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Abstract. In the paper, the vibrations of liquid in a rigid and circular cylindrical container have 
been investigated. The effects of an elastic membrane placed on the free surface of the fluid have 
been analyzed on sloshing frequencies. The cylindrical container is assumed to be partially filled 
with an incompressible fluid. The potential theory is used to formulate the mathematical problem 
and set up the boundary value problem. The solutions are obtained for velocity potential and the 
deflection of elastic membrane in form of Fourier-Bessel series. The results are compared for the 
proposed analytical approach and BEM. 
Keywords: sloshing, vibration, membrane, cylindrical container. 

1. Introduction 

“Sloshing is known as the free surface motion in a tank which is filled partially” [8]. Slosh 
motion is a potentially dangerous situation to engineering structures and environment and can lead 
to the failure of structural units and their stability. The dynamic behaviour of structures carrying 
fuel tanks or storage reservoirs is significantly affected by fluid structure-interaction and is very 
dangerous to the safety and stability of the structure. It is necessary to control the vibrations of 
fluid-structure interaction to maintain the stability of the structures used in various engineering 
applications such as transporting liquid, petroleum reservoirs and space vehicles. Control of fluid 
sloshing inside a container has always been a challenge while designing any tank due to uninvited 
vibrations which are dangerous for the stability of the system. The Gas-free liquid is a key function 
of propellant tanks/containers in spacecraft and offshore oil industry where floating roofed oil 
tanks are used Propellant sloshing in tanks also influences the rigid body motion of the spacecraft 
or launch vehicles, which then needs to be controlled by the reaction control system. 

Sloshing is a worrisome situation in oil storage tanks as well as in natural gas reservoirs. In 
recent years, floating liquified natural gas (FLNG) has gained popularity as innovative technology 
when it comes to natural gas exploitation. These floating platforms as well as huge tanks filled 
with LNG/ Oil are vulnerable to the vibrations due to ground motion during an earthquake. 
Suppression devices (rigid/elastic) are considered most effective to dampen the impact loads due 
to sloshing in a tank as shown in the studies reported in [1-6]. The effects of rigid baffles on 
sloshing frequencies in circular cylindrical containers are investigated analytically in [1, 2]. The 
non-linear sloshing problem is reported in [3] and stress analysis is investigated. The effects of 
vertically placed baffles have been reported in [4] and [6]. Some studied on floating roof 
(considered as membrane) effects on sloshing frequencies since Tokachi-Oki (2003) earthquake 
are reported in [7-9], and [12]. The effects of perforated baffles on sloshing are reported in [10] 
and [11]. The vibrations of liquid in cylindrical tanks with and without baffles on the free surface 
under horizontal and vertical excitation are reported in [13]. The problem of sloshing in horizontal 
elliptical tanks with T-shaped baffles is investigated in [14]. Many researchers have been 
investigating the membrane’s dynamic response due to sloshing. In this paper, the fundamental 
sloshing modes of liquid with a membrane placed on the free surface are reported. 
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2. Problem statement 

Fig. 1 shows a schematic diagram of sloshing in a container with elastic membrane placed at 
the free surface. A vertical circular cylindrical tank with radius 𝑅 containing a fluid free surface 
at rest is considered at height ℎ from the rigid bottom of the container. To model the sloshing 
problem, the following assumptions are made: (i) the container is rigid and flow field is considered 
irrotational, (ii) the fluid is considered incompressible, (iii) small displacement of free surface of 
liquid are considered. The velocity potential theory is used to formulate the problem. The 
boundary value problem in terms of the velocity potential is given as follows. 

 
Fig. 1. Schematic diagram of the problem 

For an irrotational flow motion, the velocity 𝑉  can be written as a gradient of potential 𝜙(𝑟,𝜃, 𝑧, 𝑡) such that 𝑉 = ∇𝜙 . Based on above assumptions of the potential theory, velocity 
potential satisfies the Laplace equation: 𝛻ଶ𝜙 = 0,       0 < 𝑟 < 𝑅, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑧 ≤ ℎ. (1)

The boundary conditions at the rigid boundary of the cylinder are at the cylinder wall 𝑟 = 𝑅 
and at the rigid bottom: 

𝑧 = 0,   𝜕𝜙𝜕𝑟 = 0,      𝜕𝜙𝜕𝑧 = 0. (2)

The boundary condition for motion of membrane at the free surface is given by: 𝜕ଶ𝑤ഥ𝜕𝑟ଶ + 1𝑟 𝜕𝑤ഥ𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝑤ഥ𝜕𝜃ଶ − 𝜇𝑇 𝜕ଶ𝑤ഥ𝜕𝑡ଶ = −𝑝𝑇 , (3)

where 𝑤ഥ  denotes the deflection of the membrane, 𝑇 the tension per unit length, 𝜇 mass/unit area 
of the membrane and 𝑝 denotes the liquid pressure on the membrane. The membrane deflection 
satisfies the following boundary conditions at the rigid wall of the container 𝑟 = 𝑅: 𝜕𝑤ഥ𝜕𝑟 = 𝑤ഥ = 0. (4)

The continuity of normal velocity components at the free surface 𝑧 = ℎ should be satisfied: 𝜕𝜙𝜕𝑧 = 𝜕𝑤ഥ𝜕𝑡 , (5)

and the dynamic boundary condition at 𝑧 = ℎ gives: 
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𝑝 = −𝜌𝜕𝜙𝜕𝑧 − 𝜌𝑔𝑤ഥ . (6)

So, the coupled boundary value problem given by Eqs. (1)-(6), is required to solve to find the 
unknown functions 𝜙  and 𝑤ഥ . First, we describe the analytical approach. The separation of 
variables method is used to find the velocity potential in the following form: 

𝜙(𝑟,𝜃, 𝑧, 𝑡) = ෍ ෍𝐴௠௡ஶ
௡ୀଵ

ஶ
௠ୀ଴ 𝐽௠ ൬𝑘௠௡𝑟𝑅 ൰ cosh ൬𝑘௠௡𝑧𝑅 ൰ cos𝑚𝜃𝑒௜ఠ௧ , (7)

where 𝑘௠௡  are roots of 𝐽′௠(𝑘𝑅) = 0. Using velocity potential function for Eq. (6), have the 
expression for pressure can be written as: 

𝑝 = 𝑒௜ఠ௧ ൥−𝑝𝑖𝜔 ෍ ෍𝐴௠௡J௠ ൬𝑘௠௡𝑟𝑅 ൰ cos(𝑚𝜃)cosh ൬𝑘௠௡ℎ𝑅 ൰ஶ
௡ୀଵ

ஶ
௠ୀ଴ ൩ − 𝜌𝑔𝑤ഥ . (8)

The thickness of the membrane is considered negligible. Eq. (4) gives rise to: 𝜕ଶ𝑤ଵ𝜕𝑟ଶ + 1𝑟 𝜕𝑤ଵ𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝑤ଵ𝜕𝜃ଶ + ቆ𝜇𝜔ഥଶ − 𝑔𝜌𝑇 ቇ𝑤ଵ= 𝑖𝜌𝜔ഥ𝑇 ෍ ෍𝐴௠௡ஶ
௡ୀଵ

ஶ
௠ୀ଴ J௠ ൬𝑘௠௡𝑟𝑅 ൰ cos(𝑚𝜃)cosh ൬𝑘௠௡ℎ𝑅 ൰, (9)

which is a nonhomogeneous differential equation in 𝑤ഥ . Solution for the deflection of membrane 
is following: 

𝑤ഥ(𝑟,𝜃, 𝑡) = 𝑒௜ఠ௧ ቎෍ ෍𝐴௠௡ ቆ𝑖𝜌𝜔𝑅ଶ𝑇 ቇ cosh ൬𝑘௠௡ℎ𝑅 ൰ 𝐽௠ ቀ𝑘௠௡𝑟𝑅 ቁ cos𝑚𝜃ሾ𝑐ଶ − 𝑘௠௡ଶ ሿஶ
௡ୀଵ

ஶ
௠ୀ଴  

      + ෍𝐵௠J௠ ቀ𝑐𝑟𝑅 ቁ cos𝑚𝜃ஶ
௠ୀ଴ ൩ ,       𝑐ଶ = 𝜇𝜔ଶ − 𝜌𝑔𝑇 . (10)

Using Eq. (5) at 𝑧 = ℎ, we obtain: 

෍ ෍𝐴௠௡ஶ
௡ୀଵ

ஶ
௠ୀ଴

𝑘௠௡𝑅 𝐽௠ ൬𝑘௠௡𝑟𝑅 ൰ sinh ൬𝑘௠௡ℎ𝑅 ൰ cos𝑚𝜃 
      = (𝑖𝜔)ଶ × ൥෍ ෍𝑖𝜔𝑅ଶ𝑇ஶ

௡ୀଵ
ஶ

௠ୀ଴ 𝐴௠௡𝐽௠ ൬𝑘௠௡𝑟𝑅 ൰ cosh ൬𝑘௠௡ℎ𝑅 ൰ cos𝑚𝜃ሾ𝑐ଶ − 𝑘ଶ௠௡ሿ൩× ෍𝐵௠ஶ
௠ୀ଴ J௠ ൬𝑘௠௡𝑟𝑅 ൰ cos𝑚𝜃. 

(11)

Boundary condition 𝑤 = 0, at 𝑟 = 𝑅 gives: 

෍ ෍𝐴௠௡ ቆ𝑖𝜌𝜔𝑅ଶ𝑇 ቇஶ
௡ୀଵ

ஶ
௠ୀ଴

𝐽௠(𝑘௠௡)cos𝑚𝜃ሾ𝑐ଶ − 𝑘௠௡ଶ ሿ cosh ൬𝑘௠௡ℎ𝑅 ൰ + ෍𝐵௠𝐽௠ஶ
௠ୀ଴ (𝑐)cos𝑚𝜃 = 0. (12)
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To determine the unknowns 𝐴௠௡, 𝐵௠ and unknown frequency 𝜔ഥ, given by the Eqs. (11) and 
(12) is tedious task. This problem was solved using method developed in [1, 2]. For simulations 
using BEM, first we consider the problem of free vibrations of membrane without interaction with 
the liquid. We have: 𝜕ଶ𝑤ഥ𝜕𝑟ଶ + 1𝑟 𝜕𝑤ഥ𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝑤ഥ𝜕𝜃ଶ − 𝜇𝑇 𝜕ଶ𝑤ഥ𝜕𝑡ଶ = 0, (13)

with డ௪ഥడ௥ = 𝑤ഥ = 0. 
Supposing that 𝑤ഥ = 𝑤ଵ(𝑟,𝜃)𝑒௜ఠഥ௧, one can obtain: 

𝐿ሾ𝑤ଵሿ + 𝜔ഥଶ 𝜇𝑇𝑤ଵ = 0,    𝐿ሾ𝑤ଵሿ = 𝜕ଶ𝑤ଵ𝜕𝑟ଶ + 1𝑟 𝜕𝑤ଵ𝜕𝑟 + 1𝑟ଶ 𝜕ଶ𝑤ଵ𝜕𝜃ଶ  (14)

The solutions of this problem are own modes and own frequencies, 𝜔ഥ௠௞,  𝑤ଵ௠௞ = 𝑤௠௞(𝑟)cos𝑚𝜃.  
These modes and frequencies are reported in [14]. To obtain the solution of coupled problem 

the next series is used for each 𝑚: 

𝑤ഥ(𝑟,𝜃, 𝑧, 𝑡) = cos𝑚𝜃෍ 𝑐௞(𝑡)ேೢ௞ୀଵ 𝑤௠௞(𝑟). (15)

Then the next representation for function 𝜙 is obtained: 

𝜙(𝑟,𝜃, 𝑧, 𝑡) = cos𝑚𝜃෍ 𝑐ሶ௞(𝑡)ேೢ௞ୀଵ Φഥ௠௞(𝑟). (16)

We obtain the system of ODEs of second order for each 𝑚 in the following form: 𝐴௠𝐶ሷ + 𝐵௠𝐶 = 0, (17)

where: 𝐶 = ሼ𝑐௞(𝑡)ሽ௞ୀଵேభ ,    𝐴௠ = ሼ𝐴௞௟௠ሽ௞,௟ୀଵேభ ,    𝐵௠ = ሼ𝐵௞௟௠ሽ௞,௟ୀଵேభ , 𝐴௞௟௠ = 𝜇𝑇 (𝑤௠௞ ,𝑤௠௟) + 𝜌(𝛷ഥ௠௞,𝑤௠௟),    𝐵௞௟௠ = (𝜔ഥ௠௞ଶ + 𝜌𝑔)(𝑤௠௞ ,𝑤௠௟). 
For receiving functions Φഥ௠௞ the boundary element method is in used [13]. If we suppose that 𝑐௞(𝑡) = exp(𝑖𝜔𝑡), we get the eigenvalue problem. We will seek the harmonic functions Φഥ௠௞ in 

the form of the sum of simple and double layer potentials [16].  
We shall indicate a moistened surface of a shell through 𝑆ଵ. The free surface of the liquid 𝑆଴ 

coincides with the plane 𝑥𝑦(𝑜𝑟𝑟,𝜃)  in unperturbed state. So, we have the singular integral 
equations for receiving Φഥ௠௞ in the following form: 

2𝜋Φഥ(𝑃଴) + ඵΦഥ 𝜕𝜕𝑛ௌభ
1|𝑃 − 𝑃଴|𝑑𝑆ଵ = ඵ𝑤ௌబ

1|𝑃 − 𝑃଴|𝑑𝑆଴. (18)

This equation is reduced to one-dimensional one as in [15]. For numerical simulation, the 
boundary elements with constant density are applied. Here, 𝑁଴  is the number of boundary 
elements along the free surface radius; 𝑁௪ along the shell wall, and 𝑁௕௢௧ along the shell bottom. 
Consider the rigid circular cylindrical shell with the radius and height as 𝑅 = 1 m, and ℎ = 1 m, 
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respectively. Table 1 below provides the numerical values of the natural frequencies of liquid 
sloshing for 𝑚 = 1. 

Table 1. Slosh frequency parameters 𝜔௠௞ଶ /𝑔 of the fluid-filled rigid cylindrical shell 𝑚 BEM 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

1 

𝑁଴ 𝑁௪ 𝑁௕௢௧ 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 
25 20 20 1.6590 5.3301 8.5385 11.7071 14.8684 
50 40 40 1.6579 5.3297 8.5372 11.7082 14.8655 

100 80 80 1.6573 5.3293 8.5366 11.7066 14.8635 
Analytical solution 1.6573 5.3293 8.5363 11.7060 14.8635 

The results of Table 1 testify convergence of proposed BEM. In should be noted that the 
accuracy 𝜀 = 10-4 has been achieved here for 𝑁଴ = 𝑁௪ = 𝑁௕௢௧ = 80. 

3. Results 

Several numerical experiments have been performed to validate the accuracy of the proposed 
analytical method and determine the frequency. Eqs. (11) and (12) are solved to determine 
frequencies 𝜔. 

Table 2. Validation of numerical and analytical results 
Frequency (Hz) 1 2 3 4 Method 

BEM, 40 Elements 0.95582 1.62832 2.05986 2.41284 
Analytical Solution 0.95597 1.62777 2.05970 2.41198 

The validation of numerical results using BEM with the deployed analytical approach is shown 
in Table 2. The results show a good convergence. For computations, the parameters of clamped 
Silicon membrane are considered as the following: 𝑅 =  0.5 m, 𝜌 =  998 kg/m3, thickness ℎ௠ = 0.001 m, material density 𝜌௠ = 2800kg/m3, Young modulus 𝐸 = 50 MPa, Poison’s ratio 𝑣 = 0.49, and ℎ = 1 m. Fundamental modes of sloshing of liquid vibrations are shown in Fig. 2. 

 
Fig. 2. Fundamental slosh modes of liquid in a 

circular cylindrical container 

 
Fig. 3. Sloshing modes with membrane  

vibrations as Eva plastic roof on free surface 

To see the modes of membrane, Eva plastic membrane is used at the free surface. The radius 
of the membrane is taken with 0.5 m, thickness ℎ௠ = 0.001 m, material density as 950 kg/m3. The 
sloshing modes of the membrane are shown in Fig. 3. 

4. Conclusions 

In this paper, the sloshing in a right vertical circular cylindrical container in the presence of a 
membrane placed at the free surface is investigated. The fundamental sloshing modes of liquid 
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with and without membrane at the free surface are reported.  An analytical approach used to 
determine sloshing frequencies is validated using Boundary Element Method (BEM). A good 
agreement is shown between two, even for a small number of boundary elements. The main aim 
of this research was to validate both analytical and numerical methods using comparison of the 
results. 
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