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Abstract. An expression for the dynamic rolling force of a rolling mill is derived in terms of the 
vibration and process parameters by analyzing the dynamic rolling process. A nonlinear vibration 
model of the rolling mill rolls is established. The amplitude-frequency and bifurcation equations 
are obtained using a multi-scale approximation method, to solve the dynamic equation with 
time-delayed displacement control. With a 1780 rolling mill as an example, it is found that the 
primary and cubic stiffness due to the dynamic rolling force and external excitation lead to a jump 
phenomenon in the vibration system, making it unstable. When the gain coefficient and delay time 
are taken reasonably, the amplitude of the vibration system is reduced, the resonance region 
shrinks, and the jump is eliminated. Finally, the bifurcation topological curve corresponding to 
the transition set of the vibration system is studied using the singularity theory, with and without 
time-delayed displacement control. The results show that the vibration of the rolling mill rolls can 
be restrained by varying the initial parameters and through the time-delayed displacement control. 
Thus, the established vibration model of the rolling mill is verified, and the effectiveness of the 
time-delayed displacement control in reducing the rolling mill vibration is confirmed. 
Keywords: rolling mill, dynamic rolling force, time-delayed displacement control, singularity, 
bifurcation. 

1. Introduction 

The vibration of rolling mill rolls is a challenging problem for steel enterprises. Extensive 
studies are being conducted on restraining the vibration to ensure that the system runs smoothly 
and that the quality of the rolling products is maintained [1-3]. The chatter mechanism and 
vibration characteristics of rolling mill rolls have been studied from different perspectives [4-6]. 
Younes et al. [7] established the linear vertical vibration model of a rolling mill and explained the 
relationship between the change in some process parameters and the type of product defects, which 
provided a reference for improving the product quality. Peng et al. [8, 9] considered the dynamic 
characteristics during hot rolling, uneven stress characteristics of the rolling body, and 
interconnection between various vibration forms. They analyzed the natural characteristics and 
vibration response of a rolling mill through field test data and numerical simulation, and improved 
the stability of the rolling mill vibration system. Liu et al. [10] considered the influence of friction 
coefficient on the horizontal vibration of a workpiece, studied the bifurcation behavior of the 
vibration system using the singularity theory, and specified the unstable regions of rolling mill 
vibration. Liu et al. [11] provided a more detailed and quantitative explanation for the regenerative 
chatter mechanism during rolling, and showed that the time-delay effect reduces the critical rolling 
speed of mill vibration within a certain range. Zeng et al. [12] established the 
vertical-horizontal-torsional coupling dynamic model of a rolling mill under the condition of 
nonlinear friction and calculated the Hopf bifurcation points under different rolling speeds; their 
research results are useful for optimizing the rolling process. In the vibration analysis of rolling 
mill rolls, many theories and practices have shown that the rolling force is the key factor affecting 
the vibration of the system. It is directly related to the research and analysis of the vibration 
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characteristics of rolling mill rolls regardless of whether modeling is reasonable [13, 14]. Wang 
et al. [15] established a rolling force model considering the friction between the roll gap based on 
the unsteady lubrication theory. Considering the sliding and adhesive frictions on the contact arc 
between the hot-rolled strip and the working roll, Chen et al. improved the Karman equation for 
the hot strip and derived a new rolling force formula [16]. Sun et al. [17] obtained a type of rolling 
force with a time-delayed characteristic under the influence of roller dynamic movement based on 
the rolling theory. Zhang et al. [18] introduced the concept of the deformation penetration 
coefficient to describe the deformation characteristics of an ultra-heavy plate in the thickness 
direction and found that the coefficient has an obvious effect on the rolling force. Feng et al. [19] 
found that in high-speed rolling, the distribution of the rolling pressure is affected by the strain 
rate deformation in the rolling deformation zone; accordingly, rate dependence on the roll force 
calculation model was proposed. Bu et al. proposed a new method based on the objective function, 
with the deformation resistance and friction coefficient as the optimization variables, and 
improved the calculation accuracy of the rolling force to a certain extent [20].  

To obtain an accurate vibration model with a more practical vibration characteristic, we 
analyzed the variation in the parameters in the deformation zone between the rolls, derived a 
dynamic rolling force expression considering the various vibration and process parameters, and 
established a nonlinear vibration model of the roll system based on the dynamic rolling force. 
Moreover, we derived the amplitude–frequency equation of the vibration system using a multi-
scale approximation method and a bifurcation equation using the singularity theory. The vibration 
law and static bifurcation characteristics of the roll system under different rolling and process 
parameters were analyzed by numerical simulation under uncontrolled and controlled conditions. 
The correctness of the model and the effectiveness of the time-delayed displacement control for 
vibration suppression were verified. 

2. Nonlinear vibration modeling of rolling mill rolls 

Fig. 1 shows the structural diagram of a four-high hot rolling mill. To facilitate the calculate 
process, the entire rolling system is made equivalent to a mass block unit using the lumped mass 
method. Based on the classical mass–spring–damping model and considering the mechanical 
structure and vibration characteristics of the rolling mill, including the nonlinear process 
parameters and the rolling force variation during the rolling process, we established a nonlinear 
dynamic vibration model of the rolling mill rolls, as shown in Fig. 2. 

 
Fig. 1. Structural diagram of a four-high hot rolling mill 

In Fig. 2, the solid and dotted lines indicate the steady-state and vibration positions of the 
rolling system, respectively. 𝑚ଵ and 𝑚ଶ are the equivalent masses of the upper and lower rolls, 
respectively, 𝑥ଵ  and 𝑥ଶ  are the vibration displacements of the upper and lower roll systems, 
respectively, 𝐹ଵ and 𝐹ଶ are the periodic external disturbing forces of the upper and lower roll 
systems, respectively, and Δ𝐹ሺ𝑥ሻ is the dynamic variation in the rolling force. 𝑐ଵ and 𝑐ଶ are the 
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equivalent damping parameters between the upper and lower roll systems respectively. A duffing 
oscillator (𝑘௔ + 𝑘௕𝑥ଶ) is introduced to represent the nonlinear stiffness between the two rolls. 𝑘௔ 
and 𝑘௕ are the linear and nonlinear equivalent stiffness, respectively. 
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Fig. 2. Nonlinear vibration model of hot rolling mill rolls 

Based on the model shown in Fig. 2, a nonlinear dynamic equation for the rolling mill rolls 
can be expressed as follows: 

൜𝑚ଵ𝑥ሷଵ + 𝑐ଵ𝑥ሶଵ + ሺ𝑘௔ + 𝑘௕𝑥ଵଶሻ𝑥ଵ = 𝐹ଵ + Δ𝐹ሺ𝑥ሻ,𝑚ଶ𝑥ሷଶ + 𝑐ଶ𝑥ሶଶ + ሺ𝑘௔ + 𝑘௕𝑥ଶଶሻ𝑥ଶ = 𝐹ଶ − Δ𝐹ሺ𝑥ሻ. (1)

Considering the structure of the rolling mill and the symmetry in the vibration form [21], we 
have 𝑚ଵ = 𝑚ଶ , 𝑐ଵ = 𝑐ଶ , 𝑥ଵ = −𝑥ଶ , and 𝐹ଵ = −𝐹ଶ . During vibration, the periodic external 
disturbance force acting on the rolling mill can be expressed as 𝐹ଵ = 𝐹଴cos𝜔𝑡, where 𝐹଴ is the 
external excitation amplitude, and 𝜔  is the time-varying frequency. In this case, the two 
relationships in Eq. (1) have the same form. Eq. (1) can be further simplified to: 𝑚ଵ𝑥ሷଵ + 𝑐ଵ𝑥ሶଵ + ሺ𝑘௔ + 𝑘௕𝑥ଵଶሻ𝑥ଵ = 𝐹଴ cos𝜔 𝑡 + Δ𝐹ሺ𝑥ଵሻ. (2)

3. Dynamic rolling force 

Fig. 3 shows the dynamic rolling process of a workpiece in the deformation area as the rolling 
mill rolls vibrate. 

In Fig. 3, 𝑅 is the roll radius, 𝑣଴ is the roll linear velocity, 𝛼 is the bite angle, 𝛾 is the neutral 
angle, 𝜏௕  is the entry tension, 𝜏௙  is the exit tension. ℎ଴  and ℎଵ  are the thickness values of the 
workpiece at the entry and exit positions in the steady state, respectively. ℎଶ is the thickness of 
the workpiece at the exit under a vibration condition; ℎଶ = ℎଵ + ሺ𝑥ଵ − 𝑥ଶሻ = ℎଵ + 2𝑥ଵ; ℎథ is the 
thickness of the workpiece at an arbitrary angle 𝜙 ; ℎథ = ℎଶ + 2𝑅(1 − cos𝜙). 𝐹థ  is the unit 
rolling force, 𝐹ఓ is the unit friction, and 𝐹ఓ = 𝜇𝐹థ, where 𝜇 can be expressed using the Roberts 
friction factor [22]: 𝜇 = 𝑎ᇱ − 𝑏ᇱ𝑣଴ + 𝑐ᇱ𝑣଴ଶ, (3)

where, 𝑎ᇱ, 𝑏ᇱ, and 𝑐ᇱ are constants with values greater than zero. 
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Fig. 3. Dynamic rolling process diagram of workpiece 

According to the classical Bland-Ford force balance theory, which has been used to derive the 
expression for the dynamic rolling force [23], the deformation zone balance formula can be given 
as follows: 𝑑𝑑𝜑 ൣℎఝ൫𝐹ఝ − 𝐾൯൧ = 2𝑅൫𝐹ఝ sin𝜑 ± 2𝐹ఓ cos𝜑൯, (4)

where, the “+” and “–” symbols indicate the forward and backward slip areas, respectively, and 𝐾 
is the resistance to metal deformation, which depends on the chemical composition of the metal 
materials and the physical conditions of deformation (deformation temperature, deformation  
speed, and deformation degree). The width is very small, generally 𝐾 = 1.15𝑎଴𝜎௡, where 𝑎଴ and 𝑛 are coefficients related to the carbon content of steel strip, and σ is the reduction factor. 

Because the arbitrary angle 𝜙  is very small, sin𝜙 ≈ 𝜙 , cos𝜙 ≈ 1, and 1 − cos𝜙 ≈ 𝜙ଶ/2. 
Considering the influence of entry and exit tensions, we rearrange Eq. (4) and obtain the 
expressions for the unit pressure in the forward and backward slip areas in the deformation area 
as follows: 

⎩⎪⎨
⎪⎧𝐹ఝା = ℎఝℎଶ ቀ1 − 𝜏௙𝐾ቁ 𝑒ఓఋക ,𝐹ఝି = ℎఝℎ଴ ቀ1 − 𝜏௕𝐾ቁ 𝑒ఓ൫ఋഀିఋക൯, (5)

where, 𝛿ఝ = 2ටோ௛మ arctan ൬ට ோ௛మ 𝜑൰, and 𝛿ఈ = 2ටோ௛మ arctan ൬ට ோ௛మ 𝛼൰. 

The entire deformation area is divided into two sections for integration. The expression for the 
total rolling force acting on the roll is as follows: 

𝐹 = 𝐵𝑅 ቈන 𝐹ఝା𝑑𝜑 + න 𝐹ఝି 𝑑𝜑ఈ
ఊ

ఊ
଴ ቉, (6)

where, 𝐵  is the width of the workpiece, 𝛼 = ට௛బି௛మோ , 𝛾 = ට௛భோ tan ቈଵଶ arctanට ఙଵିఙ −ଵସఓ ට௛భோ ln ଵଵିఙ ⋅ ௄ିఛ೑௄ିఛ್቉, and 𝜎 = ௛బି௛మ௛బ .  

A Taylor expansion is carried out when the vibration displacement 𝑥 = 0 on the roll system in 
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the steady state; Accordingly, Eq. (6) can be expressed as: 𝐹 = 𝐹(0) + Δ𝐹(𝑥) = 𝐹(0) + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ, 𝑎ଵ = 𝜕𝜕𝑥 𝐹(0),      𝑎ଶ = 12! 𝜕ଶ𝜕𝑥ଶ 𝐹(0),       𝑎ଷ = 13! 𝜕ଷ𝜕𝑥ଷ 𝐹(0), (7)

where, 𝐹(0) is the steady-state rolling force, and Δ𝐹(𝑥) is the dynamic change in the rolling force 
when the rolling mill vibrates; it is a nonlinear function of the vibration displacement. By 
substituting Eq. (7) into Eq. (2), we obtain: 𝑚ଵ𝑥ሷଵ + 𝑐ଵ𝑥ሶଵ + (𝑘௔ + 𝑘௕𝑥ଵଶ)𝑥ଵ = 𝐹଴ cos𝜔 𝑡 + 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଵଶ + 𝑎ଷ𝑥ଵଷ. (8)

In Eq. (8), we set 𝑐 = ௖భ௠భ, 𝜔଴ଶ = ௞ೌି௔భ௠భ , 𝜂 = ௔మ௠భ, 𝜉 = ௞್ି௔య௠భ , and 𝑓 = ிబ௠భ. Thus, we can express 
the nonlinear dynamic equation of the rolling mill rolls based on the dynamic rolling force as 
follows: 𝑥ሷଵ + 𝜔଴ଶ𝑥ଵ + 𝑐𝑥ሶଵ − 𝜂𝑥ଵଶ + 𝜉𝑥ଵଷ = 𝑓 cos𝜔 𝑡. (9)

4. Solution to nonlinear amplitude-frequency response of rolling mill rolls with time-delayed 
displacement control 

4.1. Time-delayed displacement control 

A time-delayed displacement feedback is introduced into Eq. (9). The modified equation is as 
follows: 𝑥ሷଵ + 𝜔଴ଶ𝑥ଵ = −𝑐𝑥ሶଵ + 𝜂𝑥ଵଶ − 𝜉𝑥ଵଷ + 𝑓 cos𝜔 𝑡 + 𝑔𝑥ଵ(𝑡 − 𝜏), (10)

where, 𝑔 is the gain coefficient, and 𝜏 is the delay time. 
The nonlinear term in Eq. (10) is given with a small parameter 𝜀, which is solved using the 

multi-scale approximation method. We take the solution form of Eq. (11) as follows: 𝑥ଵ(𝑡, 𝜀) = 𝑥ଵ଴(𝑇଴,𝑇ଵ) + 𝜀𝑥ଵଵ(𝑇଴,𝑇ଵ) + ⋯, (11)

where, 𝑇଴ and 𝑇ଵ are the different time scales; 𝑇଴ = 𝑡, and 𝑇ଵ = 𝜀𝑡. For time 𝑡, we can use the 
differential formula of the composite function to expand by power of 𝜀: 

൞ 𝑑𝑑𝑡 = 𝐷଴ + 𝜀𝐷ଵ + ⋯ ,𝑑ଶ𝑑𝑡ଶ = 𝐷଴ଶ + 2𝜀𝐷଴𝐷ଵ + ⋯ , (12)

where, 𝐷௡ is the sign of the partial differential, 𝐷௡ = డడ ೙் (𝑛 = 0, 1…). 
By substituting Eqs. (11) and (12) into Eq. (10) and only taking the approximate solution once, 

we get: 𝐷଴ଶ𝑥ଵ଴ + 𝜔଴ଶ𝑥ଵ଴ = 0, (13)𝐷଴ଶ𝑥ଵଵ + 𝜔଴ଶ𝑥ଵଵ = −2𝐷଴𝐷ଵ𝑥ଵ଴ − 𝑐𝐷଴𝑥ଵ଴ + 𝜂𝑥ଵ଴ଶ − 𝜉𝑥ଵ଴ଷ + 𝑓 cos𝜔 𝑡 + 𝑔𝑥ଵ଴(𝑡 − 𝜏). (14)

The solution to the zero-order approximate equation, i.e., Eq. (13), is as follows: 𝑥ଵ଴ = 𝐴(𝑇ଵ)𝑒௜ఠ బ் + 𝐴ሜ(𝑇ଵ)𝑒ି௜ఠ బ் , (15)
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where, 𝐴  is the undetermined complex function, and 𝐴̅  is the conjugate complex of 𝐴 . By 
substituting Eq. (15) into the first-order approximation equation, i.e., Eq. (14), we get: 𝐷଴ଶ𝑥ଵଵ + 𝜔଴ଶ𝑥ଵଵ = (−2𝑖𝜔଴𝐷ଵ𝐴 − 𝑖𝑐𝜔଴𝐴 − 3𝜉𝐴ଶ𝐴ሜ + 𝑔𝐴𝑒ି௜ఠబఛ)𝑒௜ఠబ బ்         −𝜉𝐴ଷ𝑒ଷ௜ఠబ బ் + 𝜂𝐴ଶ𝑒ଶ௜ఠబ బ் + 2𝐴𝐴ሜ + 𝑓2 𝑒௜ఠ బ் + 𝑐𝑐, (16)

where, 𝑐𝑐 is the conjugate complex numbers of the terms on the left. 

4.2. Solution to the nonlinear amplitude-frequency response of rolling mill rolls 

When the rolling mill rolls vibrate, because 𝜔 and 𝜔଴ are small and of the same class with a 
difference of 𝜀, we have 𝜔 = 𝜔଴ + 𝜀𝛿, where 𝛿 is the tuning parameter. To avoid secular terms, 
function 𝐴 should satisfy: 

−2𝑖𝜔଴𝐷ଵ𝐴 − 𝑖𝑐𝜔଴𝐴 − 3𝜉𝐴ଶ𝐴ሜ + 𝑔𝐴𝑒ି௜ఠబఛ + 𝑓2 𝑒௜ఋ భ் = 0. (17)

The complex function 𝐴 is written as an exponential function: 

𝐴(𝑡) = 12 𝑎(𝑡)𝑒௜ఏ(௧). (18)

Here, both 𝑎(𝑡) and 𝜃(𝑡) are real functions of 𝑡. By substituting Eq. (18) into Eq. (17) and 
separating the real part from the virtual, we obtain the first-order ordinary differential equations 
of 𝑎 and 𝜃: 

⎩⎨
⎧𝑎ሶ = −12 𝑐𝑎 − 12 𝑔𝜔଴ 𝑎 sin𝜔଴ 𝜏 + 12 𝑓𝜔଴ sin𝜓 ,𝑎𝜓ሶ = 𝛿𝑎 + 38 𝜉𝜔଴ 𝑎ଷ − 12 𝑔𝜔଴ 𝑎 cos𝜔଴ 𝜏 − 12 𝑓𝜔଴ cos𝜓, (19)

where, 𝜓 = 𝛿𝑇ଵ– 𝜃. For a steady-state response, 𝑎ሶ = 0, 𝜃ሶ = 0, 𝜓 in Eq. (19) can be eliminated, 
and the amplitude–frequency response equation can be obtained: 

൬12 𝑐 + 𝑔2𝜔଴ sin𝜔଴ 𝜏൰ଶ 𝑎ଶ +   ൤൬𝛿 − 𝑔2𝜔଴ cos𝜔଴ 𝜏൰ + 38 𝜉𝜔଴ 𝑎ଶ൨ଶ 𝑎ଶ = ൬ 𝑓2𝜔଴൰ଶ. (20)

Eq. (20) shows that the following parameters influence the vibration system of the rolling mill: 
damping 𝑐ଵ , primary stiffness 𝑎ଵ , and cubic stiffness 𝑎ଷ  due to the dynamic rolling force; 
excitation amplitude 𝐹଴, gain coefficient 𝑔, and delay time 𝜏. 

4.3. Nonlinear amplitude-frequency characteristics of rolling mill rolls 

The relevant vibration parameters of the 1780 hot rolling mill were used for the simulation 
study. Table 1 lists the parameters and their values. 

The nonlinear parameters of the rolling force can be obtained by substituting the data listed in 
Table 1 into Eq. (7); 𝑎ଵ = 2.07×109 N∙m−1, and 𝑎ଷ = 2.65×1015 N∙m−3. 

Figs. 4-6 show the amplitude-frequency characteristic curves of the rolling mill rolls with 
respect to different parameters when the gain coefficient 𝑔 = 0, i.e., when the vibration system is 
not controlled by the time-delayed displacement. 

Fig. 4 shows that when the primary stiffness of dynamic rolling force changes, the three curves 
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all shift to the right and are similar; they belong to the phenomenon of jumping. However, with 
the change in primary stiffness, the amplitude and resonance region of the three curves change 
slightly, which shows that the primary stiffness has a certain influence on the vibration of the 
rolling mill. However, the rolling mill cannot be restrained by adjusting the primary stiffness. 

Table 1. Vibration parameters of 1780 hot rolling mill 
Parameters Value Parameters Value 𝑅 (m) 0.42 ℎ଴ (m) 0.0141 𝑣଴ (m‧s−1) 2.5 ℎଵ (m) 0.0082 𝐵 (m) 1.5 𝑚ଵ (kg) 1.44×105 𝜏௕ (MPa) 5.5 𝑐ଵ (N‧s‧m-1) 8.85×105 𝜏௙ (MPa) 3.8 𝐾௔ (N‧m−1) 7.95×109 𝐹଴ (MN) 0.5 𝐾௕ (N‧m−3) 1.785×109 

 
Fig. 4. Amplitude-frequency curve of the vibration system with respect  

to the primary stiffness due to the dynamic rolling force 

 
Fig. 5. Amplitude-frequency curve of the vibration system with respect  

to the cubic stiffness due to the dynamic rolling force 

Fig. 5 shows that the cubic stiffness due to the dynamic rolling force does not influence the 
amplitude variation of the rolling mill vibration system; however, when the value is non-zero, the 
curve shifts and exhibits a jump phenomenon. In particular, the curve bends to the right when the 

-10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tuning parameter  δ / Hz

A
m

pl
itu

de
   a

 / 
m

m

a1=2.07×109N/m

a1=5.18×109N/m

a1=8.28×109N/m

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Tuning parameter  δ / Hz

A
m

pl
itu

de
  a

 / 
m

m

a3=3.65×1016N/m3
a3=-3.65×1016N/m3

a3=2.65×1015N/m3a3=0N/m3



NONLINEAR VIBRATION CHARACTERISTICS AND TIME-DELAYED DISPLACEMENT CONTROL OF ROLLING MILL UNDER DYNAMIC ROLLING FORCE.  
RONGRONG PENG 

1542 JOURNAL OF VIBROENGINEERING. NOVEMBER 2021, VOLUME 23, ISSUE 7  

value is greater than zero, whereas it bends to the left when it is less than zero. With the increase 
in the absolute value of the cubic stiffness, the vibration region expands, and the greater the 
bending degree of the curve, the greater the instability of the vibration system. Figs. 4 and 5 show 
that the dynamic rolling force significantly influences the stability of the vibration system of the 
rolling mill, thus validating the modeling of the dynamic rolling force. 

Fig. 6 shows the amplitude–frequency curve with the variation in the external excitation. With 
the increase in 𝐹଴, the amplitude of the system increases, and there are multiple solutions, resulting 
in a jump. Specifically, when the tuning parameter increases from low to high, the amplitude 
moves along the path A→F→B→C→D on the curve; when the tuning parameter decreases from 
high to low, the path is D→C→E→F→A. Clearly, the BE section of the amplitude-frequency 
curve is an unstable region of forced vibration. In an actual rolling process, the influence of 
external disturbance on the vibration system of the rolling mill can be alleviated by adjusting the 
relevant parameters. 

 
Fig. 6. Amplitude-frequency curve of the vibration system with the variation in the external excitation 

Figs. 7 and 8 show the amplitude-frequency characteristic curves of the rolling mill rolls with 
different parameters under the variations in the delay time 𝜏 and gain coefficient 𝑔, respectively. 
Here, 𝑔 = 0, 𝜏 = 0 represents the main resonance curve of the original vibration system. 

 
Fig. 7. Amplitude-frequency curve of the vibration system with variation in the delay time 
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Fig. 8. Amplitude-frequency curve of the vibration system with variation in the gain coefficient 
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c) 

Fig. 9. Amplitude-frequency curves of the vibration system under time-delayed displacement control  
with variations in a) primary stiffness due to the dynamic rolling force; b) cubic stiffness  

due to the dynamic rolling force; and c) external excitation 

In Fig. 7, the gain coefficient g is fixed at 1×104. As the delay time increases, the amplitude of 
the system decreases, there are no more multiple solutions, and the jump phenomenon disappears. 
In Fig. 8, the delay time 𝜏 is fixed at 𝜋/2. As the gain coefficient increases, the amplitude of the 
system decreases, and the jump phenomenon is alleviated. Therefore, appropriately setting the 
gain coefficient and delay time can help restrain the vibration of rolling mill systems. 

Figs. 9(a)-(c) show the amplitude–frequency characteristic curves of the rolling mill rolls with 
the variations in the primary and cubic stiffness (due to the dynamic rolling force), and external 
excitation amplitude under time-delayed displacement control. When the gain coefficient and 
delay time are appropriately set, the amplitude of the system can be significantly reduced, the 
multiple solutions can be eliminated, and the vibration of the rolling mill rolls is well controlled. 
Thus, the time-delayed displacement control is found to be effective in stabilizing the rolling mill 
vibration. 

5. Nonlinear bifurcation characteristics of rolling mill rolls 

We applied the singularity theory to study the nonlinear bifurcation characteristics of rolling 
mill rolls in a dynamic rolling process. Taking 𝑎ଶ = 𝑏, we can rewrite Eq. (20) as follows: 𝑏ଷ + 𝜆𝑏 + 𝑀 + 𝑁𝑏ଶ = 0, (21)

where, 𝑀 and 𝑁 are the unfolding parameters, which indicate that the system will have different 
bifurcation forms under different values. 𝜆 is the bifurcation parameter, which indicates that the 
amplitude will change with it under the determined bifurcation mode: 

𝑀 = 169 𝑓ଶ𝜉ଶ ,      𝑁 = 16𝜔଴3𝜉 ൬𝛿 − 𝑔2𝜔଴ cos𝜔଴ 𝜏൰,  𝜆 = 64𝜔଴ଶ9𝜉ଶ ቈ൬12 𝑐 + 𝑔2𝜔଴ sin𝜔଴ 𝜏൰ଶ + ൬𝛿 − 𝑔2𝜔଴ cos𝜔଴ 𝜏൰ଶ቉. (22)

Eq. (21) is the universal unfolding 𝑏ଷ + 𝜆𝑏  of GS paradigm and the forked point of 
codimension 2. According to the transition set definition, there are: 

1) Bifurcation point set: 𝐵 = ሼ𝑀 = 0ሽ. 
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2) Lagged point set: 𝐻 = ሼ𝑀 = 𝑁ଷ 27⁄ ሽ. 
3) Double-limit point set: 𝐷 = Φ (Φ is empty set). 
4) Transition set: Σ = 𝐵 ∪ 𝐻 ∪ 𝐷. 

 
Fig. 10. Transition set of the nonlinear vibration system of a rolling mill 

   

   

  
Fig. 11. Bifurcation topological curves of rolling mill vibration system  

without time-delayed displacement control 
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With the data listed in Table 1, the transition set of the nonlinear vibration system can be 
obtained, as shown in Fig. 10. The bifurcation point set 𝐵 and lagged point set 𝐻 divide the space 
composed of the unfolding parameters 𝑀 and 𝑁 into four regions: I, II, III, and IV. According to 
the singularity theory, in the same region, the bifurcation shape of the vibration system is similar, 
i.e., the bifurcations are persistent, and in the different regions, the bifurcations are different, i.e., 
the bifurcations are not persistent. 

Fig. 11 shows the bifurcation topological curves corresponding to the transition set under no 
time-delayed displacement control, i.e., when 𝑔 = 0. As shown, there is no unstable solution in 
regions Ⅱ and Ⅳ with the change in 𝜆, and the system is stable. In regions Ⅰ and Ⅲ, one value of 𝜆  corresponds to multiple 𝑏  values, and the system appears to exhibit the amplitude jump 
phenomenon. At this time, the rolling mill vibration is in an unstable state. However, the curves 
of the bifurcation point set 𝐵 and lagged point set 𝐻 contain critical points for multiple solutions. 
In the rolling process, the bifurcation parameters can be adjusted so that the rolling mill can avoid 
the curves in regions I and III, which contain the bifurcation point set 𝐵 and lagged point set 𝐻. 
This can make the rolling mill system to run stably. 

  

   

  
Fig. 12. Bifurcation topological curves of rolling mill vibration system  

with time-delayed displacement control 

Fig. 12 shows the bifurcation topological curves corresponding to the transition set under 
time-delayed displacement control when 𝑔 =  1.0×104 and 𝜏 = 𝜋 2⁄ . The amplitudes in the 
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different regions of the controlled transition set decrease, the resonance regions in I and III shrink, 
the multiple solutions on the curves of the bifurcation point set 𝐵 and lagged point set 𝐻 decrease, 
and the jump phenomenon of the system is eliminated. 

6. Conclusions 

1) By analyzing the parameter variation in the deformation zone between the roll gap, we 
derived an expression for the dynamic rolling force in terms of the roll radius, thickness, tension 
at entry and exit of the workpiece, deformation resistance, friction coefficient, and reduction  
factor. 

2) The difference in the values of the primary and cubic stiffness (due to the dynamic rolling 
force) and external excitation makes the rolling system to exhibit a jump vibration, resulting in 
instability. Appropriately setting the gain coefficient and delay time can reduce the amplitude of 
the system, shrink the resonance region, and eliminate the jump phenomenon, thus ensuring a 
smooth operation of the vibration system. 

3) Using the singularity theory, we obtained the transition set of the rolling mill rolls with time-
delayed displacement control and discussed the static bifurcation characteristics of the rolls under 
uncontrolled and controlled conditions. A smooth operation of the rolling mill vibration system 
could be ensured by controlling the relevant vibration parameters and avoiding the parameter 
region and critical state corresponding to the jump phenomenon. 
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