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Abstract. In order to study the wake field and noise of an underwater solid rocket engine, the 
underwater jet flow field was simulated and calculated using the FLUENT software and the 
Volume of Fluid (VOF) method, and the radiated noise of the wake was calculated and analysed 
using the FW-H equation. The numerical simulation results are verified by experiments. The 
research results show that underwater jet gas bubbles experience processes of 
“necking-expansion-necking”, and finally reach a state of “dynamic balance”. The radiated noise 
is mainly affected by the pressure differences of the backpressure, i.e., the larger the pressure 
difference is, the greater the radiated noise. Moreover, the sound pressure presents periodic 
pulsations, and the peak value of the sound pressure decreases rapidly with an increase in distance 
from the receivers. The radiated noise spectrum has the characteristics of a wide frequency band 
and a low frequency, and the energy is mainly concentrated in the range of the low frequency, 
which then moves to the high frequency range. The research results provide some reference for 
the design of an underwater solid rocket engine and a noise prediction for the wake field, and also 
provide some help for underwater detection and identification. 
Keywords: underwater, rocket engine, wake field, gas bubble, noise. 

1. Introduction 

The numerical simulation of the flow field of an underwater solid rocket engine focuses on the 
dynamic tracking of the moving gas-liquid interface [1]. Through the simulation analysis, a 
detailed jet flow field structure can be obtained. As early as the 1970s, Hoefele and Brimacombe 
[2] studied the underwater gas jet flow field structure of nozzles, in particular, the underwater gas 
jet flow field structure from necking-expansion and linear nozzles by combining pressure 
measurements and high-speed photography. This showed that the frequency of the jet pressure 
pulsation decreases with an increase in gas injection pressure. Hirt, et al. [3] used the VOF method 
to study the dynamic problem of free boundaries and track the gas-liquid interface of gas jets. 
Wang Cheng et al. [4] conducted a coupled numerical solution on the interior and exterior flow 
fields of unsteady gas bubbles in the tail of missiles launched at depths of 10 m, 30 m and 60 m. 
The heat transfer between and vaporisation of the gas and water media at high temperatures and 
high pressures were considered in the calculation, the growth and shedding processes of the gas 
bubbles were simulated, and the basic flow law of the gas bubbles was revealed. Scardovelli [5] 
used the direct numerical simulation (DNS) method to study the development of gas bubbles in 
an underwater gas jet process, but it was difficult to apply the results in engineering practice due 
to the large number of grids. Zhang et al. [6] numerically simulated a three-dimensional 
underwater gas jet. Zhong Fengquan [7] used the Navier-Stokes equation for unsteady viscous 
compressible flows to simulate the variations in a flow field of the direct ignition and launching 
processes of an underwater rocket. Yi Shuqun [8] used the MAC method to numerically simulate 
underwater jet flow fields at depths of 15 m and 40 m at high speed and preliminarily determined 
the characteristics of underwater jets. He Xiaoyan, et al. [9] used the LevelSet method to track the 
gas-liquid interface and numerically simulate an underwater gas jet in the initial stage at a depth 
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of 30 m with a jet Mach number of 1, and the calculated result was qualitatively consistent with 
the experimental results. Nguyen [10] used the FLUENT software and the VOF method to 
simulate the impact jet of gas against liquid, and successfully tracked the gas-liquid interface. 
However, the simulation time was too short, and the gas jet nozzle was not submerged in water, 
which was different from the underwater gas jet in the physical mechanism. It shows that the VOF 
method is only an effective method for tracing the gas-liquid interface. In the same year, 
Smolianski [11] used the FELSOS method to study the motions of a gas-liquid free interface. 
Muller [12] used a single-fluid model to simulate the development of underwater gas bubbles. 
Xiang Min, et al. [13] performed numerical simulations on the wake field of underwater solid 
engines at a depth of 10 m based on the axisymmetric unsteady compressible N-S equation and 
the VOF two-phase flow model. The growth process of gas bubbles in the wake field was predicted 
well and the morphology and evolution processes of the wake field in the early working period of 
underwater engines were both obtained. Zhang Shuai [14, 15] established an underwater 
gas-liquid two-phase gas jet numerical simulation model based on the VOF interface tracking 
method and calculated the unsteady wake flow field of an underwater solid engine under 
overexpansion at depths of 300 m and 400 m and analysed the flow field structure. Jia Youjun [16] 
used a high-speed camera to record the growth and variation processes of a wake during the 
underwater ignition of an engine, obtained the morphology and evolution process of the wake, 
and analysed the influence of the water environment on variations in the wake structure of the 
engine. Wang Lili, et al. [17] conducted a numerical study on a solid rocket engine underwater 
supersonic jet, and the results showed that the interactions between water and the jet gas were the 
direct cause of backpressure variations, as well as variations in the shock wave motion, the 
momentum thrust and the pressure differential thrust. 

Regarding noise research, because the gas-liquid flow field of underwater gas injections is 
much more complex than that of a gas jet field, the noise mechanism of underwater gas injections 
is also different from that of gas injections. When gas is discharged underwater at low speed, the 
noise caused by the volume vibrations of the bubbles can be obtained by theoretical calculations. 
However, when the gas is injected at high speed, the interactions between the bubbles will produce 
a low and medium frequency noise and an irregular acoustic signal, which is difficult to obtain by 
theoretical calculations, however, it can be obtained by experiment. 

Gavigan [18] carried out a water tunnel experiment on the noise generated from a gas jet in a 
turbulent wake. When the gas was injected into the moving turbulent field, the noise emitted by 
the jet flow was mainly controlled by the exhaust volume and the size of the exhaust pipe. In the 
turbulence caused by the jet, the collapse and disappearance of bubbles might be the main 
mechanism of the noise generated from an underwater jet. Zhang Wenping, et al. [19] carried out 
an experimental study on underwater exhaust noise in a static pool with a diesel engine and 
compared the spectral characteristics and laws of underwater exhaust noise in the frequency 
domain between pulsating exhaust and stable exhaust. Tam, et al. [20] analysed the jet noise 
laboratory database of the NASA Langley Research Center and found that the spectral structure 
of nozzle jets was similar. This conclusion is applicable to supersonic and subsonic jets, as well 
as rectangular and elliptical jets. Stanley, et al. [21] used direct numerical simulations to study the 
structure and evolution process of plane jet vortexes under the condition of a low Reynolds  
number, revealed the formation and development process of shearing layers through experiments, 
and concluded that the large-scale vortexes of jet flow field structures were anisotropic, while 
small-scale vortexes were isotropic. Ma Xianguo [22] conducted theoretical and experimental 
research on steam underwater jet noise and found that the main sound source of steam underwater 
jet noise was caused by the pressure pulsation wave generated during the collapse of the bubbles. 
Niklas et al. [23] used a large eddy simulation method to study the relationship between the jet 
noise of gas with a high Mach number and the nozzle. Li and Gao [24] and Groschel et al, [25] 
found that the nozzle determined the structure and noise characteristics of a jet. Wang Chunxu et 
al. [26] conducted experimental measurements and research on an underwater free jet field noise, 
studied the spectrum structure of underwater radiated noise, and analysed the influence of radiated 
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noise from an expanding nozzle, a straight nozzle and a contracting nozzle. Hao Zongrui [27] 
conducted an experimental study on the noise characteristics of underwater gas injections, and the 
results showed that when a bubble flow transformed into a jet flow, the corresponding peak sound 
pressure at 2 kHz increased non-linearly. Xin Junhua [28] simulated the straight and underwater 
jet flow fields of a nozzle and an underwater jet noise with the help of the FLUENT software. The 
results showed that the radiation energy is mainly concentrated in the low frequency domain but 
after a velocity increase, the main contribution of the jet noise moved to the high frequency band. 

At present, the simulation of underwater flow fields of solid rocket engines basically focuses 
on depths up until 100 m, but the simulation of an underwater engine at a depth greater than 100 m 
is rarely discussed. In addition, research on underwater jet noise mechanisms remains at the 
Lighthill acoustic simulation theoretical level [29], but there is still a lack in good experimental 
equipment and methods for studying the underwater jet noise characteristics of solid rocket 
engines at a high water depth (≥ 100 m). Based on the abovementioned two aspects, it is necessary 
to conduct research on the simulation of solid rocket engines at a high water depth (≥ 100 m) and 
the characteristics of underwater jet noise. 

2. Mathematical model and numerical calculation method 

This paper is based on the unsteady axisymmetric 𝑁 - 𝑆  equation, the standard 𝑘 - 𝜀 
two-equation turbulence model and the VOF multiphase flow model. Due to the complex 
multiphase flow involving underwater ignition and the working process of a rocket engine, the 
calculation model needs to be appropriately simplified. It is assumed to be a two-dimensional 
axisymmetric model, taking the underwater ignition gas as ideal gas and taking water as a viscous 
incompressible medium. Heat transfer between the gas and liquid phases is considered in the 
calculation, but the phase transition is not considered. The gas enters through the convergence 
section of the nozzle, the external water flow field is calculated as being static, and the nozzle wall 
is set to an adiabatic wall. Setting the following boundary conditions, which were determined 
according to experimental data and experience: total temperature, total pressure and temperature 
changes upon entrance of the nozzle gas, the engine was put at a set depth under water, at an initial 
water temperature of 280 K. 

2.1. Mathematical model 

The continuity equation of fluid motion is as follows: 𝜕𝜌௠𝜕𝑡 + ∇ ∙ ሺ𝜌௠𝑣̅௠ሻ = 0. (1)

In this equation, the density of the mixture is 𝜌௠ = ∑ 𝑎௞௡௞ୀଵ 𝜌௞, 𝑎௞ is the volume fraction of 
the 𝑘 phase, 𝜌௞ is the density of the 𝑘 phase, and the average speed is 𝑣̅௠ = ∑ ௔ೖ೙ೖసభ ఘೖ௩ത೘ఘ೘ . 

The momentum equation of the fluid motion is as follows: 𝜕𝜌௠𝑣̅௠𝜕𝑡 + ∇ ∙ ሺ𝜌௠𝑣̅௠𝑣̅௠ሻ = −∇𝑝 + ∇ ∙ ሾ𝜇௠ሺ∇𝑣̅௠ + ∇𝑣௠ି்ሻሿ + 𝜌௠𝑔. (2)

In this equation, 𝜇௠ is the viscosity of the mixture, 𝜇௠ = ∑ 𝑎௞௡௞ୀଵ 𝜇௞. 
The energy equation of the fluid motion is as follows: 𝜕𝜕𝑡෍ሺ𝑎௞𝜌௞𝐸௞ሻ௡
௞ୀଵ + ∇ ∙෍ሾ𝑎௞𝑣̅௞ሿሺ𝜌௞𝐸௞ + 𝑝ሻ௡

௞ୀଵ = ∇ ∙ ൫𝑘௘௙௙∇𝑇൯, (3)
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𝐸௞ = ቐℎ௞ − 𝑝𝑝௞ + 𝑣௞ଶ2 , Compressible phase,ℎ௞, Incompressible phase, 
where ℎ௞ is the enthalpy of the 𝑘 phase, 𝑘௘௙௙ = 𝑘 + 𝑘௧, 𝑘௧ is the heat conductivity of turbulence. 

The turbulence equation for fluid motion (𝐾-𝐸𝑝𝑠𝑖𝑙𝑜𝑛) is: 𝜕𝜕𝑡 ሺ𝜌௠𝑘ሻ + ∇ ∙ ሺ𝜌௠𝑘𝑣ሻ = ∇ ∙ ൤൬𝜇௠ + 𝜇௧𝜎௞൰ ∇𝑘൨ + 𝑃௞ − 𝜌ሺ𝜀 − 𝜀଴ሻ + 𝑆௞, (4)𝜕𝜕𝑡 ሺ𝜌௠𝜀ሻ + ∇ ∙ ሺ𝜌௠𝜀𝑣ሻ = ∇ ∙ ൤൬𝜇௠ + 𝜇௧𝜎ఌ൰ ∇𝜀൨ + 1𝑇௘ 𝐺ଵఌ𝑃ఌ − 𝐺ଶఌ𝑓ଶ ൬ 𝜀𝑇௘ − 𝜀଴𝑇଴൰ + 𝑆ఌ , (5)

where 𝑣 is the mean velocity, 𝜇௧ is the dynamic viscosity, 𝐺ଵఌ, 𝐺ଶఌ, 𝜎௞, 𝜎ఌ are model coefficients, 𝑃௞, 𝑃ఌ are production terms, 𝑓ଶ is the damping function, 𝑆௞ and 𝑆ఌ are user-specified source terms 
and 𝑇଴ is the definition of a specific time-scale. 

2.2. Noise equation 

The sound pressure at the monitoring point X was calculated according to the free space 
Green’s function by the FW-H (Kirchhoff – Ffowcs Williams and Hawkings) equation. The FW-H 
equation is as follows: 𝑝ᇱሺ𝑥, 𝑡ሻ = 𝑝ᇱ் ሺ𝑥, 𝑡ሻ + 𝑝௅ᇱ ሺ𝑥, 𝑡ሻ + 𝑝ொᇱ ሺ𝑥, 𝑡ሻ. (6)

The single pole term is as follows: 

𝑝ᇱ் ሺ𝑥, 𝑡ሻ = 14𝜋 ൭൬ 𝜕𝜕𝑡൰න ൤ 𝑄𝑟ሺ1 −𝑀௥ሻ൨௥௘௧ 𝑑𝑆 
ௌ ൱. (7)

The dipole term is as follows: 

𝑝௅ᇱ ሺ𝑥, 𝑡ሻ = 14𝜋൮ቌ 𝜕ଶ൫𝜕௫೔൯ ቀ𝜕௫ೕቁቍන ൤ 𝐿௜𝑟ሺ1 −𝑀௥ሻ൨௥௘௧ 𝑑𝑆 
௏ ൲. (8)

The quadrupole term is as follows: 

𝑝ொᇱ ሺ𝑥, 𝑡ሻ = 14𝜋൮ቌ 𝜕ଶ൫𝜕௫೔൯ ቀ𝜕௫ೕቁቍන ൤ 𝑇௜௝𝑟ሺ1 −𝑀௥ሻ൨௥௘௧ 𝑑𝑉 
௏ ൲. (9)

𝑄 = 𝜌଴𝑈௜𝑛௜ ,      𝑈௜ = ൬1 − 𝜌𝜌଴൰ 𝑣௜ + 𝜌𝑢௜𝜌଴  ,       𝐿௜ =  𝑃௜௝𝑛௜ + 𝜌𝑢௜ሺ𝑢௡ − 𝑣௡ሻ, 𝑃௜௝ = ሺ𝑝 − 𝑝଴ሻ𝛿௜௝ − 𝜎௜௝ ,      𝑇௜௝ = 𝜌𝑢௜𝑢௝ + 𝛿௜௝ሾሺ𝑝 − 𝑝଴ሻ − 𝑐଴ଶሺ𝑝 − 𝑝଴ሻሿ − 𝜎௜௝ , 
where 𝑢௜  is the fluid velocity component in the direction of 𝑖 , 𝑢௡  is the fluid velocity 

component perpendicular to the surface, 𝑣௜ is the surface velocity component in the direction of 𝑖, 𝑣௡ is the surface velocity component perpendicular to the surface, 𝑛௜ is the surface normal vector, 𝜎௜௝ is the viscous stress tensor, 𝜌଴ is the far-field density, 𝑃௜௝ is the compression stress tensor, and 𝑇௜௝ is the Lighthill stress tensor. 
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a) 1ms b) 12 ms 

c) 17 ms d) 47 ms 

e) 73 ms f) 94 ms 

g) 135 ms h) 194 ms 

 
Fig. 1. Contours of gas phase volume fractions at different instants 

3. Wake noise analysis of underwater solid rocket motor 

3.1. Computational model and boundary conditions 

The expansion ratio of the nozzle was set to 1.63. The computational region is axisymmetric, 
the length is 114 times the throat diameter and the width is 34 times the throat diameter. The 
boundary conditions were set as follows: the entrance of the nozzle is the entrance of pressure, the 
total pressure is 𝑃 = 9.8 MPa, the water free exit is set as the pressure exit, which is determined 
by the water pressure during the working phase of the nozzle. The water depth is set to 160 m, 
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260 m and 360 m, and the water temperature is set to 280 K by referring to relevant documents. 
The initial instant is set to the moment the pressure of the nozzle reaches the water pressure, which 
is 5 ms after engine ignition, and then the high temperature gas quickly fills the combustion 
chamber and nozzle. At this instant, the nozzle is filled with gas, the pressure is equal to the 
environmental pressure, and the temperature is 1120 K. Another 10 ms later, the pressure and 
temperature of the gas in the nozzle respectively increase to 9.8 MPa and 2800 K according to a 
linear law. The inner walls of the nozzle and the outer surface of the engine are treated as non-slip 
walls. 

3.2. Growth process of gas bubbles in the wake field 

The gas volume fraction contour is shown in Fig. 1. Through the simulation of the flow field, 
it can be concluded that the internal pressure of the nozzle is close to the pressure of the external 
water environment at the initial instant, namely the initial working moment of the engine. The gas 
pressure gradually increases due to propellant combustion. When the pressure value is greater than 
the maximum pressure value for the nozzle plugs, the plugs open, which promotes the formation 
of gas bubbles. The axial diffusion of the gas is slower than the radial diffusion due to the barrier 
of water, resulting in a trend of it rolling in all directions. Then, the gas bubbles start a process of 
“necking, expanding and necking” to continue their growth, and during this process both the 
pressure and velocity change. However, this process is not repeated indefinitely, the strength 
gradually weakens, resulting in a state of “dynamic balance” a few moments later. 

3.3. Pressure and velocity distribution 

Figs. 2 and 3 show the nozzle velocity and pressure characteristics under different pressure 
conditions. It can be clearly seen from the pressure curve that the pressure fluctuations at the exit 
of the nozzle keep growing stronger and that the range in the fluctuations increases with an 
increase in water depth. At a depth of 360 m, the pressure variation is between 0.6 MPa-4.3 MPa, 
at a depth of 260 m, the pressure variation is between 0.38 MPa-3.2 MPa, and at a depth of 160 m, 
the pressure variation is between 0.36 MPa-2.4 MPa. It can be seen from the velocity curve that 
the velocity at the exit of the nozzle decreases with an increase in water depth, it is 1420 m/s at 
160 m, 752 m/s at 260 m and 724 m/s at 360 m. 

  
Fig. 2. Axial pressure distribution  

at different depths 

 
Fig. 3. Axial velocity distribution  

at different depths 

3.4. Noise analysis 

In order to obtain the noise characteristics of an underwater solid motor, 32 noise monitoring 
points in total are set for the computational simulation of three working conditions at depths of 
160 m, 260 m and 360 m. The radial coordinates are [0 12 24 120 240 480 960 1200] mm, and the 
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axial coordinates are [132 330 990 3960] mm. Figs. 4(a-d) show the sound pressure level curves 
of the monitoring points R17, R24, R25 and R32 at depths of 160 m, 260 m and 360 m. 

 
a) Sound pressure level curve of R17 (990, 0) 

 
b) Sound pressure level curve of R24 (990, 1200) 

 
c) Sound pressure level curve of R25 (3960, 0) 

 
d) Sound pressure level curve of R32 (3960, 1200) 

Fig. 4. Sound pressure level curve at each monitoring point 

Spectrum analysis was conducted on the radiated noise results of the monitoring point R2 (132, 
12), and the radiated noise spectrum is shown in Figs. 5(a-c). As can be seen in this figure, the 
radiated noise spectrum at different depths is characterized by a wide band and low frequency. At 
a depth of 160 m, the low-frequency components are mainly distributed in the range of 0-1.5 kHz 
and have an obvious peak value at 1 kHz. At the depth of 260 m, the low-frequency components 
are mainly distributed in the range of 0-0.6 kHz. For a water depth of 360 m, the low-frequency 
components are mainly distributed in the range of 0-0.4 kHz. According to theoretical analysis, it 
can be concluded that the nonlinear increase in the low frequency is mainly caused by an instability 
near the gas-liquid boundary in the jet flow. The peak sound pressure level of the noise source at 
the frequency of 1.0 kHz is mainly caused by the volume vibrations of the gas bubbles and the 
interactions between the bubbles under the action of the flow field force. 

3.4.1. Axial attenuation characteristics 

The attenuations along the axis and of each monitoring point on the axis were analysed, and 
the axial attenuation law at the frequency points of 1 kHz, 5 kHz, 50 kHz and 100 kHz was 
statistically analysed for a solid rocket engine at depths of 160 m, 260 m and 360 m. The analysis 
results are presented in Fig. 6(a-d) and Fig. 8(a-d). Fig. 6(a-d) show the axial attenuation 
characteristics of each frequency band at a depth of 160 m. Fig. 7(a-d) show the axial attenuation 
characteristics of each frequency band at a depth of 260 m. Fig. 8(a-d) show the axial attenuation 
characteristics of each frequency band at a depth of 360 m. 
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a) Spectrogram of R2 (160 m) 

 
b) Spectrogram of R2 (260 m) 

 
c) Spectrogram of R2 (360 m) 

Fig. 5. Spectrogram of R2 

 
a) Variation law of axial attenuation at 1 kHz 

 
b) Variation law of axial attenuation at 5 kHz 

 
c) Variation law of axial attenuation at 50 kHz 

 
d) Variation law of axial attenuation at 100 kHz 

Fig. 6. Variation law of axial attenuation at the depth of 160 m 
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a) Variation law of axial attenuation at 1 kHz 

 
b) Variation law of axial attenuation at 5 kHz 

 
c) Variation law of axial attenuation at 50 kHz 

 
d) Variation law of axial attenuation at 100 kHz 

Fig. 7. Variation law of axial attenuation at the depth of 260 m 

 
a) Variation law of axial attenuation at 1 kHz 

 
b) Variation law of axial attenuation at 5 kHz 

 
c) Variation law of axial attenuation at 50 kHz 

 
d) Variation law of axial attenuation at 100 kHz 

Fig. 8. Variation law of axial attenuation at the depth of 360 m 
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3.4.2. Attenuation of SPL with distance in the radial direction 

At the axial distance of 132 mm, 330 mm, 990 mm and 3960 mm from the nozzle mouth of 
the engine, the radial sizes of the monitoring points are 0 mm, 12 mm, 24 mm, 120 mm, 240 mm, 
480 mm, 960 mm and 1200 mm, and the radial attenuation law was analysed. Fig. 9(a-d) show 
the radial surface attenuation characteristics of each frequency band at a depth of 160 m. 
Fig. 10(a-d) show the radial attenuation characteristics of each frequency band at a depth of 260 m. 
Fig. 11(a-d) show the radial attenuation characteristics of each frequency band at a depth of 360 m. 
The logarithm of the 𝑥-coordinate is taken for the convenience of observing the radial attenuation 
law. 

 
a) Variation law of radial attenuation: 𝑥 = 132 mm 

 
b) Variation law of radial attenuation: 𝑥 = 330 mm 

 
c) Variation law of radial attenuation: 𝑥 = 990 mm 

 
d) Variation law of radial attenuation: 𝑥 = 3960 mm 

Fig. 9. Variation law of radial attenuation at the depth of 160 m 

According to the simulation results shown above and the axial and radial characteristics of the 
SPL measured at the monitoring points, the noise value is the total SPL at each frequency (the 
reference value is 10-6Pa). With an increase in axial distance, SPL gradually decreases, whereby 
the range becomes larger and larger, and the variation law remains almost constant with an 
increase in the distance. From Fig. 9(a-d) to Fig. 11(a-d), we can see that the SPL values are almost 
consistent between the radial sizes of 0 mm, 12 mm and 24 mm. In the axial direction of 132 mm 
at a water depth of 360 m, SPL is 174.02 dB, at 330 mm, the attenuation is 166.41 dB, at 990 mm, 
the attenuation is 160.59 dB, and for a distance of the nozzle mouth of 3960 mm, SPL becomes 
153.94 dB. However, different monitoring points exhibit obvious increases or decreases in 
different frequency bands in different working environments. In the radial direction, SPL 
gradually decreases with an increase in distance, which is basically similar to the variation law in 
the axial direction. At 132 mm at a water depth environment of 360 m, the noise level is 174.02 dB 
in the radial direction of 100 Hz at 0 mm, the noise level is 174.01 dB at 12 mm, 173.99 dB at 
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24 mm, 173.27 dB at 120 mm, 171.73 dB at 240 mm, 168.34 dB at 480 mm, 163.16 dB at 960 mm, 
and 161.26 dB at 1200 mm. 

It can be clearly seen that the closer the monitoring point is to the radial direction, the greater 
the noise level is, while the farther the monitoring point is away from the radial direction, the 
lower the noise level is. Moreover, at different frequency points of some monitoring points, SPL 
of the noise has similar values. For a stable engine, SPL decreases with an increase in frequency. 
At the same time, the SPL spectrum of each monitoring point is analysed, and the variation trend 
is found to be basically the same. 

 
a) Variation law of radial attenuation: 𝑥 = 132 mm 

 
b) Variation law of radial attenuation: 𝑥 = 330 mm 

 
c) Variation law of radial attenuation: 𝑥 = 990 mm 

 
d) Variation law of radial attenuation: 𝑥 = 3960 mm 

Fig. 10. Variation law of radial attenuation at the depth of 260 m 

3.4.3. Experimental verification 

In order to verify the accuracy of the numerical results, the noise pressure level of the engine 
wake field at 3 m depth was tested. Due to the confidentiality of the content of the experimental 
photos, the test results are shown in Table 1. 

The numerical simulation method adopted in this paper is compared with the tank experiment 
(size of tank: 20 m × 7 m × 7 m) using a scaled model of an underwater high-pressure gas cylinder. 
The simulation and experimental results show that at a depth of 3 m, the SPL of the simulation is 
3.2 dB-5.8 dB (3 kHz-5 kHz) higher than that of the experiment, and the SPL of the simulation is 
2.4 dB-4.6 dB (5 kHz-10 kHz) higher than that of the experiment. 

The results of both methods coincide well between 20 kHz and 50 kHz, with an error range of 
1.1 dB-2.4 dB. It can be deduced that the numerical simulation method is applicable to the 
dynamic simulation of a flow field of the gas jet of underwater solid rocket engine, as well as for 
the simulation of the variation law of radiated noise. 
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a) Variation law of radial attenuation: 𝑥 = 132 mm 

 
b) Variation law of radial attenuation: 𝑥 = 330 mm 

 
c) Variation law of radial attenuation: 𝑥 = 990 mm 

 
d) Variation law of radial attenuation: 𝑥 = 3960 mm 

Fig. 11. Variation law of radial attenuation at the depth of 360 m 

Table 1. SPL comparison between the experiment and the numerical simulation at a depth of 3 m 

Monitoring locations (mm) Method SPL (dB) 
(3 kHz~5 kHz) 

SPL (dB) 
(5 kHz~10 kHz) 

SPL (dB) 
(20 kHz~50 kHz) 

(960, 0) Tank experiment 141.2 138.7 134.8 
Simulation 147.0 143.3 137.2 

(1200, 0) Tank experiment 128.7 123.4 115.0 
Simulation 131.9 125.8 116.1 

4. Conclusions 

1) The shape of the gas bubbles at the initial stages of the jet is regular at depths of 160 m, 
260 m and 360 m. Because gas is constantly ejected, a tangential velocity difference exists at the 
gas-liquid interface, which leads to constant fluctuations in the gas-liquid interface and the 
processes of "necking-expansion-necking". This process is accompanied by constant variations in 
pressure and velocity in the nozzle and the gas bubbles. At the same time, there are obvious shock 
waves, i.e., the pressure undergoes periodic variations. After the stabilization of the jet, the 
pressure parameters at the axis of the nozzle remain unchanged with an increase in water depth, 
while the pressure at the exit of the nozzle fluctuates greatly. At a water depth of 360 m, the 
pressure amplitude reaches 4.3 MPa, and the velocities in both the axial and radial directions 
decrease. 

2) The FW-H model is used to calculate the noise pressure of a supersonic gas jet of an 
underwater solid rocket engine. The research results show that the sound pressure in the wake 
field presents periodic pulsations, and that the peak value of the sound pressure decreases rapidly 
with an increase in distance from the receivers. This indicates that the sound wave weakens rapidly 
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with an increase in distance, while the noise sound pressure level decreases with an increase in 
frequency. According to the spectrum analysis, the noise shows the characteristics of a wide 
frequency band and low frequency. The nonlinear increase in the low frequency is mainly caused 
by an instability near the gas-liquid interface under the jet flow, and the low frequency components 
are mainly distributed within a range of 1.5 kHz. 

3) The numerical simulation method and an experiment with a scaled model at the depth of 
3 m were used to compare the SPL at frequency bands of 3 kHz-5 kHz, 5 kHz-10 kHz and  
20 kHz-50 kHz. The comparative results show that the numerical simulation method can be useful 
in research on the dynamic simulations of a flow field in the gas jet process of a solid rocket engine 
at a large water depth, as well as for the variation law of the radiated noise. Moreover, it also 
provides a reference for the design of underwater engines. 
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