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Abstract. Aiming at solving the difficulty in extracting early weak fault features of rolling 
element bearing (REB), a feature extraction method by combing variational mode extraction 
(VME) with multi-objective information fusion band-pass filter (MIFBF) is proposed. This 
method is based on the advantage of the VME in filtering out the interference signals and the 
enhancement effect of the MIFBF on the impact characteristic signals. Firstly, VME is used as the 
signal preprocessing method to filter out the interference noise. Then, the filtered signal is taken 
as the target signal, and then MIFBF is used to analyze it to obtain the optimal band-pass filter 
parameters-center Frequency and bandwidth, thereby constructing the optimal band-pass filter. 
Finally, further filter the target signal based on the constructed optimal band-pass filter and apply 
envelope demodulation spectral (EDS) analysis on the filtered signal. At last, satisfactory fault 
feature extraction effect can be achieved. To obtain key parameters of the optimal band-pass filter, 
this paper proposes a method based on time and frequency domain fusion indexes to balance the 
extraction of impact characteristics and cyclostationary characteristics while REB failure occurs. 
Compared with the existed single index based on time domain or frequency domain, better results 
could be obtained. Effectiveness and superiority of the proposed method are verified through 
simulation and experiments. 
Keywords: VME, weak fault, feature extraction, optimal frequency band construction, rolling 
element bearing, multi-objective information fusion. 

Nomenclature 

REB Rolling element bearing 
VME Variational mode extraction 
MIFBF Multi-objective information fusion band-pass filter 
EDS Envelope demodulation spectral 
OBF Optimal band-pass filter 
SK Spectral kurtosis 
FCF Fault characteristic frequency 
TFA Time frequency analysis 
EMD Empirical mode decomposition 
VMD Variational mode decomposition 
ARLW Anti-symmetric real Laplace wavelet 
SE Squared envelope 
SES Squared envelope spectrum 
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MOGWO Multi-objective grey wolf optimizer 
IMF Intrinsic mode function 
AM-FM Amplitude-modulated-frequency-modulated 

1. Introduction 

EDS is the most commonly used method for fault diagnosis of REB. Normally, a band-pass 
filter is needed to be constructed to filter the original signal of REB for better effect of EDS. 
Amounts of studies focusing on the construction of optimal band-pass filter (OBF) have been 
arising in recent years and spectral kurtosis (SK) [1] is the landmark of these methods. An adaptive 
and flexible SK method being from parameter selection is proposed, and its effectiveness in fault 
feature extraction of REB is verified thorough simulation and experiment [2]. To solve the 
problem of kurtosis being vulnerable to impulsive noise, a sparsity index called Gini index is 
introduced as one substitutes for OBF construction [3]. The concepts and definitions of spectral 
norm and more 𝐿ଶ/𝐿ଵ general spectral are given in paper [4], and their relationship with spectral 𝐿/𝐿 kurtosis for characterizing non-stationary bearing fault signals is also clarified. Besides, the 
performance of spectral being compared with kurtosis, smoothness index and Gini index 𝐿/𝐿 is 
conducted and presented in paper [5]. Most of the existed methods mainly base on single 
time-domain estimator or frequency-domain estimator to improve SK. However, single 
time-domain estimator based methods commonly have the defect of being vulnerable to noise, and 
fewer harmonics of fault characteristic frequency (FCF) in the envelope demodulation spectral 
might be induced by using single frequency-domain estimator based methods. Most of the existed 
methods enhancing the cyclostationary feature of rolling bearing fault vibration signal could 
obtain harmonics of FCF, which needs to take the FCF of REB as prior knowledge. Unfortunately, 
there exists errors between the actual FCF and the calculated FCF. A multi-objective information 
frequency selection method basing on time and frequency indexes is proposed in the paper to solve 
the above problem. However, the proposed MIFBF method still has difficulty in analyzing the 
early weak vibration signal of REB. That is, the features of other interferences components also 
might be enhanced and extracted by MIFBF. Thus, some signal filtering or separation methods 
are needed as preprocessing program to remove the interference components as much as possible 
prior to handling the original signal using the proposed MIFBF method.  

As a classical time frequency analysis (TFA) method being suitable for non-stationary and 
nonlinear vibration signal, empirical mode decomposition (EMD) has been used widely in fault 
diagnosis over the past decade [6-9] and it could decompose complicated signal into several simple 
modes for better feature extraction result. However, the inherent disadvantages such as mode 
mixing, false mode and lack of solid mathematical theoretical foundation support limit its 
application promotion [10]. Besides, since the algorithm basis of EMD is interpolation of local 
extrema, EMD is very sensitive to noise because the local extrema could be affected by noise [10]. 
In recent years, kinds of improved EMD methods have been proposed and used in fault diagnosis 
[11-14]. Although these improved EMD methods overcome the above shortcomings to a certain 
extent, most of them own the defect of low computational efficiency. Wavelet transform could 
also be used as the preprocessing program. However, suitable wavelet basis has to be chosen in 
advance for wavelet transform, which partially restricts its application. Recently, as a variational, 
non-recursive and noise robustness multi resolution decomposition method, variational mode 
decomposition (VMD) has better noise robustness performance than EMD in application of 
vibration signal decomposition, which has been introduced in the field of fault diagnosis [15-17]. 
Normally, only a specific mode relating to the fault source is in interest in the area of fault 
diagnosis, and VMD will produce unnecessary computational burden because it extracts all modes 
of the analyzed signal concurrently through decomposition. Besides, VMD also has the 
disadvantage of needing to determine the optimal number of modes in advance, and more or less 
number of mode selection will have great impact on the decomposition results. VME originating 
from VMD has the same concepts as VMD: the wiener filtering, Hilbert transform and the 
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variational [18], and it could extract a specific mode of the analyzed signal by using the prior 
knowledge of the analyzed signal, and computation efficiency could be improved greatly 
compared with VMD.  

Based on the above stated, an early weak fault feature extraction method of REB by integrating 
VME with MIFBF is proposed in the paper. Firstly, input the complicated vibration signal of 
rolling bearing early weak fault and the constructed reference signal using the prior knowledge 
into VME model, and the specific mode related to the fault source is extracted. Then, an optimal 
band pass filter establishment method basing on the fusion index of time and frequency domain 
for balancing the enhancement of impulsive and cyclostationary characteristics is used to analyze 
the extracted specific mode. Finally, EDS analysis is applied on the filtered vibration signal and 
the FCF with its harmonics of the faulty REB are extracted. 

2. VME 

VME originates from VMD, and it is necessary to introduce the theory of VMD simply. 
Mathematical structure of VMD includes main three steps: de-noise the original signal by 

Wiener filter, then establish single sideband analysis signal by Hilbert transform, and shift 
frequency to baseband by complex harmonic at last. Bandwidth indication of the 𝑘th intrinsic 
mode could be calculated using following equation: 𝐵𝑊 = ฯ𝜕௧ ൬𝛿ሺ𝑡ሻ + 𝑗𝜋𝑡൰ ∗ 𝑢ሺ𝑡ሻ൨ 𝑒ି௪ೖ௧ฯଶ, (1)

where ∗ represents convolution and𝛿is the Dirac distribution. The 𝑘th intrinsic mode function 
(IMF) [19-20] 𝑢(𝑡) = 𝐴(𝑡)cos(𝜙(𝑡))  is defined as amplitude-modulated-frequency-
modulated (AM-FM) signal, and 𝑤 is its center frequency. The following optimization problem 
is used by VMD while decomposing the input signal 𝑓(𝑡) into modes 𝑢(𝑡): min{𝑢}, {𝑤} ቊ𝛼 𝐵𝑊ଶ + ฯ𝑓(𝑡) − 𝑢(𝑡) ฯଶଶቋ, (2)

where the first term is used to make the modes compact and the second term is the reconstruction 
error which should be minimized, and 𝛼 is the weighting parameter for balancing the two terms. 

VME supposes the input signal 𝑓(𝑡) is decomposed into two signals-expected signal 𝑢ௗ(𝑡) 
and residual signal 𝑓(𝑡), namely: 𝑓(𝑡) = 𝑢ௗ(𝑡) + 𝑓(𝑡). (3)

The solution of expected signal 𝑢ௗ(𝑡) could be realized by minimizing the following criteria: 

𝐽ଵ = ฯ𝜕௧ ൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢ௗ(𝑡)൨ 𝑒ି௪௧ฯଶଶ.  (4)

Construct a filter with the following frequency response to filter the input signal 𝑓(𝑡) to 
minimize the problem of spectral overlap between the expected signal 𝑢ௗ(𝑡) and the residual 
signal 𝑓(𝑡): 

𝛽መห(𝑤) = 1𝛼(𝑤 − 𝑤ௗ)ଶ. (5)

The penalty function as following is introduced in order to further minimize the spectral 
overlap problem between the expected signal 𝑢ௗ(𝑡) and the residual signal 𝑓(𝑡): 
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𝐽ଶ = ‖𝛽(𝑡) ∗ 𝑓(𝑡)‖ଶଶ, (6)

where 𝛽(𝑡) is the impulse response of the constructed filter. Based on the above, the solution of 
expected signal 𝑢ௗ(𝑡) could be classified as the following constraint minimization problem: min௨,௪,ೝ{𝛼𝐽ଵ + 𝐽ଶ},
subject to:𝑢ௗ(𝑡) + 𝑓(𝑡) = 𝑓(𝑡), (7)

where 𝛼 is the parameter balancing 𝐽ଵ and 𝐽ଶ, which is selected as 0.5 in this study. The enhanced 
Lagrangian function as shown in following formula is used to solve the reconstruction constraint 
problem as encountered in Eq. (7): 

𝐿(𝑢ௗ ,𝑤ௗ , 𝜆) = 𝛼 ฯ𝜕௧ ൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢ௗ(𝑡)൨ 𝑒ି௪௧ฯଶଶ      +‖𝛽(𝑡) ∗ 𝑓(𝑡)‖ଶଶ + ‖𝑓(𝑡) − (𝑢ௗ(𝑡) + 𝑓(𝑡))‖ଶଶ      +⟨𝜆(𝑡), 𝑓(𝑡) − (𝑢ௗ(𝑡) + 𝑓(𝑡))⟩,  (8)

where 𝜆  is the Lagrange Multiplier. Let ‖𝑥(𝑡)‖ଶଶ = ‖𝑥ො(𝑤)‖ଶଶ , in which 𝑥ො(𝑤)  is the Fourier 
transform of 𝑥(𝑡), and ‖𝑥(𝑤)‖ଶଶ = ‖𝑥ො(𝑤 −𝑤ௗ)‖ଶଶ. The above equation could be simplified as 
following: 𝐿(𝑢ௗ ,𝑤ௗ , 𝜆) = 𝛼‖𝑗(𝑤 − 𝑤ௗ)[(1 + sgn(𝑤))𝑢ොௗ(𝑤)]‖ଶଶ      +ฮ𝛽መ(𝑤)𝑓(𝑤)ฮଶଶ + ฮ𝑓መ(𝑤) − (𝑢ොௗ(𝑤) + 𝑓(𝑤))ฮଶଶ       +ൻ𝜆መ(𝑤), 𝑓መ(𝑤) − (𝑢ොௗ(𝑤) + 𝑓(𝑤))ൿ.  (9)

The expected signal 𝑢ௗ(𝑡) in (𝑛 + 1)th iteration could be obtained by the following equation: 

𝑢ොௗାଵ ← argmin௨∈ ቊ4𝛼න (𝑤 −𝑤ௗ)ଶஶ
 |𝑢ොௗ(𝑤)|ଶ𝑑𝑤ඥ𝑎ଶ + 𝑏ଶ

      +2න ቤ𝑓መ(𝑤) − (𝑢ොௗ(𝑤) + 𝑓(𝑤)) + 𝜆መ(𝑤)2 ቤஶ


ଶ 𝑑𝑤
       + 2න ฬ 1𝛼(𝑤 − 𝑤ௗ)ଶ 𝑓(𝑤)ฬஶ

 𝑑𝑤ቋ .
 (10)

The first variable is eliminated based on (𝑤. 𝑟. 𝑡) 𝑢ොௗ(𝑤), and the above formula could be 
further simplified as following: 

𝑢ොௗାଵ(𝑤) = ቆ𝑓መ(𝑤) − 𝑓መ(𝑤) + 𝜆መ(𝑤)2 ቇቆ 11 + 2𝛼(𝑤 −𝑤ௗ)ଶቇ, (11)

where 𝑛  represents the number of iterations. Similarly, 𝑤ௗାଵ  and 𝑓መାଵ(𝑤 + 1)  could be 
expressed in the following two simplified expressions: 

𝑤ௗାଵ = 𝛼  𝑤|𝑢ොௗାଵ(𝑤)|ଶ𝑑𝑤 − 1𝛼ଶ  1(𝑤 −𝑤ௗ)ହ ห𝑓መ(𝑤)หଶஶஶ 𝑑𝑤𝛼  |𝑢ොௗାଵ(𝑤)|ଶ𝑑𝑤ஶ , (12)
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𝑓መାଵ(𝑤) = 𝛼ଶ  (𝑤 −𝑤ௗାଵ)ସ ቆ𝑓መ(𝑤) − 𝑢ොௗାଵ(𝑤) + 𝜆መ(𝑤)2 ቇஶ 1 + 𝛼ଶ(𝑤 − 𝑤ௗାଵ)ସ . (13)

The extraction results of VME are the expected signal 𝑢ௗ(𝑡) and residual signal 𝑓(𝑡), so 𝑓መାଵ(𝑤) could be ignored. The solution expressions of 𝑢ௗ(𝑡) and 𝑓(𝑡) could be rewritten as 
follows thorough algebraic operations: 

𝑢ොௗାଵ(𝑤) = 𝑓መ(𝑤) + 𝛼ଶ(𝑤 − 𝑤ௗାଵ)ସ𝑢ොௗ(𝑤) + 𝜆መ(𝑤)2[1 + 𝛼ଶ(𝑤 − 𝑤ௗାଵ)ସ][1 + 2𝛼(𝑤 − 𝑤ௗ)ଶ], (14)

𝑤ௗାଵ =  𝑤|𝑢ොௗାଵ(𝑤)|ଶ𝑑𝑤ஶ |𝑢ොௗାଵ(𝑤)|ଶ𝑑𝑤ஶ , (15)

where the Lagrange Multiplier 𝜆 could be updated using the following equation: 

𝜆መାଵ = 𝜆መ + 𝜏 ቈ 𝑓መ(𝑤) − 𝑢ොௗାଵ(𝑤)1 + 𝛼ଶ(𝑤 −𝑤ௗାଵ)ସ. (16)

3. MIFBF 

Wavelet transform is used for signal processing widely and the calculation equation could be 
expressed as following: 

𝑊𝑇(𝑎, 𝑏) = න 𝑥(𝑡) × 1√𝑎ାஶ
ିஶ 𝜓ᇱ ൬𝑡 − 𝑏𝑎 ൰𝑑𝑡, (17)

where 𝜓 represents the selected mother wavelet function, and 𝑎 with 𝑏 is its scale parameter and 
translation parameter. 𝑥(𝑡) is the signal to be analyzed. 𝜓ᇱ is the complex conjugate of the mother 
wavelet function. The following equation is the frequency domain expression of Eq. (17): 𝑊𝑇(𝑎, 𝑏) = 𝐹ିଵൣ𝑋(𝑓) × √𝑎𝜓(𝑎𝑓)൧, (18)

where 𝐹ିଵ represents the inverse Fourier transform, and the Fourier transform of 𝑥(𝑡) and 𝜓(𝑡) 
are represented by 𝑋(𝑓) and 𝜓(𝑓). Selection of the basis function has an important influence on 
the analysis result: the better analysis result could be obtained with the closer the basis function 
to the shape of the target extraction signal; and vice versa. Based on this ideology, Anti-symmetric 
real Laplace wavelet filter (ARLW) [21] has been proved to be fit for analyzing bearing impulse 
vibration signal while fault arises, and time-domain and corresponding frequency domain of 
ARLW could be calculated by the following two equations: 𝜓(𝑡) = exp (−𝜋𝜎|𝑡| sin(2𝜋𝛾𝑡)), (19)𝜓(𝑓) = 𝜎𝜋[𝜎ଶ + 4(𝑓 − 𝛾)ଶ]𝑖 − 𝜎𝜋[𝜎ଶ + 4(𝑓 + 𝛾)ଶ]𝑖, (20)

where 𝜎 and 𝛾 represent the bandwidth and center frequency of the designed band-pass filter. 
Here, the analyzed signal 𝑥(𝑡) using ARLW is filtered by a band-pass filter with band-pass 
interval [𝛾 − 𝜎/2, 𝛾 + 𝜎/2], and it could be expressed as following equation: 𝑊𝑇(𝛾,𝜎) = 𝐹ିଵ[𝑋(𝑓)𝜓ᇱ(𝑓)]. (21)
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Subsequently, squared envelope (SE) [22] and squared envelope spectrum (SES) [23] of the 
filtered signal could be obtained: 𝑆𝐸௫(𝛾,𝜎) = |𝑊𝑇(𝛾,𝜎)|ଶ, (22)𝑆𝐸𝑆௫(𝛾,𝜎) = 𝐹|𝑆𝐸௫(𝛾,𝜎)|. (23)

Some indicators basing on either SE [22] or SES [23] were proposed to select the optimal 
parameters 𝛾 and 𝜎 for construction the optimal wavelet filter in previous work. However, the 
optimal result could not be guaranteed using single indicator as the above discussed, and indicator 
basing on multi-objective optimization for balancing the extraction of impulse and cyclostationary 
characteristics of bearing should be designed. So the combination consideration of SE and SES 
which is named the negentropy [23] of SE and SES as being shown in Eqs. (24) and (25) are 
proposed to be taken as the objectives for seeking optimal band pass filter parameters to 
characterize both the cyclostationarity and impulsiveness: 

𝐼ௌா = 1𝑁 𝑆𝐸௫(𝛾,𝜎)1𝑁∑ 𝑆𝐸௫(𝛾,𝜎)ேୀଵ
ே
ୀଵ ln  𝑆𝐸௫(𝛾,𝜎)1𝑁∑ 𝑆𝐸௫(𝛾,𝜎)ேୀଵ , (24)

𝐼ௌாௌ = 1𝐿 𝑆𝐸𝑆௫(𝛾,𝜎)1𝐿 ∑ 𝑆𝐸𝑆௫(𝛾,𝜎)ఏୀଵ


ఏୀଵ ln  𝑆𝐸𝑆௫(𝛾,𝜎)1𝐿 ∑ 𝑆𝐸𝑆௫(𝛾,𝜎)ఏୀଵ , (25)

where 𝜃  represent the cyclic frequency. The multi-objective grey wolf optimizer (MOGWO) 
algorithm [24-25] is used to optimize the calculation process of Eqs. (24) and (25). 

Start 

Vibration data 
collection

Reference signal construction

Input the constructed signal with the 
original into the VME model

Subtract the output signal from the 
original signal in time domain

The remained signal is taken as object signal, and the time and 
frequency optimization indexes as shown in equation (24) and 

(25) are calculated

Optimized parameters of ARLW are obtained by using Multi-
objective information frequency band selection method

Filter the object signal by ARLW using 
the obtained optimized parameters

Impulsive and cyclostationary 
components are both filtered

Apply EDS analysis on the filtered 
components and fault features are 

extracted  
Fig. 1. Flow chart of the proposed method  
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4. Flow chart of the proposed method 

Flow chart of the proposed method is shown in Fig. 1 and its details are as follows: 
Step 1: Vibration signal of REB weak fault is collected. 
Step 2: Sine reference signal is constructed with known rotation speed of the diagnosis 

machinery. 
Step 3: Input the constructed signal with the original signal into VME calculation model, and 

output signal of VME is obtained. 
Step 4: Subtract the obtained output signal in step 3 from the original signal in time domain. 
Step 5: The remained components are taken as object signal 𝑥(𝑡) and selected for further 

analysis, and the time-domain optimization index and frequency-domain optimization index as 
shown in Eq. (24) and Eq. (25) are used commonly as the optimization indexes of the proposed 
multi-objective information frequency band selection method. 

Step 6: Optimized parameters of ARLW that is center frequency 𝛾  and bandwidth 𝜎  are 
obtained by using the proposed MIFBF method. 

Step 7: Construct a band-pass filter using the obtained optimized parameters: center 
frequency𝛾and bandwidth 𝜎. 

Step 8: Filter the remained components in step 4 using the constructed band-pass filter, and 
the impulsive and cyclostationary components are both filtered and retained due to the using of 
time-domain and frequency-domain optimization indexes simultaneously. 

Step 9: Apply EDS on the filtered signal and satisfactory fault feature results are extracted. 

5. Simulation 

Simulation is carried out in this section to verify the feasibility of the proposed method. A 
rolling bearing impulsive signal [26], a sine signal and their combined signal are presented in 
Fig. 2(a): sig1 is inner race fault signal of REB, sig2 is a sine signal and their combination is 
presented in the bottom figure. Firstly, a sine reference signal same as the sine signal sig2 as shown 
in Fig. 2(a) is constructed. Then input the reference signal with the combined signal into VME 
calculation model and the output signals are given in Fig. 2(b), in which the above figure is the 
object extraction signal and the below figure could be reviewed as the inner race fault signal, and 
it could be found that satisfactory extraction results could be obtained using VME without noise 
interference. 

 
a) Different components with their combination 

 
b) Extraction results of the  

combination signal using VME 
Fig. 2. Simulation combination signal without noise extracted using VME 
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a) Combined signal shown in Fig. 2(a)  

with different degree of noise 
b) EDS results of the signals  

as shown in Fig. 3(a)  
Fig. 3. Combined signal with different degree of noise and the corresponding EDS results 

 
a) Analysis results of the combined signal 

corresponding to state 1 as shown  
in Fig. 3(a) using VME  

 
b) Analysis results of the combined signal 

corresponding to state 2 as shown  
in Fig. 3(a) using VME 

 
c) Analysis results of the combined signal 

corresponding to state 3 as shown  
in Fig. 3(a) using VME 

 
d) Analysis results of the combined signal 

corresponding to state 4 as shown  
in Fig. 3(a) using VME 

Fig. 4. Analysis results of the combined signal corresponding  
to the four states as shown in Fig. 3(a) using VME 

To verify the noise robustness of the proposed method, different degrees of white noise are 
added into the combined signal as shown in Fig. 2(a), and their corresponding time-domain 
waveform diagram is shown Fig. 3(a). EDS of the signal shown in Fig. 3(a) are given in Fig. 3(b) 
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basing on which the fault feature would become unidentified with the increasing interference of 
white noise. Fig. 4 gives the feature extraction results of the signals shown in Fig. 3(a) based on 
VME directly, and the noise robustness of VME could be verified by the final EDS analysis results 
as shown in Fig. 4. As for the fault diagnosis of REB, there should be harmonics of FCF in the 
ideal spectrum structure of EDS. In addition, there also should be modulation when inner race 
fails. However, neither of the above two features could be observed on the last figure of Fig. 4, 
and the reason is that feature extraction effect using VME directly would not be ideal when the 
noise interference reaches a certain level. 

Apply step 6 to step 9 of the proposed method as described in Fig. 1 on the analysis signal sig1 
in Fig. 4(d), and the corresponding analysis result is shown in Fig. 5. The parameters of MOGWO 
are set same as reference [25], and the calculated values of SE Nenentropy and SES Nenentropy 
are presented in Fig. 5(a) after iteration. Then the average value of SE and SES as shown in 
Fig. 5(a) is calculated and the maximum average value of 1.36 is selected as the best optimal one. 
Subsequently, the optimal couple of 𝛾 and 𝜎 are identified as 3826 Hz and 602 Hz respectively as 
shown in Fig. 5(b). Filter the sig1 as shown in Fig. 4(d) by ARLW using the obtained optimal 
parameters 𝛾 and 𝜎, and time domain waveform of the filtered signal is shown in Fig. 5(c) from 
which the impulsive and cyclostationary characteristic could be identified evidently. At last, apply 
EDS on the filtered signal and the corresponding result is shown on Fig. 5(d), and it can be seen 
that both the harmonic frequency of the FCF and modulation phenomenon are extracted basing on 
the last EDS result, which verifies the superiority of the proposed method. 

 
a) Calculated optimal indexes of the analysis  

signal sig1 as shown in Fig. 4(d) 

 
b) Calculated optimal parameters of ARLW basing 

the obtained results as shown in Fig. 5(a) 

 
c) Time domain waveform of the filtered signal by ARLW  

using the calculated optimal parameters as shown in Fig. 5(b) 

   
d) EDS result of the signal as shown in Fig. 5(c) 

Fig. 5. Analysis results of the target impulse components sig1 as shown in Fig. 4(d)  
using the proposed multi-objective information frequency band selection method 
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Envelope analysis is one of the most advantageous methods for rolling element bearing 
diagnostics, but finding a suitable frequency band for demodulation has been a substantial 
challenge for a long time. Introduction of the SK and Kurtogram solved this problem to some 
extent, but in situations where the ratio of signal to noise (SNR) is very low or in the presence of 
non-Gaussian noise, these methods will fail, and the Autogram [22] method overcomes the above 
shortcomings, which is used here for comparison to verify the advantage of the proposed method. 
Apply Autogram on the combined signal corresponding to state 4 as shown in Fig. 3(a) and the 
results are presented in Fig. 6, in which though the FCF could be extracted roughly, the effect is 
far less than the proposed method. 

 
Fig. 6. Analysis results of the combined signal corresponding  

to state 3 as shown in Fig. 3(a) using autogram 

6. Experiment 

The analyzed vibration signal is collected from accelerated bearing life test, which is provided 
by Hangzhou Bearing Test & Research Center. It simultaneously hosts four REBs on one shaft 
driven by an AC motor and coupled by rubber belts. The test rig is shown in Fig. 7. A new bearing 
will be installed if one is failed. Select one of the test bearings as the study object. The parameters 
the fault characteristic frequencies of the selected analyzed test rolling bearing are shown in 
Table 1 and Table 2 respectively. The inner race fault of the selected test rolling bearing is shown 
in Fig. 8. Same as reference [26], the vibration data at 2297th minute over one of the selected test 
bearing’ whole life is used for analysis using the proposed method. Kurtosis index curve over the 
full life cycle of the analyzed bearing is shown in Fig. 9, and time domain waveform of the 
vibration data at 2297th minute is given in Fig. 10 from which the impulse characteristic is buried 
by the strong background noise. EDS analysis result of the analyzed signal is shown in Fig. 11, 
and the distribution of the spectral lines is chaotic from which the FCF of the test bearing could 
not identified.  

Table 1. Parameters of the test rolling bearing 

Type Ball 
number 

Ball diameter 
(mm) 

Pitch diameter 
(mm) 

Contact 
angle 

Motor speed 
(rpm) 

Load 
(kN) 

6307 8 13.494 58.5 0 3000 12.744 
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Table 2. Fault characteristic frequencies of test rolling bearing 𝑓 𝑓 𝑓 𝑓 𝑓 
50 19 102 246 153 

 

 
Fig. 7. The test rig 

 
Fig. 8. Inner race fault of the test rolling bearing 

 
Fig. 9. Kurtosis index curve over the full life cycle of the test bearing 

 
Fig. 10. Time domain waveform of test bearing early weak fault  

 
Fig. 11. EDS of the signal as shown in Fig. 10 

As for VME based fault feature extraction of REB, the ideal reference signal is to establish an 
impact reference signal with the same frequency as the FCFs of REB. However, there often exists 
error between the actual FCF and the theoretical FCF due to installation and manufacturing errors 
and other reasons, which will have a great impact on the extraction effect of VME. Therefore, a 
sinusoidal reference signal could be established based on the rotational speed of the rotating shaft 
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where the bearing is located, and input it with the original weak fault signal of bearing into VME 
model. The expected output signal of VME is the rotation frequency, harmonic frequency and 
other noise components. Then the expected output signal is subtracted from the original signal in 
time domain, and the residual signal is the impulse characteristic component of bearing. Based on 
the above stated and the flow chart of the proposed method as described in Fig. 1, construct a sine 
reference signal with frequency same as the known rotating frequency, that is 50 Hz. The 
amplitude of the reference signal could be selected as half of the RMS of the signal shown in 
Fig. 10 (the RMS of the signal shown in Fig. 10 is about 0.11 through calculation), and its phase 
is set as 0. Then input the reference signal with the original signal as shown in Fig. 10 into VME 
model, and the final extraction result is shown in Fig. 12: sig2 is the VME model extraction signal, 
that is, the sine, sine harmonics and other interference components in the original signal, and sig1 
is the impact component buried in the original signal. Comparing sig1 with the original signal, the 
impulse characteristics are enhanced obviously, because the kurtosis index of the former is about 
twice that of the latter through calculation. The EDS analysis result of sig1 is shown the below 
figure of Fig. 12, from which the inner race FCF still could not be extracted. In order to obtain 
good EDS analysis results, it is usually necessary to construct a band-pass filter based on the 
optimal parameters, namely the center frequency and bandwidth, to band-pass filter the rolling 
bearing signal, and then perform envelope spectrum analysis on the filtered signal. As proposed 
in Eqs. (24) and (25), and the calculated values of SE Nenentropy and SES Nenentropy are 
presented in Fig. 13(a) after iteration, and parameters of MOGWO are set same as reference [24]. 
Then the average value of SE and SES as shown in Fig. 13(a) is calculated and the maximum 
average value of 1.32 is selected as the best optimal one. Subsequently, the optimal couple of 𝛾 
and 𝜎 are identified as 1473 Hz and 962 Hz respectively as shown in Fig. 13(b). Filter the impulse 
component sig1 as shown in Fig. 12 by ARLW using the obtained optimal parameters 𝛾 and 𝜎, 
and the time domain waveform of the filtered signal is shown in Fig. 13(c) from which the 
impulsive and cyclostationary characteristic could be identified evidently. At last, apply EDS on 
the filtered signal and corresponding result is shown on Fig. 13(d) basing on which not only the 
inner race FCF with its harmonics are extracted, but also the modulation frequency that is rotating 
frequency is also extracted. 

 
Fig. 12. Analysis results of the signal as shown in Fig. 10 using VME 

Same as simulation, Autogram is applied on the original signal as shown in Fig. 10 to further 
highlight the superiority of the proposed method, and the corresponding analysis result is shown 
in Fig. 14: though the fault characteristic frequency 245 Hz is extracted, both its harmonics and 
the side frequency are not extracted. 
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a) Calculated optimal indexes of the analysis  

signal sig1 as shown in Fig. 12 
b) Calculated optimal parameters of ARLW basing 

the obtained results as shown in Fig. 13(a) 

 
c) Time domain waveform of the filtered signal by ARLW  

using the calculated optimal parameters as shown in Fig. 13(b) 

  
d) EDS of the signal as shown in Fig. 13(c) 

Fig. 13. Analysis results of the target impulse components sig1 as shown in Fig. 12  
using the proposed Multi-objective information frequency band selection method 

 
Fig. 14. Analysis results of the original signal as shown in Fig. 10 using autogram 
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7. Conclusions 

VME originating from VMD is used for extracting the target impulse component with the prior 
knowledge of the analyzed signal, and it has advantage of much higher calculation ratio compared 
with VMD. However, it is often difficult to achieve satisfactory results using VME alone in the 
case of particularly severe noise interference, and it is necessary to construct a band-pass filter 
based on the optimal parameters to further handle the extracted signal by VME. Most of the existed 
SK and improved methods originating from SK have the disadvantage of basing on time domain 
or frequency domain index, and the fusion indexes of time and frequency domain are used to 
balance the enhancement of impulsive and cyclostationary characteristics to establish the best 
band pass filter of ARLW in the paper. Besides, MOGWO is introduced into the parameters 
solution to increase the calculation ratio of ARLW. Finally, EDS analysis is applied on the filtered 
vibration signal and the FCF with its harmonics of fault REB are extracted. Effectiveness of the 
proposed method is verified through simulation and experiments. Besides, its advantage over the 
related method such as Autogram is also presented. 
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