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Abstract. Orthotropic steel bridge decks and steel box girders are key structures of long-span 
bridges. Fatigue cracks often occur in these structures due to coupled factors of initial material 
flaws and dynamic vehicle loads, which drives the need for automating crack identification for 
bridge condition monitoring. With the use of unmanned aerial vehicle (UAV), the acquirement of 
bridge surface pictures is convenient, which facilitates the development of vision-based bridge 
condition monitoring. In this study, a combination of convolutional neural network (CNN) with 
fully convolutional network (FCN) is designed for crack identification and bridge condition 
monitoring. Firstly, 120 images are cropped into small patches to create a basic dataset. 
Subsequently, CNN and FCN models are trained for patch classification and pixel-level crack 
segmentation, respectively. In patch classification, some non-crack patches that contain 
complicated disturbance information, such as handwriting and shadow, are often mistakenly 
identified as cracks by directly using the CNN model. To address this problem, we propose a 
feedback-update strategy for CNN training, in which mistaken classification results of non-crack 
data are selected to update the training set to generate a new CNN model. By that analogy, several 
different CNN models are obtained and the accuracy of patch classification could be improved by 
using all models together. Finally, 80 test images are processed by the feedback-update CNN 
models and FCN model with a sliding window technique to generate crack identification results. 
Intersection over union (IoU) is calculated as an index to quantificationally evaluate the accuracy 
of the proposed method. 
Keywords: bridge condition monitoring, crack detection, convolutional neural networks, fully 
convolutional networks, feedback-update strategy. 

1. Introduction 

The steel box girder is extensively used in long span bridges, which suffer from fatigue cracks 
under dynamic loads owing to initial flaws in the welding joints and connections. The 
development and expansion of cracks will decrease the structural reliability and shorten the 
operational life span of bridges [1]. To ensure safety, there is enormous interest in the research of 
bridge condition monitoring methods to detect fatigue cracks automatically. Due to the rapid 
development of computer vision, vision-based condition monitoring methods have become a 
research focus. In addition, with the help of UAVs and bridge robots, numerous pictures of bridge 
surface are convenient to collect, which guarantees the feasibility of vision-based monitoring. 

Various vision-based methods based on conventional digital image processing techniques 
(IPTs) for detecting cracks have been proposed and investigated in the civil engineering field. 
Abdel-Qader et al. [2] provided a comparison of four crack-detection techniques: fast Haar 

https://crossmark.crossref.org/dialog/?doi=10.21595/mrcm.2021.22032&domain=pdf&date_stamp=2021-08-06


CRACK IDENTIFICATION FOR BRIDGE CONDITION MONITORING USING DEEP CONVOLUTIONAL NETWORKS TRAINED WITH A FEEDBACK-UPDATE 
STRATEGY. TONG TONG, JING LIN, JIADONG HUA, FEI GAO, HAN ZHANG 

38 MAINTENANCE, RELIABILITY AND CONDITION MONITORING. DECEMBER 2021, VOLUME 1, ISSUE 2  

transform (FHT), fast Fourier transform, Sobel edge detector, and Canny edge detector. The result 
shows that FHT is more reliable than the other three edge-detection techniques in identifying 
cracks in the bridge. Yamaguchi and Hashimoto [3] introduced an efficient and high-speed crack 
detection method that employs percolation-based image processing. Zou et al. [4] developed a 
fully-automatic method called CrackTree to detect cracks from pavement images. Yeum and Dyke 
[5] proposed research for detecting cracks near bolts using IPTs with prior knowledge. Li et al. [6] 
developed a method to detect concrete cracks with a local binarization algorithm. However, the 
results of IPTs are sensitive to the environmental variety of the real-world situations, which limits 
the detection accuracy. 

Recently, deep learning techniques have been developed for image-based crack detection in 
computer vision. As one of the most representative and effective deep learning methods, deep 
convolutional neural networks (CNNs) are extensively used in cracks identification. Modarres et 
al. [7] concluded that CNN is an effective tool for the crack detection compared with several other 
machine learning algorithms. Cha et al. [8] used CNNs combined with a sliding window technique 
to design an effective classifier to detect cracks in relatively large images. Wang et al. [9] proposed 
a CNN model consisting of 3 convolution layers and 2 fully-connected layers for recognizing 
cracks on asphalt surfaces at subdivided image cell. Zhang et al. [10] trained a supervised deep 
convolutional neural network to identify pavement cracks in the collected images. Gopalakrishnan 
et al. [11] employed a deep convolutional neural network (DCNN) and transferred that learning 
to automatically detect cracks in pavement images that also include a variety of non-crack 
anomalies and defects. Yao et al. [12] improved the traditional convolution network structure by 
adding the inception modules, which enhanced the robustness of the DCNN model for detecting 
bugholes on concrete surfaces. Xu et al. [13] proposed a modified fusion convolutional neural 
network architecture to identify cracks from real-world images containing complicated 
disturbance information inside steel box girders of bridges. Kim et al. [14] applied mask and 
region-based convolutional neural network (Mask R-CNN) to execute the preliminary 
identification of concrete cracks. Wei et al. [15] modified the architecture of the Mask R-CNN to 
quantify defects of concrete surface. Although CNN-based crack image classification and 
detection techniques have shown robust performance compared with conventional IPTs, these 
image-level methods do not provide precise information about the crack shape and other details. 
Therefore, it is of significance to develop a pixel-level crack segmentation method to extract 
elaborate features of cracks in an image. 

In recent years, pixel-level semantic segmentation in computer vision has developed rapidly 
stimulated by the convolution technique. Long et al. [16] proposed fully convolutional networks 
(FCNs), which achieve encouraging performance in the field of computer vision-based semantic 
segmentation, such as for scene parsing or biomedical image segmentation. Inspired by the 
appearance of FCNs, several researchers have applied FCNs or improved FCNs to crack 
segmentation. Dung et al. [17] proposed a crack detection method based on deep FCN for semantic 
segmentation on concrete crack images. Islam et al. [18] applied an FCN-based autonomous crack 
detection method to accurately detect cracks. Ren et al. [19] proposed an improved deep fully 
convolutional neural network, named CrackSegNet, to conduct dense pixel-wise crack 
segmentation. Yang et al. [20] proposed a feature pyramid and hierarchical boosting network 
(FPHBN) to automatically detect crack in an end-to-end way, which adopts the idea of 
holistically-nested edge detection (HED) [21], a breakthrough edge detection method inspired by 
fully convolutional neural networks. Sun et al. [22] implemented a deep learning technique based 
on DeepLabv3+ to detect cracks and bugholes on concrete surfaces at the pixel level. These 
FCN-based methods make it possible to conduct pixel-wise crack segmentation, which could 
provide precise information and high-level features of cracks in an image. 

In this paper, a crack identification method with a combination of CNN and FCN is proposed. 
Firstly, we use CNNs with a sliding window technique in a relatively large image to search for the 
small patches that contain cracks. Subsequently, an FCN model is applied to achieve cracks 
identification at the pixel level. Former researchers pay more attention to the improvement of the 
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network architecture to achieve better performance, while the optimization of the training data is 
usually short of focus. However, the construction of training set has a significant effect on the 
capability of the network. The background of the crack images on the steel box girder is complex, 
and some complicated disturbance information, such as handwriting, spots, shadow, and welding 
line, is often identified as crack by the CNN. Thus, it is particularly important to construct an 
abundant and complete training set. Here, we propose a novel strategy in the process of training 
data construction and network training. Original images are cropped into some small patches 
labeled as “crack” or “non-crack” to train a classification CNN. Then, the CNN is applied back to 
the original images with a sliding window to search for the patches of misclassification. Next, 
these misclassification patches are used to train a new CNN. By that analogy, several different 
CNNs are acquired for crack classification. The cracks identification results are more distinct and 
precise compared with the situation in which a single CNN is used. 

The rest of this paper is organized as follows. The introduction of CNN, FCN, the proposed 
training strategy, and overall procedure for crack identification is given in Section 2. The 
experimental results, including model training and accuracy analysis, are presented in Section 3. 
The influence of the feedback-update strategy and the stride is explored in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. Methodology 

2.1. Convolutional neural network 

A CNN architecture consists of several convolutional blocks. Each convolutional block is 
composed of a convolutional layer, an activation unit, and a pooling layer. A deep CNN is defined 
when the architecture is composed of many layers. Some other auxiliary layers, such as dropout 
and batch normalization (BN) layers, can be implemented within the aforementioned layers in 
accordance with the purposes of use. Fig. 1 shows the CNN architecture used in this study for 
crack classification. The input layer is the labeled image patch of 224×224×3 pixel resolutions, 
where each dimension means height, width, and depth (RBG), respectively. Table 1 lists the details 
of each layer and operation. 

 
Fig. 1. Network architecture of CNN for patch classification 

The main objective of convolutional layer is feature extraction. First, the dot product between 
a 2D array named convolutional kernel or filter and a sub-array of an input image patch at a certain 
location is calculated. The size of a sub-array is always equal to the convolutional kernel, but a 
convolutional kernel is always smaller than the input image. Second, the bias is added to the value. 
Next, the convolutional kernel slides across the input image’s width and height with a distance 
named stride and the dot production added with bias is calculated again. After the whole input 
image is scanned, the values at different positions constitute a feature map. One convolutional 
layer could have several kernels, and the number of the convolutional kernels determines the depth 
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of the feature map. An operation example of a convolutional layer is shown in Fig. 2. 

Table 1. Dimensions of layers and operations 
Layer Height Width Depth Operator Kernel size Numbers Stride 
Input 224 224 3 Convolution  20 × 20 24 2 
L1 103 103 24 ReLU – – – 
L2 103 103 24 Max-pooling 7 × 7 – 2 
L3 49 49 24 Convolution 15 × 15 48 2 
L4 18 18 48 ReLU – – – 
L5 18 18 48 Max-pooling 4 × 4 – 2 
L6 8 8 48 Convolution 8 × 8 96 1 
L7 1 1 96 ReLU – – – 
L8 1 1 96 Convolution 1 × 1 2 1 
L9 1 1 2 Softmax – – – 
L10 1 1 2 – – – – 

 
Fig. 2. Network architecture of CNN for patch classification 

An activation function follows the convolution process to introduce nonlinearity to the model. 
Various activation functions such as sigmoid or tanh can be used, but the rectified linear unit 
(ReLU) [23] is preferred in most situations, as it can train the network much faster than the other 
activation functions. After the ReLU operation, all the negative values are transformed to zero. 
The ReLU activation function is defined as follows: 𝑓ሺ𝑥ሻ = maxሺ0, 𝑥ሻ. (1)

The pooling layer is used to reduce the spatial size of the feature map after convolution and 
activation, which reduces overfitting and the training time. There are two different pooling  
options. The max-pooling layer takes the maximum value of each pooling kernel, and average 
pooling layer takes the average value of each pooling kernel from the prior feature map [24]. In 
this study, the max-pooling layer is used. 

Some auxiliary layers can assist in the model training. Dropout layer [25] is a trick to reduce 
overfitting. The thought of dropout is to randomly interrupt the connections between neurons of 
connected layers with a pre-set dropout rate when training. Batch normalization [26] is also a 
well-known trick for network training, which facilitates high-learning rate and leads to much faster 
network convergence. 
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2.2. Feedback-update strategy for training data optimization of CNN 

In an original image, the information of the background is complex. In practice, the area of 
cracks could be identified effectively while other areas that contain handwriting, welding line, 
spots, or shadow are often mistakenly identified as crack area when using CNN with a sliding 
window over a test image. Therefore, it is necessary to find a solution to classify these fake-crack 
features more precisely. 

 
Fig. 3. The feedback-update strategy of CNNs training and dataset updating 

To address this problem, a simple but effective strategy named “feedback-update” is proposed. 
First, part of labeled patches cropped from original pictures are used to train the first CNN model. 
Subsequently, the first CNN model is applied back to the original pictures with a sliding window 
to collect the non-crack patches which are mistakenly identified as crack area. Next, the patches 
labeled “crack” in the original training set remain unchanged while the patches labeled  
“non-crack” are replaced by the new collected patches, and the second CNN model is trained with 
the new training set. Similarly, the patches that do not contain cracks but are identified as crack 
area by both CNN models can be collected for training the third CNN. By that analogy, several 
different CNN models for classification are acquired. Only the patches that are identified as crack 
area by all CNN models would be treated as crack area for sematic segmentation by FCN in the 
next procedure. The whole flow chart of CNNs training is shown as Fig. 3. 



CRACK IDENTIFICATION FOR BRIDGE CONDITION MONITORING USING DEEP CONVOLUTIONAL NETWORKS TRAINED WITH A FEEDBACK-UPDATE 
STRATEGY. TONG TONG, JING LIN, JIADONG HUA, FEI GAO, HAN ZHANG 

42 MAINTENANCE, RELIABILITY AND CONDITION MONITORING. DECEMBER 2021, VOLUME 1, ISSUE 2  

2.3. Fully convolutional network 

The input layer of the FCN is the same as that of the aforementioned CNN and the output layer 
is a grey-scale image of 224×224 pixel resolutions which contains pixel-level information of 
cracks. Network architecture of FCN model mainly consists of an encoder and a decoder, which 
is shown in Fig. 4. The encoder contains several convolutional and pooling layers, which is used 
to extract features necessary for semantic segmentation. The weights of the CNN trained for crack 
classification are used for initialization of the encoder. The decoder uses deconvolution (transpose 
convolution) and up-sampling layers to reconstruct the corresponding segmented image. Each 
deconvolution layer of the decoder matches a corresponding convolution layer of the encoder and 
each up-sampling layer of the decoder matches a corresponding pooling layer of the encoder. 
There are many techniques for up-sampling, such as bilinear and nearest. In this study, bilinear is 
used for up-sampling. 

 
Fig. 4. Network architecture of FCN for sematic segmentation 

Adding skips [27] adopted by Long et al. is a trick for a more precise segmentation. In the 
decoding process, the output of each deconvolutional layer in the decoder is concatenated with 
output of the corresponding pooling layer in the encoder. Combining fine layers and coarse layers 
lets the model make local predictions that respect global structure [16]. 

The last step of FCN is a sigmoid function, which restricts the values of the pixels in the output 
image to a range between 0 and 1. The closer that the value of a pixel is to 1, the more likely the 
cracks cross through the location of this pixel in the image. The sigmoid activation function is 
defined as: 𝑓ሺ𝑥ሻ = ሺ1 + 𝑒ି௫ሻିଵ. (2)

2.4. Overall procedure for crack identification 

Through the aforementioned procedure, several CNN models for patch classification and an 
FCN model for sematic segmentation are obtained. These networks can be used for cracks 
identification at the pixel level with a sliding window technique. The whole procedure is shown 
in Fig. 5. 

A rectangular window slides over the test image and the image patch in the window is judged 
by the CNNs. If all the CNN models classify the patch as “crack”, the patch will be treated as the 
input for the FCN to obtain the segmentation result of the small area within the sliding window. 
It is worth mentioning that a pixel would be enclosed by more than one window, so one pixel may 
have several segmentation values under different windows. After the window slides over the 
whole test image, the segmentation values of each pixel are added up at the corresponding 
locations on the image. Through such a process of accumulation, the information of cracks could 
be reinforced and some disturbance identified as crack by accident could be suppressed. Then, the 
pixel values of the image are normalized to a range between 0 and 1. The closer a pixel value is 
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to 1, the more likely the location of the pixel on the image belongs to crack. At this point, the 
segmentation result is fuzzy since the segmentation values of the pixels are continuous. Therefore, 
a threshold is set, and all the pixels whose segmentation values are larger than the threshold 
constitute the crack area (shown in black), by which each pixel is classified into “crack” or 
“non-crack” classes. 

 
Fig. 5. The procedure for crack identification using CNN & FCN models with a sliding window 

3. Case study 

3.1. Dataset introduction 

Orthotropic steel bridge decks and steel box girders are key structures of long-span bridges. 
Due to coupled factors of initial material flaws and dynamic vehicle loads, cracks often occur at 
the bridge connection details, especially around welding joints. The images of the dataset are 
obtained by different bridge inspectors and captured with a variety of internal and external camera 
parameters. The dataset includes two folders: Images (*.PNG) and Labels (*.PNG) as shown in 
Fig. 6. The Images folder includes 120 original fatigue crack images with resolutions of 
4928×3264 and 5152×3864. Except for 120 image-label pairs for training process, 80 additional 
original images with resolutions of 4928×3264 are also used to validate the performance of the 
model. 

 
a)  

 
b)  

Fig. 6. Examples of the steel box girder fatigue crack image dataset:  
a) original fatigue crack image and b) pixel-level binary ground-truth label 
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The 120 raw images and their labels are cropped into small patches of 224×224 pixel 
resolutions to build basic databank for model training, which is shown in Fig. 7. Because the crack 
area is much smaller than non-crack area in the raw images, the number of the cropped patches 
with cracks is much less than that of patches without cracks. To address this imbalance, the 
original crack patches are processed by rotation. As shown in Fig. 8, the rotation angles are 0°, 
45°, 90°, 135°, 180°, 225°, 270°, and 315°, respectively. By this operation, the number of crack 
patches is expanded to 8 times. 

Some cropped images are with cracks on the four edges, which is shown in Fig. 9. These types 
of patches are removed from training databank for the following reasons. Firstly, the 
characteristics of such image patches for training are not representative, which may lead to the 
misclassification of testing. Secondly, cracks located in any positions of the test image spaces can 
cross the center of the sliding window if a relatively small stride is set. That is, ignoring the patches 
with cracks on the edges does not lead to information omission. 

 
Fig. 7. The establishment of the basic databank 

 
Fig. 8. Illustration of data augmentation 

 
Fig. 9. Cropped patches with cracks on the edges 
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3.2. Model training 

According to the feedback-update strategy, a series of CNN models could be trained for patch 
classification. In this case, two CNN models are trained. 

16000 image patches labeled “crack” and 16000 image patches labeled “non-crack” are 
randomly chosen from databank to construct the training set for the first CNN model. The CNN 
is trained for 100 epochs with a batch size of 32. The learning rate changes as epoch grows 
(Table 2). The training process of the first CNN model is shown in Fig. 10(a). 

 
a)  

 
b)  

Fig. 10. The training process: a) CNN models and b) FCN model 

 
a)  

 
b)  

Fig. 11. Patch classification of the first CNN: a) an example from 120 original images for training  
and b) patches that are classified as “crack” by the first CNN 

The first CNN is applied back to the 120 raw images with a 30-stride sliding window. The 
patch-classification result of an image is shown in Fig. 11. Obviously, some non-crack patches are 
classified as “crack”, which indicates the necessity of training the second CNN model. 31352 
non-crack patches of the 120 images are classified as “crack” by mistake in total. 4000 patches 
are selected from them and augmented to 16000 by rotation, which is used to create a new training 
set together with the 16000 image patches labeled “crack” in the original training set. 
Subsequently, the second CNN model is trained with the same hyperparameters of the first CNN. 
The training process of the second CNN is also shown in Fig. 10(a). 

After CNNs, 462 image patches labeled “crack” and the labels are selected from the databank 
to build the training set for the FCN model. The training set is shown in Fig. 12. The FCN is 
trained for 60 epochs with a batch size of 4. The learning rate and training process are shown in 
Table 2 and Fig. 10(b), respectively. 
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Fig. 12. Patch classification of the first CNN: a) an example from 120 original images for training  

and b) patches that are classified as “crack” by the first CNN 

Table 2. Learning rate 
Epoch CNN FCN 
1-20 0.01 0.01 

21-40 0.001 0.001 
41-60 0.0001 0.0001 
61-80 0.00001 – 
81-100 0.000001 – 

3.3. Evaluation of the result 

Several metrics can be used for accuracy evaluation, including pixel accuracy (PA), 
intersection over union (IoU), precision, recall, and F1 score [19]. In this case, IoU is adopted as 
an index for segmentation evaluation. The accuracy of crack identification is better with a larger 
IoU. For binary classification, IoU is defined as: 𝐼𝑂𝑈= 𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁, (3)

where TP, FP and FN represent the pixel number of true positives, false positives and false 
negatives, respectively. 

 
a) 

 
b) 

 
d) 

 
c) 

 
e) 

Fig. 13. An example of test results (IoU = 0.5915): a) original test image, b) patches that  
are classified as “crack” by CNNs (shown in white), c) fuzzy result before threshold filtering,  

d) final result of sematic segmentation and e) ground truth 

80 raw images that are not used in the training process are used for tests. The ground truth of 
the 80 images is acquired by Photoshop. The test procedure is described in Section 2.4. The 
threshold used in the filtering is set at 0.2. If the normalized value of a pixel is larger than 0.2, the 
pixel will be classified as crack pixel. An example of test results is shown in Fig. 13. As can be 
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seen, although there are a few non-crack pixels that are classified as crack area, the main part of 
the crack is identified distinctly. The IoU of 80 test images is shown in Fig. 14 and the mean IoU 
(mIoU) is 0.5356. 

 
Fig. 14. The IoU of 80 test images 

4. Discussions 

4.1. Comparison of crack detection accuracy between the models with two CNNs and one 
CNN 

For comparison, only the first CNN model is used to execute the patch classification. A 
comparison example between the segmentation results of the models with two CNNs and one 
CNN is shown in Fig. 15. Obviously, the crack identification result of the model with two CNNs 
is clearer than that with one CNN. The IoU of both strategies over 80 test images is calculated and 
compared with each other in Fig. 16. As can be seen, the mIoU of the model with two CNNs is 
larger at any threshold value, which demonstrates a high crack-detection capability of the proposed 
method. 

 
a) 

 
b) 

 
c) 

Fig. 15. The results of different models: a) test image and ground truth, b) segmentation result  
of the model with two CNNs and c) segmentation result of the model with a single CNN 
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Fig. 16. Comparison of the mIoU under different threshold values 

4.2. The influence of the stride 

In this study, CNN and FCN are applied to the test image with a sliding window technique. 
The stride of the sliding window is set at 30. The influence of stride variety on the crack 
identification result is investigated here. 

 
a) 

 
b) 

 
c) 

Fig. 17. The influence of the stride: a) test image and ground truth, b) stride = 30 and c) stride = 130 

Fig. 17 shows the comparison of results with stride 30 and 130. As can be seen, the result with 
stride 30 is smoother and clearer than that with stride 130. Therefore, it can be inferred that 
adopting a small stride in a reasonable range can highlight the main part of the crack and suppress 
the noise. However, a smaller stride may lead to information loss of the crack ends and more 
operating time of testing. 

5. Conclusions 

In this study, a vision-based method of fatigue crack identification for bridge condition 
monitoring is proposed. Compared with the previous research, the innovations of the method 
presented in this paper are concluded as follows. 
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1) A method for crack identification with a combination of CNN and FCN is proposed. CNN 
and FCN are the two deep learning models widely used for crack detection. In order to take 
advantage of both models, we combine CNN with FCN during crack detection. 20 images with 
resolutions of 4928×3264 and 5152×3864 are cropped into small image patches with 224×224 
pixel resolutions for training process. The performance of the proposed method is evaluated on 80 
test images with resolutions of 4928×3264 pixels. The test images are scanned by the trained CNN 
models with a sliding window technique, which facilitates the scanning of any images larger than 
224×224 pixel resolutions, and the patches classified as “crack” are input into the FCN model to 
obtain pixel-level segmentation results. After normalization and filtering, the final crack 
identification results are acquired and evaluated by IoU. The mIoU over 80 test images is 0.5356. 

2) The feedback-update strategy is proposed for dataset optimization, which improves the 
performance of the CNN models for crack identification. In the training process of CNN model, 
we notice that handwriting, welding line, spots and shadow are often mistakenly identified as 
crack area. To address this problem, the feedback-update strategy is presented. The first trained 
CNN model is applied back to the 120 raw images to collect the non-crack patches which are 
classified as “crack” by mistake. Then the collected patches are used to replace and update the 
“non-crack” data in the original training set. Subsequently, the new training set is used to train the 
second CNN model. By that analogy, several CNN models can be generated for patch 
classification. In practice, the method performance with two CNN models is improved, and mIoU 
of the method is much larger than that of the model with a single CNN. 

Acknowledgements 

The work is supported by the National Natural Science Foundation of China (Grant 
No. 51805015, 91860205) and the National Key Laboratory of Science and Technology on 
Reliability and Environmental Engineering (Grant No. 6142004190502), which are highly 
appreciated by the authors. Authors are also grateful to IPC-SHM committee for providing the 
dataset. 

References 

[1] S. Ya, K. Yamada, and T. Ishikawa, “Fatigue evaluation of rib-to-deck welded joints of orthotropic 
steel bridge deck,” Journal of Bridge Engineering, Vol. 16, No. 4, pp. 492–499, Jul. 2011, 
https://doi.org/10.1061/(asce)be.1943-5592.0000181 

[2] I. Abdel-Qader, O. Abudayyeh, and M. E. Kelly, “Analysis of edge-detection techniques for crack 
identification in bridges,” Journal of Computing in Civil Engineering, Vol. 17, No. 4, pp. 255–263, 
Oct. 2003, https://doi.org/10.1061/(asce)0887-3801(2003)17:4(255) 

[3] T. Yamaguchi and S. Hashimoto, “Fast crack detection method for large-size concrete surface images 
using percolation-based image processing,” Machine Vision and Applications, Vol. 21, No. 5, pp. 797–
809, Aug. 2010, https://doi.org/10.1007/s00138-009-0189-8 

[4] Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “CrackTree: Automatic crack detection from pavement 
images,” Pattern Recognition Letters, Vol. 33, No. 3, pp. 227–238, Feb. 2012, 
https://doi.org/10.1016/j.patrec.2011.11.004 

[5] C. M. Yeum and S. J. Dyke, “Vision-based automated crack detection for bridge inspection,” 
Computer-Aided Civil and Infrastructure Engineering, Vol. 30, No. 10, pp. 759–770, Oct. 2015, 
https://doi.org/10.1111/mice.12141 

[6] L. Li, Q. Wang, G. Zhang, L. Shi, J. Dong, and P. Jia, “A method of detecting the cracks of concrete 
undergo high-temperature,” Construction and Building Materials, Vol. 162, pp. 345–358, Feb. 2018, 
https://doi.org/10.1016/j.conbuildmat.2017.12.010 

[7] C. Modarres, N. Astorga, E. L. Droguett, and V. Meruane, “Convolutional neural networks for 
automated damage recognition and damage type identification,” Structural Control and Health 
Monitoring, Vol. 25, No. 10, p. e2230, Oct. 2018, https://doi.org/10.1002/stc.2230 



CRACK IDENTIFICATION FOR BRIDGE CONDITION MONITORING USING DEEP CONVOLUTIONAL NETWORKS TRAINED WITH A FEEDBACK-UPDATE 
STRATEGY. TONG TONG, JING LIN, JIADONG HUA, FEI GAO, HAN ZHANG 

50 MAINTENANCE, RELIABILITY AND CONDITION MONITORING. DECEMBER 2021, VOLUME 1, ISSUE 2  

[8] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-based crack damage detection using 
convolutional neural networks,” Computer-Aided Civil and Infrastructure Engineering, Vol. 32, No. 5, 
pp. 361–378, May 2017, https://doi.org/10.1111/mice.12263 

[9] K. C. P. Wang, A. Zhang, J. Q. Li, Y. Fei, C. Chen, and B. Li, “Deep learning for asphalt pavement 
cracking recognition using convolutional neural network,” in International Conference on Highway 
Pavements and Airfield Technology 2017, pp. 166–177, Aug. 2017, 
https://doi.org/10.1061/9780784480922.015 

[10] L. Zhang, F. Yang, Y. Daniel Zhang, and Y. J. Zhu, “Road crack detection using deep convolutional 
neural network,” in 2016 IEEE International Conference on Image Processing (ICIP), pp. 3708–3712, 
Sep. 2016, https://doi.org/10.1109/icip.2016.7533052 

[11] K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, and A. Agrawal, “Deep convolutional neural 
networks with transfer learning for computer vision-based data-driven pavement distress detection,” 
Construction and Building Materials, Vol. 157, pp. 322–330, Dec. 2017, 
https://doi.org/10.1016/j.conbuildmat.2017.09.110 

[12] G. Yao, F. Wei, Y. Yang, and Y. Sun, “Deep-learning-based bughole detection for concrete surface 
image,” Advances in Civil Engineering, Vol. 2019, pp. 1–12, Jun. 2019, 
https://doi.org/10.1155/2019/8582963 

[13] Y. Xu, Y. Bao, J. Chen, W. Zuo, and H. Li, “Surface fatigue crack identification in steel box girder of 
bridges by a deep fusion convolutional neural network based on consumer-grade camera images,” 
Structural Health Monitoring, Vol. 18, No. 3, pp. 653–674, May 2019, 
https://doi.org/10.1177/1475921718764873 

[14] B. Kim and S. Cho, “Image‐based concrete crack assessment using mask and region‐based 
convolutional neural network,” Structural Control and Health Monitoring, Vol. 26, No. 8, p. e2381, 
Jun. 2019, https://doi.org/10.1002/stc.2381 

[15] F. Wei, G. Yao, Y. Yang, and Y. Sun, “Instance-level recognition and quantification for concrete 
surface bughole based on deep learning,” Automation in Construction, Vol. 107, p. 102920, Nov. 2019, 
https://doi.org/10.1016/j.autcon.2019.102920 

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in 
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, Jun. 
2015, https://doi.org/10.1109/cvpr.2015.7298965 

[17] C. V. Dung and L. D. Anh, “Autonomous concrete crack detection using deep fully convolutional 
neural network,” Automation in Construction, Vol. 99, pp. 52–58, Mar. 2019, 
https://doi.org/10.1016/j.autcon.2018.11.028 

[18] M. M. M. Islam and J.-M. Kim, “Vision-based autonomous crack detection of concrete structures using 
a fully convolutional encoder-decoder network,” Sensors, Vol. 19, No. 19, p. 4251, Sep. 2019, 
https://doi.org/10.3390/s19194251 

[19] Y. Ren et al., “Image-based concrete crack detection in tunnels using deep fully convolutional 
networks,” Construction and Building Materials, Vol. 234, p. 117367, Feb. 2020, 
https://doi.org/10.1016/j.conbuildmat.2019.117367 

[20] F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature pyramid and hierarchical 
boosting network for pavement crack detection,” IEEE Transactions on Intelligent Transportation 
Systems, Vol. 21, No. 4, pp. 1525–1535, Apr. 2020, https://doi.org/10.1109/tits.2019.2910595 

[21] S. Xie and Z. Tu, “Holistically-nested edge detection,” in 2015 IEEE International Conference on 
Computer Vision (ICCV), pp. 1395–1403, Dec. 2015, https://doi.org/10.1109/iccv.2015.164 

[22] Y. Sun, Y. Yang, G. Yao, F. Wei, and M. Wong, “Autonomous crack and bughole detection for 
concrete surface image based on deep learning,” IEEE Access, Vol. 9, pp. 85709–85720, 2021, 
https://doi.org/10.1109/access.2021.3088292 

[23] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in 
Proceedings of the 27th International Conference on Machine Learning, pp. 807–814, 2010. 

[24] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional architectures 
for object recognition,” in Artificial Neural Networks – ICANN 2010, Berlin, Heidelberg: Springer 
Berlin Heidelberg, 2010, pp. 92–101, https://doi.org/10.1007/978-3-642-15825-4_10 

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way 
to prevent neural networks from overfitting,” Journal of Machine Learning Research, Vol. 15, No. 56, 
pp. 1929–1958, 2014. 



CRACK IDENTIFICATION FOR BRIDGE CONDITION MONITORING USING DEEP CONVOLUTIONAL NETWORKS TRAINED WITH A FEEDBACK-UPDATE 
STRATEGY. TONG TONG, JING LIN, JIADONG HUA, FEI GAO, HAN ZHANG 

 ISSN ONLINE 2669-2961, KAUNAS, LITHUANIA 51 

[26] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing internal 
covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning, Vol. 37, 
pp. 448–456, 2015. 

[27] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006. 

 

Tong Tong is currently pursuing Ph.D. degree in systems engineering from Beihang 
University, Beijing, China. His current research interests include deep learning, condition 
monitoring based on images and Lamb wave detection. Contribution of Tong Tong in this 
paper includes conceptualization, formal analysis, software and original draft preparation. 
ong Tong in this paper includes conceptualization, formal analysis, software and original 
draft preparation. 

 

Jing Lin received the B.S., M.S. and Ph.D. degrees in mechanical engineering from Xi’an 
Jiaotong University, Xi’an, China, in 1993, 1996 and 1999. He is currently the Dean of the 
School of Reliability and Systems Engineering, Beihang University, Beijing, China. He is 
also the Changjiang Distinguished Professor with the Ministry of Education of China. His 
current research field includes machinery condition monitoring, fault diagnosis and 
prognosis, vibration analysis, and nonstationary signal processing. Dr. Lin won the State 
Natural Science Award in 2013. Contribution of Jing Lin in this paper includes funding 
acquisition and project administration. Jing Lin in this paper includes funding acquisition 
and project administration. 

 

Jiadong Hua received the B.S. and Ph.D. degrees in mechanical engineering from Xi’an 
Jiaotong University, Xi’an, China, in 2012 and 2017, respectively. He is currently an 
associate professor with the School of Reliability and Systems Engineering, Beihang 
University. His research interests include structural health monitoring (SHM), 
nondestructive testing (NDT), and guided wave propagation. Contribution of Jiadong Hua 
in this paper includes investigation, supervision and writing-editing. Jiadong Hua in this 
paper includes investigation, supervision and writing-editing. 

 

Fei Gao received the B.S. degree and Ph.D. degree in mechanical engineering from Xi’an 
Jiaotong University, Xi’an, China, in 2013 and 2018, respectively. He is currently a 
postdoctoral fellow with School of Reliability and Systems Engineering, Beihang 
University. His research interests include structural health monitoring (SHM), 
nondestructive testing (NDT), and guided wave propagation. Contribution of Fei Gao in 
this paper includes validation. Fei Gao in this paper includes validation. 

 

Han Zhang is currently pursuing Ph.D. degree in systems engineering from Beihang 
University, Beijing, China. Her current research interests include deep learning, Lamb 
wave detection and sparse representation. Contribution of Han Zhang in this paper includes 
visualization and writing-review. Han Zhang in this paper includes visualization and 
writing-review. 

 




