jiang et 
al., [69] which used stack recurrent hidden layers as well as LSTM units, furthermore, an adaptive 
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learning rate was also used to improve training performance. This approach returned high accuracy 
results of 94.75 % and 96.53 % [69]. Wu et al. [70] proposed a novel approach for fault prognosis 
using recurrent neural network, specifically, recurrent neural network was used with the 
degradation sequence of equipment, again with LSTM units, and showed significant performance 
in RUL prediction. Xie and Zhang [71] also recognised the beneficial potential of deep network 
neural algorithms, LSTM and recurrent neural network and proposed a novel approach for fault 
prognosis using LSTM based on the vibration signal of rotating equipment, the outcomes were 
successful in improving machine condition monitoring and health management. 

2.3.2.5. Generative adversarial network (GAN) 

Goodfellow et al. [72] first proposed GAN in 2014 and is comprised of two parts which are 
the generator 𝐹  and the discriminator 𝐹஽ which compete with each other whereby 𝐹  tries to 
confuse 𝐹஽ while the latter tries to distinguish samples generated by the former. They are 
competing with each other to gain increased capability for imitating the original data samples and 
then to discriminate iteratively. 

Table 2. Summary of machine algorithms – deep learning-based  
approaches – architecture, description and characteristics 

Architecture Description and characteristics 

 
Hoang and Kang [62] 

Convolutional Neural Network 
– Based on animal visual cortices 
– Uses 2-D data 
– Has variations such as ADCNN, 
Lifting Net and inception net 

 
Pros: 

– Fewer neuron connections needed 
compared to normal ANN 

Cons: 
– Requires more layers to find a whole 
hierarchy Zhang et al. [63] 
– May need a large labelled dataset 

Zhang et al. [63] 

 

Auto Encoders 
– Used for feature extraction 
– An unsupervised learning method 
that reconstructs the input vector 

Yan et al. [54] 
 

Pros: 
– Does not need labelled data 
– Variants of autoencoders have an 
algorithm which is noise resilient 

Cons: 
– Requires pre-training 
– Training may suffer from the 
disappearing of errors 

Zhang et al. [63] 
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Lin et al. [73] 

Deep Belief Network (DBN) 
– Built with RBMs – each hidden layer 
is the visible layer for the next 
– Undirected connection at the top two 
layers 
– Training is supervised or 
unsupervised 

Zhang et al. [63] 
 

Pros: 
– Can use layer by layer learning 
strategy to start the network 
– The likelihood is maximised through 
tractable inferences 

Zhang et al. [63] 
Cons: 

– Training can be computer-intensive 
and expensive due to initialisation and 
sampling 

 
Zhang et al. [68] 

Recurrent Neural Network 
– Analyses 1-D temporal or sequential 
data 
– Used for applications where output 
independent on previous computation 

Zhang et al. [63] 
 

Pros: 
– Can memorise sequential events 
– Can model time dependencies 
– Can receive inputs of variable 
lengths 

Zhang et al. [63] 

 
Zhang et al. [68] 

Generative Adversarial Network 
(GAN) 

– Uses a generator and a discriminator 
to generate images which imitate real 
photos 
– Augments data where labelled data is 
scarce 

Zhang et al. [63] 
 

Pros: 
– Does not need modification when 
moving to new applications 
– Does not have a deterministic bias 
Cons: 
– Training is unstable because requires 
finding Nash equilibrium 
– Difficult to learn how to create 
discrete data 

Zhang et al. [63] 

3. Prognosis 

Achieving reliable and accurate prognosis is necessary for condition monitoring management, 
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and is important for management of safety, scheduling and lowering costs [74]. Prognostics 
focuses on using automated methods for the detection, diagnosis, and analysis of system 
degradation and to estimate remaining useful life (RUL) within accepted operating parameters 
before failure occurs or performance degrades to intolerable levels. The success of a condition 
monitoring management strategy is dependent upon such automated procedures, which send out 
notices related to impending failure of equipment [75] to provide maintenance personnel with a 
lead time. 

International Standard Organization (ISO) 13381-1 [76] defines prognostics as “the estimation 
of the Time to Failure (ETTF) and the risk of existence or later appearance of one or more failure 
modes”. 

In the development of a prognostic method, the required outcome is the prediction of failure 
time [77, 78]. Predictions require that the system and associated condition processes are 
understood in addition to historic conditions that could affect the future behavior [79]. Because 
predictions are concerned with an event that is uncertain, approaches to prognostics consider basic 
assumptions about degradation characteristics, prognosis is based on the following four notions 
[80, 81]: 

1) All systems degrade due to time and environmental factors. 
2) Ageing and damage are monotonic processes that reveal themselves both physically and 

chemically.  
3) Symptoms of ageing are detectable prior to failure 
4) Symptoms of ageing can be correlated with a model of ageing and, therefore, the RUL of 

individual systems can be estimated.  
At the initial stages of a system’s lifetime the components are working properly. Each 

operational function has a specific initial level of health, which is mostly stable at the early stages, 
which continues until an early incipient fault takes place. Over time as operation continues system 
failure becomes increasingly likely, which can lead to system damage and ultimately a 
catastrophic failure. It is important to note that system failure and catastrophic failure take place 
at different times. The early detection of such failures is critical in the estimation of the RUL. In 
order to detect fault characteristics it is necessary to have interactions between diagnostics and 
prognostics. The overall objective is to increase awareness of the state so that it takes place close 
to the point of the first incipient fault [82]. 

Degradation resulting from an initial system fault in a system continues to increase reaching a 
critical state that leads to system failure. The system begins with initial health and a variation that 
is acceptable and considered normal. The diagnostic representation here relates to the task of 
in-depth exploration of a failure that is a direct result of an initial leading symptom. Based on the 
location of this symptom, prognostics is about taking a multi-step approach before prediction [83]. 

Prognostic prediction is practiced between the initial failure detection and actual failure, where 
diagnostics are practiced [83]. Consequently, the goals of diagnostics and prognostics are 
somewhat different but carried out in the same field. Since both lifetime estimation methods are 
applied for condition monitoring, they both include stages for data acquisition and signal 
processing. 

A variety of prognostic techniques with numerous tools and methods have been mentioned in 
the literature [84]. Current prognostic methods can be categorised into three general classes 
according to prediction and forecasting approaches: physics-based, data-based and hybrid 
approaches. Each approach has its particular disadvantages and advantages [85, 86].  

3.1. Physics-based models  

Physics-based models (PbM) describe the physics of the equipment and the failure mechanism 
[87]. In the physics-based approach the evolution of the degradation is defined and therefore, for 
this reason this approach is considered a degradation model [88]. Table 3 shows methods within 
the PbM prognostics approach. The mathematical models of degradation are usually used in 
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applications that are associated with health levels. PbMs use a combination of formulas for fault 
growth together with knowledge related to the principles of damage mechanics. Using these 
models there is the assumption that where the mathematical model for component degradation is 
accurate then it can provide sufficient knowledge for prognostic outputs.  

Table 3. Physics based models 
Approach Description Merits and limitations 

Paris and Erdogan 
Law [89] 

Uses Paris’ Law [54] for crack 
growth modelling. Least-square 

scheme adapts model 
parameters to condition 

changes 

It is assumed that defect area size is linearly 
correlated to vibration. In time series 
prediction, it is similar to single-step 

adaptation. The constants of materials are 
determined empirically 

Forman Law [90] 
Crack growth is modelled by 

the Forman law of linear elastic 
fracture mechanics 

It can relate monitoring data and crack growth. 
In order to examine the model, the assumption 

is required to be simplified. For complex 
condition, it is necessary to determine the 

model parameters. 

Paris law crack 
growth modeling 
with FEA [91, 92] 

Finite Element Analysis with 
Paris & Erdogan Law for 

calculating stress and strain 
fields 

Enables stress calculation. Performance 
accuracy is based on the crack size estimation 

of vibration data 

Contact Analysis 
[93] 

Finite Element Analysis for 
calculating material stress field 

It can determine the cycles to failure with 
damage mechanics principles. Different physics 

parameters are necessary to apply the model 
Fatigue spall 

initiation with Yu-
Harris life 

equation [94] 

Uses Yu-Harris bearing life 
equation for predicting spall 

initiation 

Uses cumulative damage with consideration of 
operating conditions. Different physics 

parameters are necessary to apply the model 

A well know approach in PbM is Crack growth modelling. The Paris and Erdogan law [89] is 
employed in a number of applications to associate the stress intensity factor range with crack 
growth within the fatigue stress regime. The defect growth rate of rolling element bearings has 
been evaluated with a variation of Paris’ Law. This law states that defect growth is correlated with 
defect area. Predicted and actual defect sizes are compared followed by the application of a 
recursive least-square scheme to derive an adaptive prognostic model for defect growths [91, 92], 
however, a slight difference in a parameter may lead to a large prediction error. Li and Choi [91], 
and Li and Lee [92] presented a Paris’ law crack growth model using Finite Element Analysis 
(FEA), whereby estimation of stress is based on the size of the defect, bearing geometry, speed 
and load. The performance of this approach depends on crack size calculation accuracy using 
vibration data, and any calculations carried out are computationally-intensive so that the 
probability of an observation can be evaluated. Forman law of linear elastic fracture is another 
PbM model [90]. Oppenheimer and Loparo applied data from condition monitoring together with 
Forman law crack growth physics to life models. Because identification of the defect area size 
during operations is often instantaneous, this approach could be impractical for certain situations. 
Furthermore, assumptions may be oversimplified and there needs to be an examination of the 
model parameters before application [90]. 

Orsagh et al. presented a stochastic variation based on the Kotzalas-Harris model to for 
estimating failure progression and time-to-failure together with the Yu-Harris life equation for 
determining fatigue spall initiation. The current state of the bearing is estimated through 
calculating the time-to-spall initiation, followed by prediction of the future bearing health model 
[94, 95]. Marble and Morton [93] presented a PbM method for spall propagation using FEA to 
estimate spall size, material stress, rolling element speed and load. Their model can predict the 
number of cycles until failure with consideration of the principles of damage mechanics [93].  

While there are numerous application domains and that there are differences between models, 
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it is the case that the aforementioned models share common features making them appropriate for 
specific uses. Generally, PbM approaches are conventional and employ mathematical methods to 
understand failure modes [96]. In comparison to data-driven approaches PbM approaches are more 
accurate. However, PbM approaches may not be effective for estimating RUL in complex systems 
because it better for specific components rather than systems as a whole [86]. Furthermore, it is 
very difficult to describe the behavior of individual components within complex systems using 
unique mathematical equations. These approaches require a significant amount of experimentation 
[97], therefore, a specific PbM method for a specific system is not applicable to a different system. 

3.2. Data-based model 

In the data-based (DbP) approach monitoring data is processed in order to model prognostics 
instead of building mathematical models of system behaviours [98]. Data-based models involve 
precursors to failure and RUL by considering past data and estimating the output using monitoring 
data. One major advantage of data-based models is their simplicity in terms of calculation. These 
can be conducted using an algorithm to process past degradation patterns to estimate future 
degradation [78]. Although all data-based approaches are driven by data and - to some degree - 
use models they may be categorised as either model-based or data- driven [99]. 

In order to provide a RUL prediction, the prognostic model assumes that an accurate 
mathematical model for damage (or degradation) can use condition-monitoring data from the 
damage qualification step, which is initially progressed from system sensor measurements and the 
estimation algorithm. The model parameters for the remaining useful life prediction step are 
obtained from this designed combination model. The degradation model is expressed as a function 
of system data and model parameters. Damage classification and data are provided to the model 
while the damage model parameters of the estimation algorithm use these in order to describe the 
degradation behavior occurring in the system. Then, RUL is forecast based on the calculated 
model parameters [100].  

Model-based prognostic methods include several techniques that employ dynamic models of 
the predicted process, such as Kalman and particle filtering method, autoregressive moving 
average (ARMA) techniques, and empirical methods [101]. Generally, these models are Bayesian-
based, whereby the state of a process can be estimated using minimum prediction covariance 
derived from measurements. Kordestani et al. [102] proposed a method for fault prognosis based 
on neural networks and recursive Bayesian algorithm resulting in a high level of accuracy. They 
are capable of predicting current and future states of nonlinear systems and estimate the RUL 
based on deterioration trends before the asset arrives at the predefined threshold [100]. This 
reflects the fact that their involvement in the processes of RUL prediction is high. On the other 
hand, they do not directly learn from data, and they have shortcomings in terms of different 
operational trajectories. 

Data-driven approaches for condition monitoring maintenance are calculated through 
analysing condition-monitoring data [74]. A prognostic approach is effective because its data 
discovery is simple and consistent in complex processes [86]. Data-driven models make it simple 
to integrate innovative approaches creating an inclusive prognostic approach [103]. A data driven 
approach to prognosis using a combination of principle component analysis with exponential 
degradation was proposed by Anis [104] using kurtosis and it was successful for prognostic of 
rotating shaft failure. 

Common data-driven models in the prognostic field are explained in Table 4. These models 
provide prognostic applications with the ability to learn without being explicitly designed. Most 
of these approaches focus on the development of RUL prediction algorithms that can change when 
exposed to new but similar data. Conventional data-driven methods consist of simple forecast 
models including exponential smoothing, Gamma process [105, 106], and autoregressive models 
[107]. 

The main advantage of these techniques is that their implementation is simple, which can be 



FAULT DIAGNOSIS AND HEALTH MANAGEMENT OF BEARINGS IN ROTATING EQUIPMENT BASED ON VIBRATION ANALYSIS – A REVIEW.  
ADNAN ALTHUBAITI, FARIS ELASHA, JOAO AMARAL TEIXEIRA 

64 JOURNAL OF VIBROENGINEERING. FEBRUARY 2022, VOLUME 24, ISSUE 1  

carried out on a programmable estimator [117]. On the other hand, these basic projection 
techniques are based on the assumption that there is an underlying stability in the system being 
monitored, and they rely on historical performance to predict future degradation. This reliance is 
risky and can result in inaccurate forecasts when any trend changes or the data ends during a 
fluctuation. More complex systems such as Bayesian Networks [118, 120] and fuzzy logic systems 
[119, 120] have been developed for data-driven prognostic projections. These applications can 
extract useful knowledge from complex data in various forms but the prognostic accuracy in multi-
step ahead predictions is limited in cases where long projections are expected but test trajectories 
are short. 

Table 4. Data driven prognostics 
Approach Description Merits and limitations 

Artificial neural 
networks [108, 109] 

Simulating biological neural network 
functions. They can learn the relationship 

between inputs and outputs 

– Able to work on filtering, 
fitting, clustering, classification 
and prediction 
– No standard method 

Bayesian networks 
[110, 111] 

A probabilistic graphical model that 
represents random variables and the structure 

of their conditional interdependency 
relations 

– Less parameters required to 
calculate 
– Limited accuracy in complex 
systems 

Time series  
[112, 113] Use ANNs to provide nonlinear projection 

– Less parameters required to 
calculate 
– Limited accuracy in complex 
system 

Fuzzy logic [114] 
Represent and process uncertainty to offer 
robust and noise tolerant models to make 

system complexity manageable 

– Ability to deal with incomplete 
data and complexity. Compatible 
with human action 
– Not feasible to provide 
accurate RUL calculations 

Principal 
component analysis 

(PCA) [115, 50] 

A dimensionality reduction model which 
transforms original features 

– Reduces data sets to lower 
dimensions 
– Performance varies for 
different applications 

Similarity based 
prediction  

[10, 24, 116] 

Uses pairwise distance evaluation for two 
degradation trajectories 

– High level of prediction 
accuracy and reduction of 
prognostic risks 
– Requires large quantities of 
baseline trajectories 

Artificial Neural Networks (ANNs) are a widely used data-driven approach to prognostics 
[121, 52]. ANNs are computational algorithms that use data processing neurons to perform 
machine learning, this neural network is used as a connected computation of output values from 
the input data [122, 123]. ANNs are a key feature in establishing a set of interconnected 
relationships between inputs and desired outputs and they can be trained for performance [124]. 

Neural networks can effectively model systems comprising an extensive class of non-linear 
regression, non-linear dynamic systems, data reduction and discriminant models [125]. In certain 
applications such as to complex engineering systems, the measured data from the system may be 
imprecise, and the looked-for results may not be directly linked to the input data. In such cases, 
ANNs are suitable to model such systems where the precise relationship between input and output 
data is not known [126]. ANNs, therefore, are applicable to predictive algorithms for complicated 
systems and can be quicker and easier to use in comparison to other predictive methods. Thus, 
ANNs are a widely used data-driven prognostic method, and widely adopted across different 
disciplines. 

Predictions using ANN can be difficult where there is insufficient knowledge about the 
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degradation process [127, 128]. ANNs use actual sample points from the time series from the 
network modelling, specifically, the next value of the time series is predicted, without the need to 
feed back to input values [129, 130]. Where the prediction horizon is longer using multiple steps 
the ANN output should be fed back externally to the initial time series for a fixed number of steps; 
the regression components from these input series, previously formed from sample points from 
the initial time series, are gradually replaced by values that have already been predicted [128]. 
However, these replacements may lead to an imbalance in the predictions which may imitate 
training data [131]. However, ANNs provide sound computational mapping between raw data and 
outputs required in the network prediction [132]. 

3.3. Prognostics performance evaluation 

Prognostic metrics could be seen as a standardised method of communication whereby users 
show their results and compare their findings [133]. Overtime due to numerous prognostic 
implementations in different disciplines, there have been metrics established for assessing 
forecasting performance including the work of Saxena, Leao, and Goebel [134, 135, 136]. These 
metrics sets validate prognostic application performance. Because they are concerned with 
applications with an availability of run-to-failure data and actual RUL is known, they are 
particularly useful for the model development stage whereby the metrics could be used for 
integration of prognostic procedures [133]. 

These metrics are defined mathematically and their relationship to prognostics design are 
presented in the equations that follow: 

3.3.1. Error (𝒆) 

Error is the deviation from a desired target [133]: 𝐸𝑟𝑟𝑜𝑟 = 𝑒௜ = 𝑦௜ − 𝑦ො௜ , (11)

where 𝑦ො௜ is the estimated value (ETTF) and 𝑦௜ is the actual output value (ATTF). In this definition, 
the absolute error (AE) is the following: 𝐴𝐸 =  |𝑒௜| = |𝑦௜ −  𝑦ො௜|. (12)

3.3.2. Mean absolute error (MAE)  

Where there is more than one instance, an average of the absolute error terms is calculated 
using the mean absolute error [137]. This measures the closeness of estimations to the actual 
outcomes: 

𝑀𝐴𝐸 = 1𝑛෍|𝑒௜|௡
௜ୀଵ =  1𝑛෍|𝑦௜ −  𝑦ො௜|௡

௜ୀଵ . (13)

3.3.3. Mean square error (MSE) 

MSE is a risk function for calculating the average of the square values of the errors [137]. 
When the vector of these predictions is gained and the vectors of actual remaining useful life is 
available, the MSE can be calculated by: 

𝑀𝑆𝐸 = 1𝑛  ෍  (𝑦௜  −  𝑦ො௜)ଶ = 1𝑛௡
௜ୀଵ ෍ 𝑒௜ଶ௡ଵ . (14)
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3.4. Challenges of prognostics  

Wang [117] said that successful prognostic applications are still difficult to find for complex 
engineering systems despite the fact there has been numerous algorithms proposed for calculating 
remaining useful life. There are numerous issues and misconceptions in the development of these 
algorithms which presents a challenge to prognostic applications used in complex systems. 
Furthermore, because data characteristics are complex, stochastic and exhibit nonlinear 
degradation patterns it is difficult to model systems accurately [138]. 

The challenges of prognostics and the associated requirements addressed in literature are 
provided here.  

3.4.1. Lack of common data sources  

Advanced prognostic techniques development is an active area of research, for a model to 
show promise there is need to collect data throughout the lifetime of a machine. As faults evolve 
further estimations by prognostic systems are required to detect these faults [139].  

3.4.2. Uncertainty in predictions  

There are a number of factors that influence system degradation and therefore, the associated 
noise, uncertainty and errors found in the data. Data-driven prognostics depend on the assumption 
that historical data can allow for a model for estimating remaining useful life, however, future 
operational conditions are unknown and require projection. However, it may not be possible to 
provide results when the length of the test data is short and there is a requirement for long term 
projections, in this case there may be a failure in prognostic accuracy.  

3.4.3. Validation issues  

Predicting remaining useful life is not the same as predicting future behaviour validated after 
a whole life cycle and reaching a real failure. If the dataset provides the actual time to failure the 
prediction can be validated using the metrics discussed in the above (2.10). Because metrics 
developed within forecasting are different from prognostic applications, they are a widely used 
method of validation and findings can be compared. Furthermore, metrics can be used to assess 
algorithmic performance in prognostic applications and are useful at the algorithm development 
stage whereby metric feedback is employed for fine tuning the prognostic algorithms [140]. 
However, where test data is short there is a higher risk of error, or if there are fluctuations resulting 
from operational conditions, the results can also be negatively affected.  

4. Conclusions 

In this paper, a comprehensive review of roller bearing diagnosis and prognosis has been 
reviewed. This review showed various techniques have been used in combination with vibration 
analysis for the diagnosis and prognosis of bearings element faults, however, most of these 
algorithms are valid for certain cases and cannot be generalised.  

Although many researchers have addressed fault detection within roller element bearings there 
are many challenges facing fault detection. One of the most challenging scenarios is bearing fault 
detection where the vibration or acoustic signals are strongly masked by noise from more 
dominant components such as gears and shafts. An example of this scenario is the gearbox of a 
wind turbine, which presents difficulty for bearing fault detection. Therefore, this research aims 
to develop a diagnostic and prognostic tool to detect bearing faults and predict the remaining 
useful life under a strongly masked signal.  

Although a large variety of prognostic models have been proposed and well reported in 
technical literature, an efficient prognostic methodology with accurate life prediction for real 
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world application has yet to be developed. For accurate prognostics, it is essential to conduct prior 
analysis of the system’s degradation process, its failure patterns and to maintain a log of the history 
and condition of the machine throughout its life. Future research on the area of vibration analysis 
will address the gap related to prognosis capability through machine learning and propose a way 
to reduce dependency on training data to establish life prediction. 
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