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Abstract. In order to suppress the random shift error of laser gyro and improve the practical 
precision of inertial navigation system, an improved gyro filtering method is proposed by 
combining the complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) and principal component analysis (PCA). Firstly, the gyro signal is decomposed by 
CEEMDAN, and the noise energy of each intrinsic mode function (IMF) is estimated according 
to the distribution model of noise energy. Then, on basis of noise energy, the principal component 
analysis is used to remove the noise IMF to achieve the final denoising of gyro signal. In the 
proposed method, CEEMD can improve the mode mixing and denoising effect of gyro signal. 
Moreover, PCA is used to decompose each IMF. According to the noise energy, the noise of each 
IMF is removed adaptively to avoid the selection of noise IMF and better retain the useful 
information of the signal. The proposed method is completely dependent on the characteristics of 
gyro signal and has good adaptability and strong denoising ability. Furthermore, the filtered effect 
of different methods is analyzed by overlapping Allan variance. The experimental results show 
that the proposed method can suppress the gyro random drift more efficiently, and the effect of 
removing noise is better than EMD threshold method and EMD correlation coefficient method. 
Keywords: Gyro random drift, CEEMDAN, principal component analysis, filtering. 

1. Introduction 

Laser gyroscope is a new generation of inertial measurement element. Compared with 
traditional mechanical gyroscope, it has many outstanding advantages and has been widely used 
in many fields [1]. The accuracy of the output signal of laser gyro will directly affect the alignment 
efficiency of inertial navigation system. Due to the influence of uncertain factors such as internal 
structure and external environment, the output signal of the gyro often contains a lot of random 
noise that seriously affects its accuracy. How to effectively reduce the random drift of the gyro 
and improve the output accuracy of the signal has always been a hot and difficult point in laser 
gyro [2]. There are currently two main methods to reduce gyro random drift [3]: one is to establish 
a time series model of the gyro random drift, and the Kalman filter and more are used for random 
drift compensation based on this; the other is to use wavelet transform and more to reduce the 
noise of the gyro output data. Since the gyro signal will be interfered by a variety of uncertain 
factors, the random drift has the characteristics of slow time-varying, nonlinear, and non-
stationary, which makes it impossible to establish an accurate drift model. Therefore, a time series 
model is difficult to obtain the ideal compensation effect, and the current gyro signal processing 
mainly adopts noise reduction method [3]. 

To solve the problem of large random drift of MEMS gyroscope, scholars at home and abroad 
have adopted many methods to deal with it. For example, a digital low-pass filter was used to filter 
out high-frequency noise [4], but this filter needs to be designed according to experience and is 
not suitable for the aliasing of noise spectrum and signal spectrum.  The wavelet denoising method 
was proposed and the wavelet coefficients were optimized through sparse redundancy 
representation [5], but the appropriate threshold value and wavelet basis function is difficult to be 
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selected in the wavelet filtering. An advanced neural architecture search cyclic neural network 
(NAS-RNN) method was adopted [6], but the basic structure and modules used in the NAS 
algorithm are difficult to rely on manual design, and require a large amount of computation.  The 
time series model with Kalman filtering method is the most commonly used method for MEMS 
gyroscope error compensation [7], but the filtering accuracy is low.  

The empirical mode decomposition (EMD) method does not require any prior knowledge of 
the signal [8], nor does it need to establish an error model. The original signal can be directly 
decomposed into several intrinsic mode functions (IMFs) and a margin, and then the 
high-frequency component containing noise is removed and the low-frequency component is 
reconstructed to achieve the original signal. In reference [9], the dominant component of noise 
was screened by calculating the variance of the autocorrelation function of each IMF. The IMF 
component with a small variance value can be considered as the dominant component of noise. In 
reference [10], the correlation coefficient method was used to screen IMF. When the local 
minimum appeared for the first time in the correlation coefficient graph, the IMF component 
before the extreme point could be determined as the noise component. In reference [11], IMF 
components were divided into noise IMF, aliasing IMF and signal IMF according to Pearson 
correlation coefficient criterion, and the aliasing component was processed with good denoising 
effect. However, there is no definite criterion for the selection of the IMF with noise. The 
traditional EMD denoising method directly removes the high-frequency component dominated by 
noise, which will lose some useful information and lead to the deviation of reconstructed signal. 
In reference [12], EMD algorithm with traditional time series modeling filtering method was used 
to compensate the error of gyroscope. Although good filtering effect is achieved, several 
high-order Kalman filters are used in the filtering process, leading to poor real-time performance. 

In order to overcome the influence of EMD mode mixing and noise IMF selection on  
denoising, a gyro signal denoising method combining CEEMDAN and principal component 
analysis (PCA) is proposed in this paper. This method uses CEEMD instead of EMD to achieve 
almost perfect signal reconstruction. It improves the mode mixing and denoising effect of gyro 
signal. Moreover, PCA is used to decompose each IMF, and the principal components to be 
retained are selected adaptively according to the noise energy, thereby removing the noise of IMF 
r, avoiding the screening of noise IMF, and further improving the denoising effect of gyro signal. 
The proposed method is completely dependent on the characteristics of gyro signal, without 
judging the IMF noise term and setting the threshold value. In this paper, the noise reduction 
experiments of laser gyro test signals are carried out, and the experimental results are analyzed by 
overlapping Allan variance. The results show that the proposed method can suppress the gyro 
random drift more effectively than the existing EMD noise reduction methods. 

2. CEEMDAN and principal component analysis 

2.1. CEEMDAN 

The CEEMDAN algorithm can effectively solve the problem of modal aliasing caused by 
EMD by adding adaptive white noise in each stage of decomposition. Meanwhile, it overcomes 
the problem of reconstruction errors caused by EEMD through adding white noise. The 
CEEMDAN algorithm is shown below [13]: 

Step 1: Find the first-order modal component. Add positive and negative pairs of Gaussian 
white noise (−1)௠𝜀𝑛௜(𝑡)  to the original signal 𝑥(𝑡)  in order to form a new signal 𝑥(𝑡) +(−1)௠𝜀𝑛௜(𝑡), and 𝑚 ∈ {1,2}. 𝜀 is the amplitude. 𝑛௜(𝑡) is the white noise sequence added for the 𝑖  time and obeys the standard normal distribution, and 𝑖  is the number of auxiliary noises,  𝑖 = 1,2,⋯ ,𝑁. EMD of the new signal is obtained: 𝑥(𝑡) + (−1)௠𝜀𝑛௜(𝑡) = 𝐼𝑀𝐹ଵ௜(𝑡) + 𝑟ଵ(𝑡). (1)
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At this time, 𝑁 first-order components 𝐼𝑀𝐹ଵ௜(𝑡) are obtained. The average value through 𝑁 𝐼𝑀𝐹ଵ௜(𝑡) is found and the final weight of the first stage is obtained: 

𝐼𝑀𝐹ଵ(𝑡) = 1𝑁෍𝐼𝑀𝐹ଵ௜(𝑡)ே
௜ୀଵ . (2)

From Eq. (1) and Eq. (2), the first-order residual component 𝑟ଵ(𝑡) is obtained: 𝑟ଵ(𝑡) = 𝑥(𝑡) + (−1)௠𝜀𝑛௜(𝑡) − 𝐼𝑀𝐹ଵ(𝑡). (3)

Step 2: Find the second-order modal component. Add positive and negative pairs of Gaussian 
white noise (−1)௠𝜀𝑛௜(𝑡)  to the remaining component 𝑟ଵ(𝑡)  to form a new signal  𝑟ଵ(𝑡) + (−1)௠𝜀𝑛௜(𝑡). EMD is used to decompose again: 𝑟ଵ(𝑡) + (−1)௠𝜀𝑛௜(𝑡) = 𝐼𝑀𝐹ଶ௜(𝑡) + 𝑟ଶ(𝑡). (4)

Then, the second-order component 𝐼𝑀𝐹ଶ(𝑡) is obtained by averaging 𝑁𝐼𝑀𝐹ଶ௜(𝑡): 

𝐼𝑀𝐹ଶ(𝑡) = 1𝑁෍𝐼𝑀𝐹ଶ௜(𝑡)ே
௜ୀଵ . (5)

Finally, the second-order residual component is obtained: 𝑟ଶ(𝑡) = 𝑟ଵ(𝑡) + (−1)௠𝜀𝑛௜(𝑡) − 𝐼𝑀𝐹ଶ(𝑡). (6)

Step 3: Repeat step 2 until the remaining signal cannot be decomposed. Suppose that 𝐾 
average IMF components are obtained at the end of the algorithm, the final residual signal 𝑅(𝑡) 
is: 

𝑅(𝑡) = 𝑥(𝑡) −෍𝐼𝑀𝐹௞(𝑡)௄
௞ୀଵ . 

The original signal can be expressed as: 

𝑥(𝑡) = ෍𝐼𝑀𝐹௞(𝑡)௄
௞ୀଵ + 𝑅(𝑡). 

2.2. Principal component analysis 

PCA is a typical decorrelation algorithm [14], which has been widely used in dimensionality 
reduction, data compression, and noise removal. Suppose 𝑋 is a 𝑚 × 𝑛 matrix, i.e.: 

𝑋 = ൦𝑋ଵ𝑋ଶ⋮𝑋ଷ൪ = ⎣⎢⎢
⎡𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵ௡𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶ௡⋮ ⋮ ⋮ ⋮𝑥ଷଵ 𝑥ଷଶ ⋯ 𝑥௠௡ ⎦⎥⎥

⎤. (7)

Take the mean of 𝑋௜  as 𝑋ത௜ , 𝑋ത௜ = ଵ௡ ∑ 𝑥௜௝୬௝ୀଵ , and let 𝑋ത = [𝑋ଵ − 𝑋തଵ,𝑋ଶ − 𝑋തଶ,⋯ ,𝑋௠ − 𝑋ത௠]் , 
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then the covariance matrix Ω of 𝑋 is Ω = ଵ௡ 𝑋ത ⋅ 𝑋ത். The purpose of PCA transformation is to find 
an orthogonal matrix 𝑃. The components in 𝑋 are de-correlated by the transformation 𝑌 = 𝑃𝑋, 
and the covariance matrix of 𝑌 is diagonal matrix. Because Ω is a symmetric matrix, and Ω can be 
expressed by singular decomposition: Ω = ΦΛΦ் = [𝜙ଵ,𝜙ଶ,⋯     𝜙௠], 
where, Φ = [𝜙ଵ,𝜙ଶ,⋯     𝜙௠]  is an orthogonal matrix,}, Λ = diag{𝜆ଵ, 𝜆ଶ,⋯𝜆௠} . 𝜆ଵ, 𝜆ଶ, … , 𝜆௠ 
represents the characteristic root of covariance matrix and satisfy 𝜆ଵ ≥ 𝜆ଶ ≥ ⋯   ≥ 𝜆௠ . 𝜙௜ 
represents the eigenvector corresponding to 𝑥(𝑡). If 𝑘, and then the disjoint operation of each 
component in data 𝑋 can be realized by transforming 𝑖𝑚𝑓௞ = {𝑑ଵ,𝑑ଶ,⋯ ,𝑑ே}. Components in 
matrix 𝜀(𝑖𝑚𝑓௞) are independent to each other. 

In addition to de-correlation, another important feature of PCA is to de-noise signals by 
optimizing the selection of some principal components. After PCA decomposition, the 
noise-containing signal is mainly concentrated in the first few principal components, and the noise 
is distributed in each principal component to varying degrees. Therefore, as long as the first few 
principal components are retained for reconstruction, the noise in the signal can be significantly 
removed and a good de-noising effect can be achieved. That is, if let  𝑌෨ = [𝑌ଵ் ,𝑌ଶ் ,⋯ ,𝑌ு் , 0,⋯ ,0]், 𝐾 < 𝑚, and then: 

𝑋෨ = 𝑃்𝑌෨ = ෍𝜙௜𝑌௜ு
௜ୀଵ , (8)

is the result of denoising the original noise-containing signal 𝑋. 

3. Gyro signal denoising based on PCA and CEEMDAN 

3.1. Energy composition model of gyro signal IMF 

The laser gyro signal 𝑥(𝑡)  is decomposed by CEEMDAN. The IMF at layer 𝑘  is  𝐼𝑀𝐹௞ = {𝑑ଵ,𝑑ଶ,⋯ ,𝑑ே}, and the energy of 𝐼𝑀𝐹௞ 𝜀(𝐼𝑀𝐹௞) is defined as [15]: 

𝜀൫𝐼𝑀𝐹௞൯ = 𝐼𝑀𝐹௞ ⋅ 𝐼𝑀𝐹௞் = ෍𝑑௡ଶே
௡ୀଵ , (9)

where, 𝑖𝑚𝑓ଵ represents the length of 𝐼𝑀𝐹௞. For the sake of discussion, let 𝑓௞ = 𝐼𝑀𝐹௞, assuming 
that: 𝑓௞ = 𝑔௞ + 𝑉௞, (10)

where, 𝑔௞  represents the signal component contained in 𝑓௞ , and 𝑉௞  represents the noise 
component in 𝑓௞, there are: 𝑓௞ − 𝐸(𝑓௞) = 𝑔௞ + 𝑉௞ − 𝐸(𝑔௞ + 𝑉௞) = [𝑔௞ − 𝐸(𝑔௞)] + [𝑉௞ − 𝐸(𝑉௞)]. 

Among them, 𝐸( ) indicates the expectation. According to EMD, the resolution characteristics 
of zero mean white noise 𝐸(𝑉௞) = 0, and let: 𝑓መ = 𝑓 − 𝐸(𝑓),      𝑔ො = 𝑔 − 𝐸(𝑔). 



LASER GYRO SIGNAL FILTERING BY COMBINING CEEMDAN AND PRINCIPAL COMPONENT ANALYSIS.  
RONGRONG HUANG, LEI YAN, JING LIU 

1824 JOURNAL OF VIBROENGINEERING. DECEMBER 2021, VOLUME 23, ISSUE 8  

Then the above equation becomes: 𝑓௞෡ = 𝑔௞ෞ + 𝑉௞. (11)

The energy of 𝑓௞෡ , 𝑔௞ෞ and 𝑉 are 𝜀(𝑓௞෡ ), 𝜀(𝑔௞ෞ) and 𝜀(𝑉௞) respectively. According to Eq. (9): 𝜀(𝑓௞෡ ) = 𝑓௞෡ ⋅ 𝑓௞෡ ் = (𝑔௞ෞ + 𝑉௞)(𝑔௞ෞ + 𝑉௞)் = 𝑔௞ෞ ⋅ 𝑔௞ෞ் + 𝑔௞ෞ ⋅ 𝑉௞் + 𝑉௞ ⋅ 𝑔௞ෞ் + 𝑉௞ ⋅ 𝑉௞் . 
Because signal 𝑓௞෡  has nothing to do with the noise 𝑉௞, and: 𝑓௞෡𝑉௞் = [𝑔௞ − 𝐸(𝑔௞)][𝑉௞ − 𝐸(𝑉௞)]் ≈ 0,     𝑉௞𝑔௞ෞ் = [𝑉 − 𝐸(𝑉)][𝑔௞ෞ − 𝐸(𝑔௞ෞ)]் ≈ 0. 
So: 𝜀൫𝑓௞෡ ൯ ≈ 𝑔௞ෞ𝑔௞ෞ் + 𝑉௞𝑉௞் = 𝜀(𝑔௞ෞ) + 𝜀(𝑉௞). (12)

That is, the energy of 𝑓௞෡  is mainly composed of signal energy 𝜀(𝑉௞) and noise energy 𝜀(𝑉௞). 
When 𝑓௞෡  is denoising, if the noise with energy 𝜀(𝑉௞) can be removed from 𝑓௞෡ , then it can be 
considered that the remaining part is all signal information and no longer contains noise.  

The energy of 𝜀(𝑉௞) in 𝑓௞෡  is unknown. Since the signal and noise are mixed together, and it is 
usually impossible to find the noise energy contained in 𝑓௞෡ . However, based on the energy model 
of the noise signal decomposed by EMD [17, 18], the energy of 𝜀(𝑉௞)  in 𝐼𝑀𝐹௞  can be 
approximated. After EMD decomposition of the signal contaminated by white noise, the 
embedded mode function of the first layer 𝐼𝑀𝐹ଵ is basically composed of noise and contains only 
a small amount of signal information. Assuming that 𝐼𝑀𝐹ଵ is completely composed of noise, that 
is, 𝜀(𝑉ଵ) = 𝜀(𝐼𝑀𝐹ଵ) , then the energy 𝜀(𝑉௞)  of the noise contained in the 𝑘 -th IMF can be 
approximately obtained according to the following formula: 

𝜀(𝑉௞) = 𝜀(𝑉ଵ)𝛽 𝜌௞,     𝑘 ≥ 2, (13)

where, 𝑚 and 𝑟. According to Eq. (2) and Eq. (3), the noise energy in 𝑓௞෡ = 𝐼𝑀𝐹௞ − 𝐸൫𝐼𝑀𝐹௞൯ is 
the same as that in 𝑓௞ = 𝐼𝑀𝐹௞ . Therefore, the energy 𝜀(𝑉௞)  of noise contained in 𝑓௞෡  can be 
approximately obtained through Eq. (13). Simply let 𝜀(𝑉ଵ) = 𝜀(𝐼𝑀𝐹ଵ), regardless of the detailed 
information contained in 𝐼𝑀𝐹ଵ, it will lead to the excessive estimation of noise energy, which is 
not conducive to the preservation of signal details. If PCA is applied to 𝐼𝑀𝐹ଵ to extract some 
detailed signal information, the noise energy value of 𝜀(𝑉ଵ)  in 𝐼𝑀𝐹ଵ  can be estimated more 
accurately. 

3.2. Principal component selection for IMF denoising at each layer 

After CEEMDAN decomposition of the gyro signal, there are different degrees of noise in 
each IMF layer. PCA is used to further remove the noise of each IMF layer. Still make 𝑓௞ = 𝐼𝑀𝐹௞ 
and 𝑓௞෡ = 𝑓௞ − 𝐸(𝑓௞), and let 𝑍 = (𝑍ଵ,𝑍ଶ,⋯ ,𝑍ே)் = (𝑓௞)் and 𝑋 = (𝑋ଵ,𝑋ଶ,⋯ ,𝑋ே)் = (𝑓௞෡ )். 

Let 𝑚௓ = 𝐸(𝑍) and 𝑚௑ = 𝐸(𝑋), due to 𝑋 = 𝑍 −𝑚௓, obviously 𝑚௑ = 0, and the covariance 
matrix of 𝑍 is obtained 𝐶௓ = 𝐸{(𝑍 −𝑚௓)(𝑍 −𝑚௓)்} = 𝐸{(𝑋 −𝑚௑)(𝑋 −𝑚௑)்} = 𝐶௑. 

Therefore, using PCA to denoise 𝑓௞ is equivalent to using PCA to denoise 𝑓௞෡ . Let 𝜆ଵ ≥ 𝜆ଶ ≥⋯ ≥ 𝜆ே be the characteristic value of 𝐶௑, and 𝜙ଵ,𝜙ଶ,⋯ ,𝜙ே be the corresponding eigenvectors. 
Let Φ = [𝜙ଵ,𝜙ଶ,⋯ ,𝜙ே]், i.e. Φ is an orthogonal matrix. Define: 
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𝑌 = (𝑌ଵ,𝑌ଶ,⋯ ,𝑌ே)் = Φ(𝑋 −𝑚௑). 
According to the decomposition characteristics of PCA, the noise in 𝑋 is distributed in all the 

components in 𝑌௜, while the signal is mainly concentrated in the components of the first few layers. 
If the first 𝐻  eigenvectors are selected to form a new transformation matrix  Φு = [𝜙ଵ,𝜙ଶ,⋯ ,𝜙ு, 0,⋯ ,0]் , then the approximate value 𝑋෨  of the original signal 𝑋  can be 
obtained from 𝑌ு by the inverse transformation: 

𝑋෨ −𝑚௑ = Φு்𝑌ு = ෍𝜙௜𝑌௜ு
௜ୀଵ . 

Therefore, 𝑋෨ = ∑ 𝜙௜𝑌௜ + 𝑚௑ு௜ୀଵ  is the signal de-noised by 𝑓௞෡ , and: 

Δ𝑋 = 𝑋 − 𝑋෨ = ෍ 𝜙௜𝑌௜ே
௜ୀுାଵ , (14)

is equivalent to the noise removed from 𝑓௞෡ . When PCA is used to remove the noise in 𝑖𝑚𝑓௞, an 
appropriate number of principal components is selected for reconstruction. Usually, according to 
the cumulative contribution rate of the first 𝐻  principal components 𝑟 = (∑ 𝜆௜ு௜ୀଵ ∑ 𝜆௜ே௜ୀଵ⁄ ) to 
determine the principal components retained. However, the selection of principal component is 
not simple: if the cumulative contribution rate r is too high, there will be a lot of residual noise, 
resulting in incompletely removal of noise; If the cumulative contribution rate r is too small, more 
signal details will be lost. Moreover, the intensity of noise contained in each IMF layer is different. 
Therefore, in the denoising process of 𝐼𝑀𝐹௞, the cumulative contribution rate 𝑟 cannot be set to a 
fixed value. Based on the distribution characteristics of noise energy in 𝐼𝑀𝐹௞ , this paper 
adaptively determines the value of the cumulative contribution rate r in denoising. 

3.2.1. Principal component selection of 𝑰𝑴𝑭𝟏 

From CEEMDAN's decomposition characteristics of noise signals [16], it can be seen that IMF 
is basically composed of noise and only contains a small amount of signal details. After PCA 
decomposition, the signal is basically only concentrated in the first principal component. 
Therefore, when using PCA to de-noise 𝑓ଵ෡ , only the first principal component is retained for 
reconstruction. That is, make 𝑋 = 𝑓ଵ෡ ,  and 𝑋  de-noised by PCA is the signal  𝑋෨ = (𝜙ଵ, 0,0,⋯ ,0)𝑌 = 𝜙ଵ𝑌ଵ. At this point, the noise removed from 𝑋 is: 

Δ𝑋 = 𝑋 − 𝑋෨ = ෍𝜙௜𝑌௜ே
௜ୀଶ . (15)

Therefore, the energy of noise 𝜀(𝑉ଵ)𝜀(Δ𝑋) contained in 𝑓ଵ෡  can be obtained. According to the 
noise energy distribution in the EMD model Eq. (13) and 𝜀(𝑉ଵ), 𝑓௞෡  value contained in the noise 
energy is calculated. 

3.2.2. Principal component selection of 𝑰𝑴𝑭𝒌  (𝒌 ≥ 𝟐) 

The following discusses the principal component selection method of 𝑓௞෡ = 𝐼𝑀𝐹௞ − 𝐸(𝐼𝑀𝐹௞) 
at 𝑘 ≥ 2. From Eq. (12), the energy of 𝑓௞෡  is mainly composed of ideal signal energy and noise 
energy. If appropriate 𝐻 is selected during the PCA reconstruction, the energy of noise Δ𝑋 deleted 
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in Eq. (14) is the same as that of 𝑉௞ contained in 𝑓௞෡ . That is, 𝐻 is selected, let: 𝜀(Δ𝑋) = 𝜀(𝑉௞). 
It is considered that the noise has been completely removed, and the remaining principal 

component is the ideal signal 𝑔௞ෞ without noise. In order to facilitate the calculation and reduce the 
error, the above Formula is modified to: 𝜀(Δ𝑋)𝜀(𝑋) = 𝜀(𝑉௞)𝜀(𝑋) . (16)

It can be seen from Eq. (14) that the energy of the deleted noise Δ𝑋 is: 

𝜀(Δ𝑋) = (Δ𝑋)்Δ𝑋 = ෍ ෍ 𝑌௜் 𝜙௜் 𝜙௝𝑌௝ே
௝ୀுାଵ

ே
௜ୀுାଵ = ෍ 𝑌௜ଶே

௜ୀுାଵ = ෍ 𝑌௜𝑌௜்ே
௜ୀுାଵ . 

Since 𝑌௜ = 𝜙௜் (𝑋 −𝑚௑), and: 

𝜀(Δ𝑋) = ෍ 𝜙௜் (𝑋 −𝑚௑)(𝑋 −𝑚௑)்𝜙௜ே
௜ୀுାଵ = 𝑁 ෍ 𝜙௜் [1𝑁 (𝑋 −𝑚௑)(𝑋 −𝑚௑)்]𝜙௜ே

௜ୀுାଵ  

      = 𝑁 ෍ 𝜙௜் 𝐸[(𝑋 −𝑚௑)(𝑋 −𝑚௑)்]𝜙௜ே
௜ୀுାଵ = 𝑁 ෍ 𝜙௜் 𝐶௑𝜙௜ே

௜ୀுାଵ = 𝑁 ෍ 𝜙௜் 𝜆௜𝜙௜ே
௜ୀுାଵ  

      = 𝑁 ෍ 𝜆௜ே
௜ୀுାଵ . 

Due to 𝑋 = ∑ 𝜙௜𝑌௜ + 𝑚௑ே௜ୀଵ  and 𝑚௑ = 0, and the energy of signal 𝑋 is: 

𝜀(𝑋) = 𝑋்𝑋 = ൭෍𝜙௜𝑌௜ே
௜ୀଵ ൱ቌ෍𝜙௝𝑌௝ே

௝ୀଵ ቍ = ෍෍𝑌௜் 𝜙௜் 𝜙௝𝑌௝ே
௝ୀଵ

ே
௜ୀଵ = ෍𝑌௜𝑌௜்ே

௜ୀଵ  
      = 𝑁෍𝜙௜் 1𝑁 (𝑋 −𝑚௑)(𝑋 −𝑚௑)்ே

௜ୀଵ 𝜙௜ = 𝑁෍𝜙௜் 𝐸[(𝑋 −𝑚௑)(𝑋 −𝑚௑)்]𝜙௜ே
௜ୀଵ  

      = 𝑁෍𝜙௜் 𝐶௑ே
௜ୀଵ 𝜙௜ = 𝑁෍𝜆௜ே

௜ୀଵ . 
When using PCA to de-noise 𝑓௞෡ , if the first 𝐻  principal components are selected for 

reconstruction, the ratio of the energy of the deleted noise Δ𝑋 to that of the original signal 𝑋 is ఌ(୼௑)ఌ(௑) = ∑ ఒ೔೔ಿసಹశభ∑ ఒ೔೔ಿసభ . It can be seen from Eq. (16) that in order to make the energy of deleted noise 

equal to that of the noise contained in 𝑓ሚ = 𝑓 − 𝑓̅, an appropriate 𝐻 should be selected as that ∑ ఒ೔೔ಿసಹశభ∑ ఒ೔೔ಿసభ = ఌ(௏ೖ)ఌ(௑) . It can be considered that all noises in 𝑓ሚ = 𝑓 − 𝑓̅ has been removed, and the 

remaining part is all composed of signal information without noise. 𝑓ሚ(𝑛) can be calculated by 
Eq. (7) and noise energy model Eq. (13), and 𝜀(𝑋) can be calculated directly. When choose 𝐻, it 

is hard to be sure that ∑ ఒ೔೔ಿసಹశభ∑ ఒ೔೔ಿసభ = ఌ(௏ೖ)ఌ(௑)  is true. 



LASER GYRO SIGNAL FILTERING BY COMBINING CEEMDAN AND PRINCIPAL COMPONENT ANALYSIS.  
RONGRONG HUANG, LEI YAN, JING LIU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1827 

In this paper, the value of 𝐻 is selected according to the following method: if there is {𝜙௜}, 
Eq. (17) is established, and let 𝑟ே: 

𝑀 = 𝑚଴ ≤ 𝜀(𝑉௞)𝜀(𝑋) ≤ 𝑖𝑚𝑓௞,     (𝑘 = 1,2⋯ ,𝑁). (17)

3.3. De-noising steps of gyro signal based on CEEMDAN and PCA 

The laser gyro signal denoising algorithm based on CEEMDAN and PCA proposed in this 
paper are as follows: 

Conduct CEEMDAN on the gyro signal 𝑥(𝑡), and set its intrinsic modal function as 𝐼𝑀𝐹௞  (𝑘 = 1,2⋯ ,𝐾), and the remainder as 𝑅(𝑡); 
Let 𝜀(𝑉ଵ) = 𝜀(𝐼𝑀𝐹ଵ), and calculate the energy 𝜀(W௞) (𝑘 ≥ 2) of the noise contained in 𝐼𝑀𝐹௞ 

according to Eq. (13). 
Let 𝑓௞෡ = 𝐼𝑀𝐹௞ − 𝐸൫𝐼𝑀𝐹௞൯, 𝑘 = 1,2,⋯ ,𝐾. 
PCA decomposition is performed on 𝑓௞෡ . Through Eq. (17), the principal component 𝐻 retained 

in the denoising of feature space is calculated. According to 𝑋෨ = ∑ 𝜙௜𝑌௜ + 𝑚௑ு௜ୀଵ , the denoising 
result is found in the feature space, and the original image 𝑓௞෡ ᇱ is found through iteration. 

The de-noising result of 𝐼𝑀𝐹௞ is 𝐼𝑀𝐹௞ᇱ = 𝑓௞෡ ᇱ + 𝐸(𝐼𝑀𝐹௞). Accumulate and reconstruct 𝐼𝑀𝐹௞ᇱ (𝑘 = 1,2,⋯ ,𝐾) to get the de-noised gyro signal 𝑥′(𝑡) = ∑ 𝐼𝑀𝐹௞ᇱ(𝑡)ே௞ୀଵ + 𝑅(𝑡). 

4. Experimental analysis 

4.1. Experiment 1 

The experimental data in this article comes from the drift test of a laser gyro under a static base 
at normal temperature (20 °C) (the nominal gyro drift is 1 °/h). The sampling interval is 1 s, and 
the output signal of 2000 epochs on the 𝑥-axis is taken for experimental analysis (similar to the 𝑦 
and 𝑧-axes). The experimental data is shown in Fig. 1. In order to compare the denoising effect, 
the gyro signal is de-noised by the EMD threshold method [12], the EMD correlation coefficient 
method [9] and the proposed method in this paper. In the denoising of EMD threshold method and 
EMD correlation coefficient method, the number of decomposition layers is 9. After the 
experimental signal is decomposed by CEEMDAN under the proposed method, 10 IMF 
components and one remainder are obtained. 

4.1.1. Direct comparison of denoising gyro signals 

The laser gyro drift signal is de-noised by the EMD threshold method, the EMD correlation 
coefficient method and the method, and the results are shown in Fig. 2, Fig. 3, and Fig. 4 
respectively. Compared with the signals de-noised by the EMD threshold method and the EMD 
correlation coefficient method, the signal de-noised by the proposed method is smoother. 
Calculate the mean value and variance of the original signal and the denoising signal respectively, 
and the results are shown in Table 1. It can be seen that the mean values of the three methods after 
denoising are basically the same. The variance of the proposed method after denoising is small, 
which shows that the random noise in the gyro drift data is better eliminated. 

Table 1. Comparison table of mean and variance 
 Original  

signal 
EMD threshold  

method 
EMD correlation  

coefficient method 
Proposed  
method 

Mean (pulse/s) 2.4733 2.3384 2.2429 2.0491 
Variance (pulse/s)2 104.8087 3.3047 2.7739 1.5620 
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Fig. 1. The original signal of the laser gyroscope 

 
Fig. 2. EMD threshold method denoising 

 
Fig. 3. EMD correlation coefficient method denoising 

 
Fig. 4. Denoising method of the proposed method 

4.1.2. Comparison of overlapping Allan variance of denoising gyro signal 

In order to further analyze the denoising effect of the method in this paper on the gyro signal, 
the overlapped Allan variance is used to compare and analyze the denoising results of the three 
methods [17]. Overlapping Allan variance is an improvement to ordinary Allan variance. It has a 
larger confidence interval than ordinary Allan variance analysis and is suitable for error analysis 
of non-stationary random gyro signals. Let the overlapped Allan standard deviation of the signal 
be 𝜎(𝜏)𝜏 = 𝑛𝜏଴, and 𝜏 = 𝑛𝜏଴ be the sampling interval. The double logarithmic curve of 𝜎(𝜏)~𝜏 
can describe the different random error components of the gyro signal. The original signal is 
obtained by the overlapping Allan analysis method, and the coefficients of the five source errors 
of the signal after the three methods are de-noised, including: quantization noise (𝑄), angle random 
walk (𝑁), bias instability (𝐵), rate random walk (𝐾) and rate ramp (𝑅). The results are shown in 
Table 2. 

It can be seen from Table 2 that after the filtering processing of the three noise reduction 
algorithms, the error coefficients is reduced, indicating that the three methods have a certain 
denoising effect on the gyro signal. Compared with the EMD threshold method and the EMD 
correlation coefficient method, the various indicators of the signal after noise reduction in this 
method are low. It indicates that the gyro signal after the EMD threshold method and the EMD 
correlation coefficient method still contains a certain degree of error components. The method in 
this paper further weakens the various error components of the gyro signal. It can also be seen 
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from Table 2 that quantization noise is the main factor causing the random errors in the gyro signal. 
After noise reduction by EMD threshold method, EMD correlation coefficient method and this 
proposed method, the quantization noise error coefficient of the signal is reduced to the original 
13.82 %, 11.14 % and 6.46 %, respectively.  

Table 2. Comparison of noise error coefficient before and after denoising 

Algorithm 𝑄 (μrad) 𝑁 / (°/h-1/2) 𝐵 (°/h) 𝐾 / (°/h3/2) 𝑅 (°/h2) 𝑄 noise reduction 
front-to-rear ratio (%) 

Original signal 6.3632 0.1372 0.4879 2.3392 6.2326e-04 100 
EMD threshold method 0.8792 0.0287 0.2190 0.4068 1.2144e-04 13.82 

EMD correlation 
coefficient method 0.7091 0.0194 0.1613 0.3089 4.2933e-05 11.14 

Proposed method 0.4113 0.0086 0.0924 0.1322 1.2977e-05 6.46 

4.2. Experiment 2 

In this experiment, the low cost MPU-6050 gyroscope is studied.  At room temperature, the 
calibrated MEMS inertial sensor is fixed on the horizontal test bench through a clamp, and the 
sampling frequency is set to 100 Hz. After power-on, the data is collected continuously for 30 s 
after preheating for 0.5 h. The 𝑌 axis sampling data of the gyroscope is used as the original output 
data of the gyroscope. After calculation, the original signal of gyroscope random drift error is 
shown in Fig. 5. The de-noised results of EMD threshold method, EMD correlation coefficient 
method and the proposed method are shown in Fig. 5. To further evaluate the effect of various 
denoising methods, root mean square error (MSE) and signal-to-noise ratio (SNR) are used to 
measure the denoising effect: 

𝑀𝑆𝐸 = ඩ෍[𝑓(𝑖) − 𝑓ᇱ(𝑖)]ଶே
௜ୀଵ , (18)

𝑆𝑁𝑅 = 10 × lgቆ ∑ 𝑓ଶ(𝑖)ே௜ୀଵ∑ [𝑓(𝑖) − 𝑓ᇱ(𝑖)]ଶே௜ୀଵ ቇ, (19)

where, 𝑓(𝑖) is the original signal, and 𝑓′(𝑖) is the de-noised signal. The larger the SNR is, the 
smaller the root mean square error is, and the better the denoising effect will be.  

MSE and SNR are calculated respectively as shown in Table 3. The EMD Threshold Method 
denoising method directly removes the coefficients that are smaller than the threshold value in 
each IMF layer, resulting in partial information missing. The EMD correlation coefficient method 
directly removes the modal units with small correlation coefficients, which also leads to the loss 
of gyro signal. While using the proposed method to de-noise, the signal waveform is well 
preserved. Compared with the EMD threshold method, the MSE of the proposed method is 
reduced by 12 % and the SNR is improved by 13 %. Compared with the EMD correlation 
coefficient method, the MSE of the proposed method is reduced by 12 % and the SNR is increased 
by 13 %. 

Table 3. Evaluation of gyroscope signal denoising effect 
Method MSE SNR 

Original signal 0.1065 15.3005 
EMD threshold method 0.0914 22.3445 

EMD correlation coefficient method 0.0943 23.7260 
The proposed method 0.0827 25.3522 

Experiment 1 and experiment 2 are carried out by Windows10 system, 2.90G Hz i5 processor 
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of CPU, 16.0GB memory, and the software uses the Matlab2019A. In the experiment, the number 
of decomposition layers of CEEMDAN is set as 9. In experiment 1, the average running time of 
the three denoising methods is about 0.60227 s, 0.62782 s and 1.06885 s, respectively. In 
experiment 2, the average running time of them is about 0.38944 s, 0.40896 s and 0.71315 s, 
respectively. 

 
a) Original signal 

 
b) EMD threshold method denoising 

 
c) EMD correlation coefficient method denoising 

 
d) Denoising method of the proposed method 

Fig. 5. Denoisied results of three methods in Experiment 2 

Through comparative analysis, it can be seen that in the proposed method, due to the need of 
multiple iterative decomposition for CEEMDAN and the use of PCA to remove the noise in each 
IMF, the running time is increased to a certain extent compared with the EMD Threshold Method 
and the EMD Correlation Coefficient Method. In the Matlab2019A environment, the average time 
of the implementation phase of the proposed method is about 0.891 s. It can be seen that the 
proposed method can quickly obtain the denoising results of gyro signals in practical applications. 
If the algorithm is written into the hardware by 𝐶 or other compiled languages, the running speed 
will be further improved. Therefore, the proposed method in this paper can meet the requirements 
in terms of real-time performance under certain conditions. 

5. Conclusion  

1) In order to overcome the shortcomings of the existing EMD gyro signal denoising  
algorithm, this paper combines CEEMDAN and PCA to propose an improved gyro signal 
denoising method. 

2) According to the noise energy contained in IMF in each layer of gyro signal, the principal 
components of IMF that should be retained after PCA decomposition is adaptively selected to 
realize the denoising of gyro signal. 

3) In the denoising process, the proposed method can adaptively calculate the model 
parameters according to the characteristics of gyro signal. Therefore, the denoising process is only 
related to the characteristics of gyro signal and does not require cumbersome parameters and 
threshold adjustments. 

4) The noise reduction of the measured gyro random drift signal is carried out, and the noise 
reduction effects of different denoising methods are compared and analyzed by using direct 
comparison method and overlapping Allan variance method. 

5) The experimental results show that compared with EMD threshold denoising method and 
EMD correlation coefficient denoising method, the noise reduction effect of the proposed method 
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improves to a certain extent. It can remove noise, reduce the error components of gyro signal, and 
improve the accuracy of the inertial guidance solution more effectively. Moreover, the proposed 
method in this paper has better stability and adaptability in the processing of gyro signals. 
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