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Abstract. In recent years, many studies have been conducted on remote machine condition 
monitoring and on-board bearing fault diagnosis. To accurately identify the fault pattern, large 
amounts of vibration data must be sampled and saved. However, because the bandwidth of the 
wireless communication is limited, the volume of transmitted data cannot be too large. Therefore, 
raw data are usually compressed before transmission. All of the previous compression methods 
use a sample-then-compress framework; however, in this work, we introduce a compression 
method based on a Compressive Sensing that can simultaneously collect and compress raw data. 
Additionally, a hybrid measurement matrix is designed for Compressive Sensing and used to 
compress the data and make it easy to conduct fault diagnosis in the compression domain. This 
process can significantly reduce the computational complexity of on-board fault diagnosis. The 
experimental results demonstrate that the proposed compression method is easy to use and the 
reconstruction process can recover the original signal perfectly. Above all, the compressed signal 
can preserve the time series information of the original signal, and in contrast to fault diagnosis 
using the original signal, the accuracy of the fault diagnosis based on conventional methods in the 
compression domain is not significantly decreased. 
Keywords: rolling bearing, remote fault diagnosis, compressive sensing, data compression. 

1. Introduction 

Rolling bearings are widely used in a number of different industries. Fault diagnosis is a useful 
method for increasing the reliability and performance of the rotating components of rolling 
bearings. In rotating machines, information is gathered by an acquisition system for use in the 
fault diagnostics system. The acquisition system must simultaneously sample vibrations or other 
signals through many channels at a high sampling speed to assure diagnostic accuracy. Therefore, 
the amount of raw data required for fault diagnosis is often massive. Thus, for fault diagnostic 
systems, especially for those online, as well as for remote fault diagnostic systems, it is necessary 
to save real-time data on hard disks for a long period of time, which can sometimes be difficult. 
Moreover, with the development of remote fault diagnostic techniques, high-performance data 
compression and reconstitution techniques are becoming increasingly popular, and these 
techniques will be useful for reducing the cost of large data transmissions and will further improve 
the performance of remote fault diagnostic systems. A compression algorithm is required for 
decompression; therefore, when a maintenance center receives compressed data, the center can 
ensure that the received data can be reconstructed into its temporal waveform and that as little 
information as possible is lost to maintain accurate fault diagnosis. 

The existing signal compression methods can be categorized into four types: direct data 
compression methods, parameter extraction methods, transformation methods, and direct sparse 
representation compression methods.  

Direct compression methods directly handle and compress the original data. Ref. [1] compares 
different direct compression techniques used for Electrocardiogram data. Parameter extraction 
methods design a pre-processor to extract features from the original signal first and then compress 
the signal based on the extracted features. For example, Ref. [2] presents a comparison between 
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the performances of neural network and discrete cosine transform for near-lossless compression 
of EEG signals. Unfortunately, neural network based methods require a large amount of 
computing resources, which is difficult to achieve from a remote port. Transformation 
compression methods include Fast Fourier Transform (FFT) [3], wavelet transform (WT) [4], and 
Hilbert–Huang transform (HHT) [5]. In regard to rolling bearing fault diagnosis, the FFT-based 
methods are not suitable for the analysis of bearing vibration signals, which are always 
nonstationary signals. Ref. [6] studied the performance of the WT-based data compression 
methods for different types of signals; however, no general guidelines have been proposed for 
properly selecting a wavelet basis function. Incorrect use of wavelet base functions will lead to 
poor compact support and make wavelet coefficients sparse, making it difficult to achieve proper 
data compression. HHT is derived from the principals of empirical mode decomposition (EMD) 
and the Hilbert Transform method and is an adaptive signal processing method for analyzing 
nonlinear and non-stationary signals. However, the EMD process will generate undesirable 
intrinsic mode functions (IMFs) in the low-frequency region, and this process depends on the 
analyzed signal; therefore, the first obtained IMF may cover a frequency range that is too large 
and, consequently, may not contain the mono-component. Direct sparse representation 
compression methods employ an overcomplete dictionary of frequent occurring patterns. When 
these patterns appear in new signals, they are encoded with a reference to the dictionary. Ref. [7] 
uses a multiscale sparse dictionary to approximate seismic data. When sample data are in the 
remote port, direct sparse representation compression methods require complex calculations; 
however, for fast onboard signal acquisition systems and fault diagnosis systems, these methods 
are not very effective.  

All of the previous compression methods use a sample-then-compress framework, which uses 
a K-sparse vector to represent the N-sample’s original signal 𝑥. Unfortunately, this sample-then-
compress framework has three inherent inefficiencies [8]. First, the initial number of samples 𝑁 
may be large even if the desired 𝐾 is small. Second, the set of all 𝑁 transform coefficients must 
be computed even though all but 𝐾 of them will be discarded. Third, the locations of the large 
coefficients must be encoded, thus introducing overhead. To overcome these shortcomings, 
Donoho [9], Candes [10] and Tao introduced a Compressive Sensing (CS) theory that directly 
acquires a compressed signal representation, without going through the intermediate stage of 
acquiring 𝑁 samples, which means that signal sampling and compressing can now be achieved 
simultaneously. This characteristic reduces the amount of sampled data and is significantly 
different from previous methods. Therefore, data compression methods based on CS theory can 
simply compress the original data and reconstruct them perfectly in the maintenance center. 
Additionally, the hardware implementation of CS is simpler than previous techniques. As a 
practical example, consider a single-pixel, compressive digital camera that directly acquires 𝑀 
(𝑀 ≪ 𝑁) random linear measurements without first collecting the 𝑁 pixel values [11].  

In recent years, many scholars combine deep learning with compressive sensing to design a 
variety of deep compressed sensing (DCS) neural networks. DCS generally includes block based 
DCS and frame based DCS. These researches apply convolutional neural network and other deep 
learning methods to the reconstruction algorithm of compressed sensing. DCS significantly 
improve the accuracy of data reconstruction, but the sampling part still uses the traditional 
compressive sensing method. For example, in reference [11], convolutional neural network is used 
for reconstruction, however its data compression part is still carried out using the random sensing 
matrix. Ref. [12] design sampling network, preliminary reconstruction network and deep 
reconstruction network. However, the essence of sampling network is still random sensing matrix, 
and the sampling network does not participate in the training. Therefore, this network is consistent 
with the traditional compressive sensing matrix. 

In fault diagnosis research, we can consider Haile’s research [13], in which CS is used in 
structural health monitoring and the cost of collecting monitoring data is reduced. Furthermore, in 
Ref. [14], CS is combined with wireless sensor monitoring and is used in a coalmine. In these 
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studies, monitoring data are analyzed after data recovery [15]; however, in rolling bearing fault 
diagnosis, it would be advantageous to manipulate the compression data in the measurement 
domain to reduce the computational resources consumption without data reconstruction. In this 
paper, a hybrid measurement matrix to compress the original data and make them easy to recover 
is designed. The advantage of this design is that the compressed data can reserve the time-
frequency characteristics of the original data so that simple conventional methods can be used for 
fault diagnosis in the measurement domain. The experimental results show that this process not 
only significantly reduces the computational complexity in the remote data acquisition system but 
also the fault diagnostic accuracy is not significantly reduced. The trade-off of computational 
complexity and fault diagnostic accuracy can make a difference. 

The remainder of this paper is organized as follows: In Section 2, the proposed method is 
described in detail in Section 3, the effectiveness of the proposed method is demonstrated with 
two experiences; and finally, conclusions are drawn in Section 4. 

2. Methodology 

The procedures of this study are shown in Fig. 1. 

 
Fig. 1. Architecture of the study 

First, a hybrid measurement matrix is designed and used to accurately adjust the sensor of CS 
in the data acquisition system. Second, after the data acquisition system samples signals, the 
original signals can then be compressed through the hybrid measurement matrix. Third, in the 
remote port, the compressed signals retain the time series features of the original signals and 
conventional methods can be used to conduct fault diagnosis. Finally, the reconstruction algorithm 
can be used to recover the original signals in the maintenance center. 

2.1. A brief introduction of the compressive sensing theory 

This section gives a short introduction of CS theory. CS theory is a novel sensing/sampling 
paradigm that goes against common wisdom in data acquisition. CS is a new method to capture 
and represent compressible signals at a rate significantly below the Nyquist rate. In this method, 
many natural signals have concise representations when expressed in a convenient basis. In CS 
theory, similar to sparse representation, we assume that a signal can be sparse in some domain. A 
foundation for transform coding can be formed because the compressible signals are approximated 
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well by K-sparse. Therefore, a one-dimensional signal 𝑥 in 𝑅ே with length 𝑁 can be represented 
as: 𝑥 = Ψ𝜃, (1)

where Ψ is a 𝑁 × 𝑁 dictionary matrix, 𝜃 is the coefficient sequence of 𝑥, and there are only 𝐾 (𝐾 ≪ 𝑁)  coefficients that are nonzero in 𝜃. 
The measurement process computes 𝑀 < 𝑁 inner products between 𝑥 and a measurement 

matrix as: 𝑦 = Φ𝑥, (2)

where Φ is a 𝑀 × 𝑁 matrix and 𝑦 is a 𝑀 × 1 vector; in other words, 𝑦 is a linear measurement or 
a condensed representation of 𝑥. 

Then, by substituting Ψ from Eq. (1), 𝑦 can be written as: 𝑦 = Φ𝑥 = ΦΨ𝜃 = Θ𝜃. (3)

In data acquisition systems, Φ is fixed and does not depend on the signal 𝑥. Through the data 
sampling process, we can obtain a compressed signal 𝑦 and then only transmit 𝑦 to the 
maintenance center. When the maintenance center receives the compressed signal 𝑦, the process 
of recovering 𝑥 ∈ 𝑅ே from 𝑦 ∈ 𝑅ெ starts. As we know, 𝑥 is K-sparse and a sufficient condition 
for a stable solution for both K-sparse and the compressible signal is defined by the measurement 
matrix Φ and dictionary matrix Ψ satisfying a restricted isometry property (RIP). The RIP can be 
achieved with high probability by simply selecting Φ as a random matrix. 

The last problem is to design a reconstruction algorithm to recover 𝑥 from 𝑀 measurements 
of 𝑦 only. The reconstruction algorithm aims to find the signal’s sparse coefficient vector 𝜃 in the (𝑁 −𝑀)-dimensional translated null space. In general, the original signal 𝑥 is reconstructed from 
the compression signal 𝑦 using the following optimization process: 𝜃෠ = argmin‖𝜃‖ଵ    𝑠. 𝑡.    𝑦 = Θ𝜃, (4)

where ‖𝜃‖ଵ is the ℓଵ norm of the vector 𝜃. This convex optimization problem conveniently 
reduces to a linear program known as basis pursuit (BP) [20] and orthogonal matching pursuit 
(OMP) [21]. This process can recover K-sparse signals exactly how they were and closely 
approximate the original signal 𝑥 with high probability by using only 𝑀 ≥ 𝑐𝐾log(𝑁/𝐾) 
independent and identically distributed (iid) Gaussian measurements. 

2.2. Hybrid compressive sampling 

In general, the measurement matrix of compressive sensing is a Gaussian matrix or another 
random matrix. Every row of the measurement matrix can be seen as a sensor and every sensor 
has a measurement from the original signal. When using a random matrix as the measurement 
matrix, each compressed signal value can be regarded as a weighted sum of values for each of the 
original signals. Therefore, the time series information of the original signal cannot be reserved in 
the compressed signal. In this paper, a hybrid measurement matrix is designed to compress the 
original data and allow the compressed signal to retain the time series information of the original 
signal; consequently, we can expediently use conventional methods for fault diagnosis in the 
measurement domain.  

To make the compressed signal retain the original time series information, a cycle peak 
measurement matrix is designed such that every row has a 𝑛௣ (𝑛௣ = 𝑛/𝑚) coefficient of 1, and 
the rest are 0. The location of these nonzero peaks in the 𝑗-th row of the measurement matrix is 
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1 + (𝑗 − 1) × 𝑛௣ to 𝑗 × 𝑛௣ column. For example, if 𝑛௣ = 2 then the cycle peak measurement 
matrix is: 

⎣⎢⎢
⎢⎢⎡1 1 0 0 0 0 0 0 0 0 0 00 0 1 1 0 0 0 0 0 0 0 00 0 0 0 1 1 0 0 0 0 0 00 0 0 0 0 0 1 1 0 0 0 00 0 0 0 0 0 0 0 0 ⋱ 0 00 0 0 0 0 0 0 0 0 0 1 1⎦⎥⎥

⎥⎥⎤. (5)

Every row of the cycle peak measurement matrix can be regarded as a sensor, and the rows in 
the matrix are unrelated to each other, ensuring the effectiveness of the measurement. Cycle peak, 
in this paper, is defined as the peak of a square wave; however, it can also be the normal 
distribution. If this measurement matrix is used directly, the compressed signal can reserve the 
original time series information; however, the compressed signal cannot keep most of the 
information from the original signal. Therefore, the reconstruction effect is very poor. To correct 
this shortcoming, we introduce a hybrid measurement matrix consisting of a cycle peak matrix 
and a random matrix, as shown in Eq. (6): Φ = 𝑐௣Φ௣ + 𝑐௥Φ௥ , (6)

where Φ௣ is a cycle peak matrix, Φ௥ is a Gaussian random matrix, 𝑐௣ is a time series property 
coefficient, and 𝑐௥ is a random property coefficient.  

Based on this measurement matrix, the compressed signal can be used for fault diagnosis based 
on conventional diagnostic methods though the compression process. 

2.3. Compressive feature extraction and fault classification 

Recently, EMD has become a popular feature extraction method. The Support Vector Machine 
(SVM) is a simple and traditional fault diagnosis method. Here, two methods are introduced. 

In the EMD process, the main function of EMD is to decompose the original signal into a 
series of IMFs ranging from high frequencies to low frequencies based on an iterative sifting 
process. Then, the IMF can represent the simple oscillatory mode in the signal, with the 
assumption that the signal consists of different simple intrinsic modes of oscillation (i.e., different 
simple IMF).  

From the definition, the signal 𝑥(𝑡) is decomposed into 𝑛 intrinsic modes with a residue 𝑟(𝑡): 

𝑥(𝑡) = ෍𝐼𝑀𝐹௜(𝑡) + 𝑟(𝑡)௡
௜ୀଵ . (7)

Thus, the signal can be decomposed into 𝑛-empirical modes with residue 𝑟(𝑡), which is the 
mean trend of 𝑥(𝑡). 

EMD energy entropies of different signals illustrate that the energy of the signal is at different 
frequency bands that change when bearing fault occurs. To illustrate this change, the energy of 
each IMF is calculated. 

The energies of the 𝑛 IMFs are 𝐸ଵ,𝐸ଶ, … respectively: 

𝐸௜ = න |𝐼𝑀𝐹௜(𝑡)|ଶ𝑑𝑡ାஶ
ିஶ ,    𝑖 = 1,2, … ,𝑛. (8)

In [𝐸ଵ,𝐸ଶ, … ,𝐸௡] vector, 𝐸௜ is arranged from high to low according to the value. We only saved 
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a few components that accounted for more than 90 % of the total energy of 𝑥(𝑡): ෍𝐸௜௡ ≥ 0.9 × 𝐸(𝑥). (9)

There are resonant frequency components created in the vibration signals of a bearing with 
different defects when it is running. The energy of the vibration signal fluctuates with the 
frequency distribution. As a result of the EMD decomposition being orthogonal, the sum of the n 
IMFs' energy should be equal to the total energy of the original signal if the residue 𝑟(𝑡) is 
disregarded. As the IMFs comprise multiple frequency components, [𝐸ଵ,𝐸ଶ, … ,𝐸௡] creates a 
frequency domain energy distribution of bearing vibration signals. 

To illustrate this change case as mentioned above, the EMD energy feature concept is defined 
as: 𝐹 = [𝐸ଵ 𝐸⁄ ,𝐸ଶ 𝐸⁄ , … ,𝐸௡ 𝐸⁄ ]. (10)𝐸 is the 2-norm of [𝐸ଵ,𝐸ଶ, … ,𝐸௡]: 
𝐸 = ට𝐸ଵଶ + 𝐸ଶଶ + ⋯+ 𝐸௡ଶ. (11)

In this paper, only the energies of the 𝑚 largest weights, as the features of original signals or 
compressed signals are saved. 

An SVM is a classifier that is formally defined by a separating hyperplane. The operation of 
the SVM algorithm is based on finding the hyperplane that gives the largest minimum distance to 
the training examples. 

A hyperplane is defined as: 𝑓(𝑥) = 𝛽଴ + 𝛽்𝑥, (12)

where 𝛽 is the weight vector and 𝛽଴ is the bias. For convenience, among all of the possible 
representations of the hyperplane, the hyperplane that is chosen is: |𝛽଴ + 𝛽்𝑥| = 1, (13)

where 𝑥 symbolizes the training examples closest to the hyperplane. In general, the training 
examples that are closest to the hyperplane are called support vectors. This representation is 
known as the canonical hyperplane. 

The distance between a point 𝑥 and a hyperplane is: 

𝐷 = |𝛽଴ + 𝛽்𝑥|‖𝛽‖ = 1‖𝛽‖. (14)

The margin, denoted as ℳ, is twice the distance to the closest examples: 

ℳ = 2‖𝛽‖. (15)

Finally, the problem of maximizing ℳ is equivalent to the problem of minimizing a function 𝐿(𝛽) subject to some constraints. The constraints model for the requirements of the hyperplane 
are used to correctly classify all of the training examples 𝑥௜. Formally: 
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minఉ,ఉబ 𝐿(𝛽) = 12 ‖𝛽‖ଶ     𝑠. 𝑡.    𝑦௜(𝛽଴ + 𝛽்𝑥௜) ≥ 1, (16)

where 𝑦௜ represents each of the labels of the training examples. This is a Lagrangian optimization 
problem that can be solved using Lagrange multipliers to obtain the weight vector 𝛽 and the bias 𝛽଴ of the optimal hyperplane. 

3. Experimental results 

The bearing data used in this paper are taken from the Case Western Reserve University 
Bearing Data Center. The data consist of one set of normal bearing data and three common types 
of bearing defects (i.e., inner race defect, ball defect, and outer race defect). Defects ranging from 
0.007 to 0.040 inches in diameter are identified at the inner raceway, rolling element (i.e., ball), 
and outer raceway separately. The motor speed is 1750 r/min, and the sampling rate is 12 kHz. 
Vibration data was collected using accelerometers, which were attached to the housing with 
magnetic bases. 

Each pattern is induced in 36 samples and tested in 12 samples; every example has 2048 points 
where the vibration signal is determined. For classification purposes, the four patterns are marked 
as one, two, three, and four. The training matrix used is 𝑅ଶ଴ସ଼×ଵସସ, and the column arrangement 
can be seen in Table 1. The testing matrix used is 𝑅ଶ଴ସ଼×ସ଼, and the column arrangement can be 
seen in Table 2. 

Table 1. Training matrix arrangement 
Column number 1-36 37-72 73-108 109-144 

Pattern Normal Inner race defect Ball defect Outer race defect 

Table 2. Testing matrix arrangement 
Column number 1-12 13-24 25-36 37-48 

Pattern Normal Inner race defect Ball defect Outer race defect 

In this study, two experiments are conducted. In the first experiment, a hybrid measurement 
matrix is used to compress the original bearing data and reconstruct it based on OMP. In the second 
experiment, a fault diagnosis is conducted based on the compressed signal in the measurement 
domain. A comparison of the fault diagnosis is conducted based on the original data and the 
compressed signal and discussed in detail. 

The measurement matrix used in all experiments is a hybrid compression matrix consisting of 
a cycle peak matrix Φ௣ ∈ 𝑅ଵ଴ଶସ×ଶ଴ସ଼ and a Gaussian random matrix Φ௥ ∈ 𝑅ଵ଴ଶସ×ଶ଴ସ଼. Normally, 
we can set empirical parameter 𝑐௣ = 1 then 𝑐௥ can be a smaller value that means 𝑐௥ < 0.05 × 𝑐௣. 
In this paper we use 𝑐௥ = 0.018: Φ = Φ௣ + 0.018 × Φ௥ . (17)

These matrices are expressed in the form of a grayscale image. Below, Fig. 2 shows the cycle 
peak matrix, and Fig. 3 shows the Gaussian random matrix. 

In this paper, we set 𝑀 = 1024 and 𝑁 = 2048, so the compression ratio is 50 %. When using 
the proposed method, we can save half of the storage space. 

3.1. Comparison of the original signal and the reconstructed signal 

In this experiment, the original bearing signal is compressed and reconstructed. The 
measurement matrix used is a hybrid measurement matrix, the dictionary matrix is a Fourier 
matrix, and the reconstruction algorithm used is OMP.  

The normal signal and inner race defect signal are shown as examples below. Fig. 4 represents 
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the normal signal and Fig. 5 represents the inner race defect signal, where the red lines are the 
original signals and the blue lines are the reconstruction signals. 

 
Fig. 2. Cycle peak matrix 

 
Fig. 3. Gaussian random matrix 

 
Fig. 4. The reconstruction of the normal signal 

The results show that the original signal and the reconstruction signal are very similar. The 
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reconstruction achieved an average normalized absolute error of 5.3 %. These results suggest that 
we can use the reconstruction signal to conduct further diagnosis and assessment in the 
maintenance center. 

 
Fig. 5. The reconstruction of the inner race defect signal 

3.2. Fault diagnosis measurement based on the compressed signal  

To verify whether the hybrid compression matrix could retain the time series of the original 
signal, EMD is used to obtain the time-frequency characteristics of the compressed signal.  

 
Fig. 6. IMF 
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First, the original vibration signals were decomposed into some IMFs by EMD. The IMF 
vectors of every signal had different dimensionality because EMD can self-adaptive decompose 
signals, as shown in Fig. 6. It is clearly shown that only the first several IMFs had dominant fault 
information. According to Eq. (9), we saved the first nine IMFs. 

Through the EMD process, we only save the first nine IMFs and use the energy of these IMFs 
as a signal feature. Therefore, the energy-training matrix used is a 9×144 matrix. For simplicity 
and visualization, only the maximum three energies of each training sample are retained. The new 
energy-training matrix is a 3×144 matrix, as shown in Fig. 6. 

 
Fig. 7. Compressed signal features 

As seen in Fig. 7, the time-frequency characteristics extracted from compressed signals of 
different patterns can be easily separated. SVM can be used as a simple yet common method of 
conducting fault diagnosis. The results are shown in Fig. 8, and the accuracy of the fault diagnosis 
method used is determined to be 93.75 %. 

 
Fig. 8. Fault diagnosis results based  

on the compressed signal 

 
Fig. 9. Fault diagnosis results based  

on the original signal 

In contrast with the original signal, the original signal is also used to conduct fault diagnosis 
based on the EMD and SVM methods. Through the same process, the results of this fault diagnosis 
method are shown in Fig. 9, and the accuracy of the fault diagnosis method used in this case is 
97.92 %. Table 3 shows the differences in diagnostic accuracy between reconstruction and the 
original signal. 

From Table 3, it can be observed that the fault diagnosis based on the compressed signal is 
only lower than the fault diagnosis based on the original signal in the ball defect diagnostic. This 
may be due to arbitrary feature dimensionality reduction and a simple classification algorithm. 

We achieved better results when we utilize regular dimensionality reduction approaches, like 
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Kernel Principal Component Analysis (KPCA), and more sophisticated classification algorithms, 
such Radial Basis Function Networks (RBF), as demonstrated in Table 4. 

Table 3. Detail diagnosis accuracies 
Signal  Normal Inner race defect Ball defect Outer race defect 

Original signal 100 % 100 % 100 % 91.67 % 
Compressed signal  100 % 100 % 83.33 % 91.67 % 

Table 4. Detail diagnosis accuracies 

Signal  Normal Inner race 
defect 

Ball 
defect 

Outer race 
defect 

Original signal 100 % 100 % 100 % 91.67 % 
Compressed signal  100 % 100 % 83.33 % 91.67 % 

Compressed signal with KPCA and RBF 100 % 100 % 100 % 100 % 

Only for demonstrating that the compressed signal could preserve the time-series information 
and characteristic of the original signal, we employed this simple technique.  

4. Conclusions 

In comparison with previous compression methods that use a sample-then-compress 
framework, the compression method based on the Compressive Sensing theory can effectively 
collect and compress raw data simultaneously. In this paper, a hybrid measurement matrix is 
designed to compress the original signal and allow the compression signal to reserve the 
time-series information of the original signal. The experimental results show that the compression 
signal can be used for fault diagnosis based on conventional methods. The trade-off of 
computational complexity for remote fault diagnosis and fault diagnostic accuracy has been 
determined to make an impact. 
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