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Abstract. Vibration technological machines with self-synchronized unbalanced vibration exciters 
(vibrating conveyors, vibrating screens, vibrating crushers, etc.) are widely used in modern 
industry. Despite drive construction simplicity throughout exploitation of such machines a number 
of nonlinear dynamics effects can be observed. Most of such effects are related to machine drive 
and elastic suspension interaction and appear while passing through resonant frequencies. 
Nowadays the idea of resonant vibrating machines creation got a second breathe. The distinctive 
feature of such machines is the automated system for maintaining resonant mode of machine. 
Creation of such automated systems requires accurate mathematical models of vibrating machines 
that can reflect its most important features. The aim of this work is to create a spatial mathematical 
model and determine the dynamic system unknown parameters of a vibrating screen experimental 
sample with two self-synchronizing unbalanced vibration exciters that can create the working 
body spatial motion. The mathematical model motion equations are derived using the Lagrange 
equations of the second kind. Using the obtained experimental data (natural frequencies and 
logarithmic damping decrement), the mathematical model mass-geometric parameters and the 
damping parameters values were calculated. The investigation result is a verified mathematical 
model of a vibrating screen sample with two self-synchronizing unbalanced vibration exciters. 
Keywords: vibration machines, mathematical modeling, parameters definition, 
self-synchronization, unbalanced exciters. 

1. Introduction 

In modern industry, vibrating technological machines (vibrating conveyors, vibrating screens, 
vibrating crushers, etc.) are widely used [1-3]. Nowadays, self-synchronizing unbalanced 
vibration exciters based on asynchronous electric motors with a squirrel-cage rotor [1, 3, 4] are 
widely used as drives of vibration technological machines. In the induction motors with the elastic 
system of a vibrating machine interaction, various nonlinear effects are often observed, manifested 
in the form of jumps in the working body oscillations frequencies and amplitudes [2, 3, 5, 6]. 
When using several unbalanced vibration exciters, the possibility of self-synchronization 
phenomenon usage is crucial [1, 3, 7]. 

In most cases, modern vibrating technological machines with unbalanced vibration exciters 
operate in a resonant mode, when the frequency of forced vibrations exceeds the natural frequency 
of the working body [1, 4]. This mode allows to ensure the machine vibration stability in a wide 
range of load parameters. However, due to the need to overcome resonant frequencies, it is 
necessary to use electric motors with excess power [8, 9]. This leads to the fact that in the operating 
mode the drive motor is significantly underloaded, as a result of which energy consumption 
increases and its service life decreases. In addition, the excess electric drive power narrows the 
frequencies range of unbalances synchronous rotation when using several self-synchronizing 
vibration exciters [5, 7]. 
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One of the creating energy-efficient vibrating machines principles is based on the use of 
working body resonant modes of vibration. At the same time, the required masses of unbalances 
and electric motor power are significantly reduced, which leads to an increase in the efficiency 
and service life of vibration exciters [3, 10, 11]. However, maintaining such an operation mode 
requires the use of automated systems for collecting, processing and analyzing information about 
the current state of the machine dynamic characteristics with the control actions simultaneous 
formation [3, 10-12]. The creation of rational systems for automatic control for vibration machines 
is based on a mathematical model of a machine, which should take into account the essential 
features of its dynamic properties (dynamic system with an engine interaction, 
self-synchronization various types stability areas, dynamic system to regulation response, etc.). 

The purpose of this study is to develop a design scheme and a mathematical model of a 
vibrating screen with two self-synchronizing unbalanced vibration exciters that can create a 
working body spatial motion. To achieve this goal, the following main tasks are solved in the  
work: the machine design scheme formation and its modeling based on the motion differential 
equations, the parameters identification of the machine design scheme based on the experimental 
studies results. 

2. Calculation model 

The existing designs of screens, basically, use the layout of two unbalanced vibration exciters, 
the axes of rotation of which are perpendicular to the vertical plane passing through the 
technological axis of the machine (the main movement of the processed material direction)  
[1, 4, 13]. A feature of the machine design considered in this work is that the axes of both 
unbalanced vibration exciters rotation are located in vertical planes parallel to the technological 
axis of the machine. Fig. 1 shows such a vibrating screen model, where it is indicated: 1 – vibration 
exciters; 2 – working body; 3 – springs of elastic suspension, 4 – movable support of the bed; 𝑋 – 
the direction of the technological axis of the machine. 

 
Fig. 1. Vibration screen model 

The calculating scheme of the machine is presented on Fig. 2. The working body movement is 
described relative to the global coordinate system 𝑂𝑋𝑌𝑍, the beginning of which at rest coincides 
with the position of the center of mass of the system 𝐶. The working body is modeled by an 
absolutely rigid body of mass 𝑀 of length 2𝐿௫ and width 2𝐿௬. The position of the unbalances and 
the spring fixing points are set in the local system 𝑂′𝑥𝑦𝑧, rigidly connected with the working body 
and the reference point coinciding with the origin of the system 𝑂𝑋𝑌𝑍, and the axes 𝑂𝑌 and 𝑂′𝑦 
coincide, and the axes 𝑂𝑋 and 𝑂′𝑥 form an angle 𝜓 – the angle of the working body inclination. 
The inertia moments of the working body around the axes 𝑂ᇱ𝑥, 𝑂ᇱ𝑦, 𝑂ᇱ𝑧 are designated 𝐽௫, 𝐽௬, 𝐽௭, 
respectively. Angular vibrations are described using the Krylov-Bulgakov angles [14, 15], which 
in Fig. 2 to simplify the figure are presented as the angles of working body rotation 𝛼, 𝛽, 𝛾 around 
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the axes 𝑂𝑋, 𝑂𝑌 and 𝑂𝑍. As a result, the working body position relative to the global coordinate 
system can be specified using six coordinates: three displacements 𝑥 , 𝑦 , 𝑧  and three angles  𝛼, 𝛽, 𝛾. 

 
Fig. 2. Calculation scheme of mathematical model 

The fastening points of the springs are located in the working body corners, and are displaced 
by a distance 𝑧௣ along the 𝑂′𝑧 axis, which determines the level of oscillations along the 𝑂𝑋 and 𝑂𝑌 axes with rotations 𝛽 and 𝛼, respectively connectedness. It is believed that each of the elastic 
suspension springs has linear characteristics of stiffness in three mutually perpendicular directions 
with the coefficients 𝑘௭ , 𝑘௫ , 𝑘௬ , which in the design scheme is represented by three elastic 
elements whose axes are parallel to the global coordinate system, and 𝑘௫ = 𝑘௬  (in Fig. 2 and 
hereinafter these coefficients are denoted as 𝑘௫௬). Damping in the system is only due to the energy 
dissipation in the springs and is described by a linear viscous friction model with coefficients 𝑏௭, 𝑏௫, 𝑏௬, and 𝑏௫ = 𝑏௬ = 𝑏௫௬. 

In the design scheme, each vibration exciter has one unbalance of mass 𝑚௜, eccentricity 𝑟௜ and 
inertia moment 𝐽ௗ௜  ( 𝑖 =  1,2 is the vibration exciter number) fixed in the 𝑧𝑂ᇱ𝑦  plane. Each 
unbalance position in the local coordinate system 𝑂′𝑥𝑦𝑧 is described using an additional local 
coordinate system 𝑂௜𝜉௜𝜂௜𝜁௜. The position of the local coordinate system 𝑂௜𝜉௜𝜂௜𝜁௜ is specified by 
the radius vector 𝛒௜ = ሺ0 𝜌௜cos𝛿௜ 𝜌௜sin𝛿௜ሻ , where 𝜌௜  and 𝛿௜  are the modulus and the 
inclination angle of the radius vector to the positive direction of the 𝑂′𝑦 axis, and the inclination 
angle 𝜃௜  of the 𝑂௜𝜉௜  axis to the 𝑂′𝑥  axis, measured from the 𝑂′𝑥  axis positive direction 
counterclockwise. The unbalance position angles 𝜑௜  are counted from the 𝑂௜𝜁௜  axis negative 
direction counterclockwise. 

The vibration exciters asynchronous electric motors have torque characteristics 𝐿௜ . To 
determine the direction of the motors rotation, the parameter 𝜎௜ = ± 1 is used, where the positive 
value corresponds to the rotation direction of the 𝑖 -th unbalance counterclockwise, and the 
negative value corresponds to the clockwise direction. 

To connect the local coordinate systems 𝑂௜𝜉௜𝜂௜𝜁௜ and 𝑂𝑋𝑌𝑍, the rotation matrix 𝐓 is used: 

𝐓 = ൭ cos(𝜃 + 𝜓) − 𝛽sin(𝜃 + 𝜓) −cos(𝜃 + 𝜓)(𝛼sin𝜃 + 𝛾cos𝜃) sin(𝜃 + 𝜓) + 𝛽cos(𝜃 + 𝜓)𝛼sin𝜃 + 𝛾cos𝜃 1 0−sin(𝜃 + 𝜓) − 𝛽cos(𝜃 + 𝜓) sin(𝜃 + 𝜓)(𝛼sin𝜃 + 𝛾cos𝜃) cos(𝜃 + 𝜓) − 𝛽sin(𝜃 + 𝜓)൱. (1)

The equations of the system motion, which are obtained using the Lagrange equation of the 
second kind and geometric rotation matrices, have the form: 
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𝐌𝐪ሷ + 𝐁𝐪ሶ + 𝐊𝐪 = 𝐅(𝐪,𝐪ሶ ), (2)

where 𝐪Т = (𝑥 𝑦 𝑧 𝛼 𝛽 𝛾 𝜑ଵ 𝜑ଶ) is the column vector of displacements, 𝐌, 𝐊 and 𝐁 are symmetric matrices (8×8) of masses, stiffness rates and damping, respectively, 𝐅(𝐪,𝐪ሶ ) – is 
the column vector of nonlinear functions describing the disturbing effect arising from the 
unbalances rotation. 

The components of the mass matrix 𝐌 are as follows: 𝑀ଶଵ = 𝑀ଷଵ = 𝑀ଷଶ = 𝑀ହଶ = 𝑀଺ଶ = 𝑀଼଻ = 0,      𝑀ଵଵ = 𝑀ଶଶ = 𝑀ଷଷ = 𝑚ଵ + 𝑚ଶ + 𝑀,𝑀ସଵ = ෍ 𝑚௜(𝜌௜cos௜ୀଵ,ଶ 𝛿௜sin𝜓 − 𝑟௜cos (𝜃 + 𝜓)sin𝜃sin𝜑௜),𝑀ହଵ = ෍ 𝑚௜(𝜌௜cos௜ୀଵ,ଶ 𝛿௜sin𝜓 − 𝑟௜cos (𝜃 + 𝜓)sin𝜑௜),𝑀଺ଵ = ෍ 𝑚௜(−𝜌௜cos௜ୀଵ,ଶ 𝛿௜cos𝜓 − 𝑟௜cos (𝜃 + 𝜓)cos𝜃sin𝜑௜),𝑀(௜ା଺)ଵ = 𝑚௜𝑟௜ሼsin𝜑௜ሾsin(𝜃 + 𝜓) + 𝛽cos(𝜃 + 𝜓)ሿ − cos(𝜃 + 𝜓)cos𝜑௜(𝛼sin𝜃 + 𝛾cos𝜃)ሽ,𝑀ସଶ = −෍ 𝑚௜𝜌௜sin௜ୀଵ,ଶ 𝛿௜;𝑀(௜ା଺)ଶ = 𝑚௜𝑟௜cos𝜑௜,𝑀ସଷ = ෍ 𝑚௜(𝜌௜cos௜ୀଵ,ଶ 𝛿௜cos𝜓 + 𝑟௜sin (𝜃 + 𝜓)sin𝜃sin𝜑௜),𝑀ହଷ = ෍ 𝑚௜(𝑟௜sin (𝜃 + 𝜓)cos𝜑௜ − 𝜌௜sin௜ୀଵ,ଶ 𝛿௜sin𝜓),𝑀଺ଷ = ෍ 𝑚௜(𝜌௜cos௜ୀଵ,ଶ 𝛿௜sin𝜓 + 𝑟௜sin (𝜃 + 𝜓)cos𝜃sin𝜑௜),𝑀(௜ା଺)ଷ = 𝑚௜𝑟௜ሼsin𝜑௜ሾcos(𝜃 + 𝜓) − 𝛽sin(𝜃 + 𝜓)ሿ + sin(𝜃 + 𝜓)cos𝜑௜(𝛼sin𝜃 + 𝛾cos𝜃)ሽ,𝑀ସସ = 𝐽௫ + ෍ 𝑚௜(௜ୀଵ,ଶ 𝜌௜ଶ + 𝑟௜sinଶ𝜃sin𝜑௜(2𝜌௜cos𝛿௜ + 𝑟௜sin𝜑௜]),𝑀ହସ = ෍ 𝑚௜𝑟௜sin𝜃(𝜌௜cos௜ୀଵ,ଶ 𝛿௜cos𝜑௜ + [𝑟௜cos𝜑௜ − 𝜌௜cos𝜃sin𝛿௜]sin𝜑௜),𝑀଺ସ = ෍ 𝑚௜𝑟௜cos𝜃sin𝜃sin𝜑௜(2𝜌௜cos௜ୀଵ,ଶ 𝛿௜ + 𝑟௜sin𝜑௜),𝑀(௜ା଺)ସ = 𝑚௜𝑟௜(𝜌௜cos𝛿௜cos𝜃sin𝜑௜ − 𝜌௜cos𝜑௜sin𝛿௜ + sin𝜃[𝜌௜cos𝛿௜ + 𝑟௜sin𝜑௜]      × [cos𝜑௜{𝛼sin𝜃 + 𝛾cos𝜃} − 𝛽sin𝜑௜]),

 

𝑀ହହ = 𝐽௬ + ෍ 𝑚௜([௜ୀଵ,ଶ 𝜌௜cos𝜓sin𝛿௜ − 𝑟௜cos(𝜃 + 𝜓)cos𝜑௜]ଶ       +[𝑟௜sin(𝜃 + 𝜓)cos𝜑௜ − 𝜌௜sin𝜓sin𝛿௜]ଶ), 𝑀଺ହ = ෍ 𝑚௜𝜌௜cos𝛿௜(𝑟௜cos𝜃௜ୀଵ,ଶ cos𝜑௜ − 𝜌௜sin𝛿௜) + 𝑚௜𝑟௜sin𝜑௜cos𝜃(𝑟௜cos𝜑௜ − 𝜌௜cos𝜃sin𝛿௜), 𝑀(௜ା଺)ହ = 𝑚௜𝑟௜(𝜌௜sin𝛿௜sin𝜃sin𝜑௜       +[𝑟௜cos𝜑௜ − 𝜌௜sin𝛿௜cos𝜃][cos𝜑௜{𝛼sin𝜃 + 𝛾cos𝜃} − 𝛽sin𝜑௜]), 𝑀଺଺ = 𝐽௭ + ෍ 𝑚௜([௜ୀଵ,ଶ 𝜌௜cos𝛿௜cos𝜓 + 𝑟௜cos𝜃cos(𝜃 + 𝜓)sin𝜑௜]ଶ        +[𝜌௜cos𝛿௜sin𝜓 + 𝑟௜cos𝜃sin(𝜃 + 𝜓)sin𝜑௜]ଶ), 𝑀(௜ା଺)଺ = 𝑚௜𝑟௜(2cos𝜃[𝜌௜cos𝛿௜ + 𝑟௜sin𝜑௜][cos𝜑௜{𝛼sin𝜃 + 𝛾cos𝜃} − 𝛽sin𝜑௜]        −𝜌௜cos𝛿௜sin𝜃sin𝜑௜ . 𝑀(௜ା଺)(௜ା଺) = 𝐽ௗ௜ + 𝑚௜𝑟௜ଶ(1 + [cos𝜑௜{𝛼sin𝜃 + 𝛾cos𝜃} − 𝛽sin𝜑௜]ଶ). 

(3)

The components of the mass matrix 𝐊 are as follows: 
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𝐾ଶଵ = 𝐾ଷଵ = 𝐾ସଵ = 𝐾଺ଵ = 𝐾ଷଶ = 𝐾ହଶ = 𝐾଺ଶ = 𝐾ସଷ = 𝐾଺ଷ = 𝐾ହସ = 𝐾ହ଺ = 𝐾଻௝ = 𝐾଼௝ = 0,𝐾ଵଵ = 𝐾ଶଶ = 4𝑘௫௬,      𝐾ଷଷ = 4𝑘௭,      𝐾ସସ = 4𝑘௭𝐿௬ଶ cosଶ𝜓 + 4𝑘௫௬൫𝑧௣ଶ + 𝐿௬ଶ sinଶ𝜓൯,𝐾ହହ = 4𝑘௭൫𝑧௣ଶsinଶ𝜓 + 𝐿௫ଶcosଶ𝜓൯ + 4𝑘௫௬൫𝑧௣ଶcosଶ𝜓 + 𝐿௫ଶsinଶ𝜓൯,𝐾଺଺ = 4𝑘௭𝐿௬ଶ sinଶ𝜓 + 4𝑘௫௬൫𝐿௫ଶ + 𝐿௬ଶ cosଶ𝜓൯,      𝐾ହଵ = −4𝑘௫௬𝑧௣cos𝜓,𝐾ସଶ = 4𝑘௫௬𝑧௣,      𝐾ହଷ = 4𝑘௫௬𝑧௣sin𝜓,      𝐾଺ସ = 2𝐿௬ଶ (𝑘௭ − 𝑘௫௬)sin2𝜓.
 (4)

The components of the mass matrix 𝐁 are as follows: 𝐵ଶଵ = 𝐵ଷଵ = 𝐵ସଵ = 𝐵଺ଵ = 𝐵ଷଶ = 𝐵ହଶ = 𝐵଺ଶ = 𝐵ସଷ = 𝐵଺ଷ = 𝐵ହସ = 𝐵ହ଺ = 𝐵଻௝ = 𝐵଼௝ = 0,𝐵ଵଵ = 𝐵ଶଶ = 4𝑏௫௬,      𝐵ଷଷ = 4𝑏௭,      𝐵ସସ = 4𝑏௭𝐿௬ଶ cosଶ𝜓 + 4𝑏௫௬൫𝑧௣ଶ + 𝐿௬ଶ sinଶ𝜓൯,𝐵ହହ = 4𝑏௭൫𝑧௣ଶsinଶ𝜓 + 𝐿௫ଶcosଶ𝜓൯ + 4𝑏௫௬൫𝑧௣ଶcosଶ𝜓 + 𝐿௫ଶsinଶ𝜓൯,𝐵଺଺ = 4𝑏௭𝐿௬ଶ sinଶ𝜓 + 4𝑏௫௬൫𝐿௫ଶ + 𝐿௬ଶ cosଶ𝜓൯,      𝐵ହଵ = −4𝑏௫௬𝑧௣cos𝜓,𝐵ସଶ = 4𝑏௫௬𝑧௣,      𝐵ହଷ = 4𝑏௫௬𝑧௣sin𝜓,      𝐵଺ସ = 2𝐿௬ଶ (𝑏௭ − 𝑏௫௬)sin2𝜓.
 (5)

The 𝐅(𝐪,𝐪ሶ ) vector components of nonlinear functions are as follows: 𝐹ଵ = ෍ 𝑚௜𝑟௜𝜑ሶ ௜(2cos(𝜃 + 𝜓)[𝛽ሶsin𝜑௜ −௜ୀଵ,ଶ cos𝜑௜{𝛼ሶsin𝜃 + 𝛾ሶcos𝜃}]   +𝜑ሶ ௜[cos𝜑௜{sin(𝜃 + 𝜓) + 𝛽cos(𝜃 + 𝜓)} + cos(𝜃 + 𝜓)sin𝜑௜{𝛼sin𝜃 + 𝛾cos𝜃}]),𝐹ଶ = − ෍ 𝑚௜𝑟௜𝜑ሶ ௜ଶsin𝜑௜௜ୀଵ,ଶ ,
𝐹ଷ = 𝑔(𝑚ଵ + 𝑚ଶ + 𝑀) + ෍ 𝑚௜௜ୀଵ,ଶ 𝑟௜𝜑ሶ ௜(2sin(𝜃 + 𝜓)[cos𝜑௜{𝛼ሶsin𝜃 + 𝛾ሶcos𝜃} − 𝛽ሶsin𝜑௜]   +𝜑ሶ ௜[cos(𝜃 + 𝜓)cos𝜑௜ − sin(𝜃 + 𝜓){𝛼sin𝜑௜sin𝜃 + 𝛾sin𝜑௜cos𝜃 + 𝛽cos𝜑௜}]),𝐹ସ = ෍ 𝑚௜𝑟௜𝜑ሶ ௜([𝜌௜cos𝛿௜ + 𝑟௜௜ୀଵ,ଶ sin𝜑௜][2𝛼ሶcos𝜑௜sinଶ𝜃 − 2𝛽ሶsin𝜃sin𝜑௜ + 𝛾ሶcos𝜑௜sin2𝜃]   +𝜑ሶ ௜[𝜌௜{cos𝛿௜cos𝜑௜cos𝜃 + sin𝛿௜sin𝜑௜} − sin𝜃{𝜌௜cos𝛿௜ + 𝑟௜sin𝜑௜}   × {𝛼sin𝜑௜sin𝜃 + 𝛾sin𝜑௜cos𝜃 + 𝛽cos𝜑௜}]),𝐹ହ = ෍ 𝑚௜𝑟௜𝜑ሶ ௜(2[𝑟௜௜ୀଵ,ଶ cos𝜑௜ − 𝜌௜cos𝜃sin𝛿௜][cos𝜑௜{𝛼ሶsin𝜃 + 𝛾ሶcos𝜃} − 𝛽ሶsin𝜑௜]  +𝜑ሶ ௜[𝜌௜cos𝜑௜sin𝛿௜sin𝜃 − {𝑟௜cos𝜑௜ − 𝜌௜sin𝛿௜cos𝜃}{𝛼sin𝜑௜sin𝜃 + 𝛾sin𝜑௜cos𝜃 + 𝛽cos𝜑௜}]),

 

𝐹଺ = ෍ 𝑚௜𝑟௜𝜑ሶ ௜ଶ௜ୀଵ,ଶ (2cos𝜃[𝜌௜cos𝛿௜ + 𝑟sin𝜑௜][cos𝜑௜{𝛼ሶsin𝜃 + 𝛾ሶcos𝜃} − 𝛽ሶsin𝜑௜]   −𝜑ሶ ௜[𝜌௜cos𝜑௜cos𝛿௜sin𝜃 + cos𝜃{𝜌௜cos𝛿௜ + 𝑟sin𝜑௜}{𝛼sin𝜑௜sin𝜃 + 𝛾sin𝜑௜cos𝜃 + 𝛽cos𝜑௜}]),𝐹௜ା଺ = 𝜎௜𝑀ௌ௜ − 𝜎௜𝐿௜ + 2𝑚௜𝑟௜ଶ(cos𝜑௜[𝛼sin𝜃 + 𝛾cos𝜃] − 𝛽sin𝜑௜)    × (𝜑ሶ ௜[cos𝜑௜{𝛼ሶsin𝜃 + 𝛾ሶcos𝜃} − 𝛽ሶsin𝜑௜),  

(6)

where 𝐿௜ is the 𝑖-th electric drive driving moment, 𝑀ௌ௜ is the rotation resistance moment of the  𝑖-th unbalance, the index (𝑖 + 6) is equal to 7 or 8 depending on 𝑖 = 1, 2, the index 𝑗 = 1…8. 

3. System parameters identification 

The obtained equations of motion of a vibrating screen contain parameters, a number of which 
may be known in advance, while others must be determined from direct or indirect measurements 
carried out on a specific sample of the screen.  
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3.1. Mass-geometric parameters identification 

The system parameters 𝐽௫, 𝐽௬, 𝐽௭, 𝑘௫௬, 𝑘௭, 𝑧௣ can be determined from the equation: det(𝐊଴ −𝐌଴𝐩ଶ) = 0, (7)

where 𝐩ଶ = (𝑝ଵଶ 𝑝ଶଶ 𝑝ଷଶ 𝑝ସଶ 𝑝ହଶ 𝑝଺ଶ)்  is the column vector of squares of natural  
frequencies, the number of which corresponds to the working body degrees of freedom number, 𝐌଴ and 𝐊଴ are the matrices of masses and stiffness, which are obtained from the matrices 𝐌 and 𝐊 included in the equations of motion of the working body Eq. (2), at 𝜑௜ = 𝜌௜ = 0, 𝐁 = 0 and 𝐅(𝐪,𝐪ሶ )= 0. 

The Eq. (7) is an equation of the sixth degree relative to the square of the natural frequency. 
To determine the parameters 𝐽௫, 𝐽௬, 𝐽௭, 𝑘௫௬, 𝑘௭, 𝑧௣, the inverse problem of dynamics is solved, 
when the components of the matrices 𝐌଴  and 𝐊଴  are calculated from the values of natural 
frequencies known from the experiment. From the solutions obtained, those in which the values 
of 𝑘௭ differ significantly from the known one are discarded, as well as those that do not satisfy 
physical and geometric representations. The damping parameters were estimated using the 
experimentally obtained envelope of damped oscillations by varying the logarithmic damping 
coefficient 𝜍 in the equation of the form 𝐴(𝑡) = 𝐴଴𝑒ିచ௧ ்⁄ . The viscous friction coefficient was 
calculated by the formula 𝑏 = 2𝜍𝑀𝑝, where 𝑝 is the corresponding natural vibration frequency. 

The required system parameters were determined from specially set experiments performed 
on an experimental sample of a vibrating screen manufactured by NPK “Mekhanobr-Tekhnika” 
at an angle of the working body inclination 𝜓 = 0 (Fig. 3). 

 
Fig. 3. The screen experimental sample photograph 

Oscillations of the working body were excited in the direction of one of the global coordinate 
system axes of the vibrating machine by hitting the working body with a dynamometric hammer. 
The vibrations of the working body were measured using piezoaccelerometers of the AP2038P-50 
type. The data obtained were processed in the Wolfram Mathematica 10 software package, the 
envelopes of damped oscillations were constructed, and the center of mass vibration acceleration 
spectra along the global coordinate system axes were calculated using the fast Fourier transform.  

Translational vibrations along each of the three axes of the global coordinate system 𝑂′𝑥𝑦𝑧 
were measured by two accelerometers 1 in the direction of the impact. Table 1 shows the layout 
of the sensors on the body of the vibrator and the spectra of the processed signal. In this case, the 
accuracy of striking a blow relative to the corresponding axis of the screen was controlled using 
auxiliary sensors 2 installed perpendicular to the direction of the disturbing effect, i.e. with an 
accurate impact application, the signal level from the sensors 2 should be significantly lower than 
from the sensors 1. 

The measurements of the angular vibrations of the body were made according to signals from 
two sensors 1 installed at a given distance, and their sensitivity axes were located parallel to the 
line of action of the disturbing effect. The blow was applied to one of the corners of the body, 
which leads to disturbance of both angular and translational vibrations of the working body. 
Table 2 shows the arrangement of sensors on the schematic vibrating machine body and an 
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example of the signal spectra of the sensors 1. 
The received signals from the main sensors 1 were processed in the Wolfram Mathematica 10 

software package and, using the fast Fourier transform, the vibration acceleration spectra of the 
center of mass along the main coordinates were calculated. 

The presence of several peaks in the signal spectrum indicates the connectivity of angular and 
translational oscillations. As a result of processing the experimental data, 6 natural frequencies of 
vibrations of the working body of the vibrating machine were calculated 𝑝ଵ =  6.5 Hz,  𝑝ଶ = 6.35 Hz, 𝑝ଷ = 7.5 Hz, 𝑝ସ = 10.2 Hz, 𝑝ହ = 12.6 Hz, 𝑝଺ = 9.3 Hz, according to the values of 
which the following values were obtained system parameters: 𝐽௫ =  0.456 kg·m2,  𝐽௬ =  0.478 kg·m2, 𝐽௭ =  1.036 kg·m2, 𝑘௫௬ =  10475 N·m-1, 𝑘௭ =  13141 N·m-1, 𝑧௣ =  0.054 m. 
Model parameters and were calculated from known dimensions screen and distance 𝑧௣. 

Table 1. Arrangement of sensors on the body of a vibrating machine  
when measuring translational vibrations and spectra of the main sensors 

Along 𝑂𝑋 axis Along 𝑂𝑌 axis Along 𝑂𝑍 axis 

   

  
 

Table 2. Layouts of sensors on the body of a vibrating machine  
when measuring angular vibrations and spectra of the main sensors 

Along 𝑂𝑋 axis Along 𝑂𝑌 axis Along 𝑂𝑍 axis 

   

 
  

3.2. The torque characteristics of drive motors parameters identification 

On the laboratory sample of the screen, vibration exciters are installed with a rated power on 
the shaft 𝑃ே = 0.09 kW and an idle speed (in the absence of a load on the shaft) 𝜔௦ = 2𝜋𝑓 𝐾ିଵ = 
157 rad·s-1, where 𝑓 = 50 Hz is the frequency of the supply voltage, 𝐾 = 2 – the number of poles 
of the electric motor. The torque characteristic of the electric motor will be described using the 
Kloss formula [16]: 



CREATION AND VERIFICATION OF SPATIAL MATHEMATICAL MODEL OF VIBRATING MACHINE WITH TWO SELF-SYNCHRONIZING UNBALANCED 
EXCITERS. ILYA LYAN, GRIGORY PANOVKO, ALEXANDER SHOKHIN 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1531 

𝐿(𝜔) = 2𝐿஼௥(𝜔௦ − 𝜔஼௥)(𝜔௦ − 𝜔)(𝜔௦ − 𝜔)ଶ + (𝜔௦ − 𝜔஼௥)ଶ, (8)

where 𝐿஼௥ is the critical moment of the electric motor, 𝜔஼௥ is the frequency at which the critical 
moment is reached. 

The connection between rated 𝐿ே = 𝐿(𝜔ே),  starting 𝐿ௌ = 𝐿(0)  and critical torque  𝐿஼௥ = 𝐿(𝜔஼௥) is recommended to be set in the ranges: 𝐿ே = (0.4...0.6)𝐿஼௥, 𝐿ே = (0.83...1.1)𝐿ௌ. 
In this work, it is assumed: 𝐿ே = 0.5 𝐿஼௥ , 𝐿ே = 𝐿ௌ . Then the unknowns 𝜔ே  and 𝜔஼௥  are 
determined from the system: 

൜𝐿(𝜔ே) = 0.5𝑀஼௥ ,𝐿(0) = 0.5𝑀஼௥ ,     ⇒      ൜0.25[(𝜔௦ − 𝜔ே)ଶ + (𝜔௦ − 𝜔஼௥)ଶ] = (𝜔௦ − 𝜔஼௥)(𝜔௦ − 𝜔ே),0.25[𝜔௦ଶ + (𝜔௦ − 𝜔஼௥)ଶ] = (𝜔௦ − 𝜔஼௥)𝜔௦.  (9)

The nominal torque of the electric motor is 𝐿ே = 𝑃ே𝜔ேିଵ,  and the critical torque  𝑀஼௥ = 2𝑃ே𝜔ேିଵ. 
As a result of the calculation, the following parameters of the drive electric motors were 

calculated: 𝜔஼௥ = 115 rad·s-1, 𝜔ே = 146 rad·s-1, 𝑀ே = 0.616 N·m, 𝑀஼௥ = 1.232 N·m. 

4. Mathematical model verification 

The verification obtained mathematical model was carried out by comparing the calculated 
and experimental dependences of the steady oscillations acceleration amplitudes along the axes 𝑂𝑋, 𝑂𝑌, 𝑂𝑍 on the unbalances rotation frequency 

4.1. Experimental study 

To conduct the experiment, a three-axis accelerometer 1 (AP2038P-10) and two encoders 2 
(E40H8-2500-6-L5) on the axes of vibration exciters were fixed on a laboratory sample of a 
vibrating screen (Fig. 4). 

The motors were supplied from a frequency converter with a current frequency 𝑓  varied 
according to a proportional law in the range from 10 to 60 Hz with a variable step  Δ𝑓 = 0.1...1 Hz, depending on the distance from the resonance frequency region. The power 
supply frequencies were changed after the system oscillations were established. As a result of 
processing the experimental data, the maximum amplitudes of accelerations and the averaged 
frequency of rotation of the unbalances 𝜑ሶ  of steady-state oscillations were obtained at each 
frequency of the supply voltage, which is shown by dots in Figs. 5-7. 

 
Fig. 4. The sensors on the screen experimental sample 

4.2. Calculation results 

When calculating the dependence of the amplitude of acceleration on the frequency of rotation 
of the unbalances, the effect of changing the supply voltage frequency was taken into account. As 
a result of taking into account the law of frequency regulation, Kloss’s formula takes the form [10]: 
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𝐿(𝜑ሶ ௜) = 2𝑀஼௥(𝜔௦ − 𝜔஼௥)(𝜔௦ − 𝜑ሶ ௜ − Δ𝜔)(𝜔௦ − 𝜑ሶ ௜ − Δ𝜔)ଶ + (𝜔௦ − 𝜔஼௥)ଶ . (10)

where Δ𝜔 = 𝜔௦ − 2𝜋𝑓𝐾ିଵ is the displacement of the torque characteristic of the electric motor 
caused by a change in the frequency of the current 𝑓. In the range Δ𝜔 = –30 ... 157 rad·s-1 (which 
corresponds to a change in the supply frequency in the range 𝑓 = 0 ... 60 Hz) a series of 400 
calculations was carried out, the results of which are the maximum amplitude of the center of mass 
accelerations during steady oscillations 𝑞ሷ୫ୟ୶௝ and the rotation speed of the unbalances at a given 
current frequency. Taking into account that the fixing point of the accelerometer in a full-scale 
experiment is above the center of mass, the projections of the acceleration vector of this point of 
the working body on the axis of the global reference frame can be obtained by the formulas  𝑎௫ = 𝑥ሷ + 0.08𝛽ሷ , 𝑎௬ = 𝑦ሷ − 0.08𝛼ሷ , 𝑎௭ = 𝑧ሷ, which makes it possible to plot the dependence of the 
amplitudes of the acceleration of steady-state oscillations of the same point where the 
accelerometer was fixed along the axes 𝑂𝑋 , 𝑂𝑌 , 𝑂𝑍  depending on the unbalance rotation 
frequency (Figs. 5-7, solid line). 

 
Fig. 5. The amplitudes of the acceleration of steady-state oscillations along 𝑂𝑋 axis 

 
Fig. 6. The amplitudes of the acceleration of steady-state oscillations along 𝑂𝑌 axis 

4.3. Results comparison 

Comparison analysis of the obtained figures showed satisfactory coincidence of the calculated 
and experimental characteristics of the system, which, among other things, indicates the correct 
parameters determination of the vibrating screen laboratory sample.  

It is worth noting the accurate coincidences of the unbalances type of synchronization areas 
change (7.5-9 Hz), and the accelerations amplitudes at natural frequencies. 

The existing discrepancies between the model and the experiment can be explained by the 
natural difference in the parameters of the drive electric motors and unbalances, as a result of 
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which one unbalance lags behind the other during synchronous rotation, which leads to the 
appearance of a small disturbing force in the direction of the 𝑂𝑌 axis during the experiment. In 
the mathematical model, the motors and unbalances are exactly the same and oscillations along 
the 𝑂𝑌 axis occur only in case of a change in the synchronous rotation type of the unbalances. 

 
Fig. 7. The amplitudes of the acceleration of steady-state oscillations along 𝑂𝑍 axis 

5. Conclusions 

As a result of the study, a vibrating screen design scheme and a mathematical model with the 
spatial motion of the working body were developed, taking into account the torque characteristics 
of vibration exciters asynchronous electric motors and their rotation speed frequency regulation. 
The model describes such features of the dynamic screening system as the variable inclination 
angle of vibration exciters axes of rotation, the possibility of changing the inclination angle of the 
working body, the connectivity of angular and longitudinal vibrations.  

A series of experiments was carried out to determine the unknown parameters of the obtained 
mathematical model. On the obtained data basis, the inverse problem of finding unknown 
parameters is solved. 

To verify obtained mathematical model, another series of experiments was carried out, as a 
result of which translational accelerations amplitudes depending on the averaged frequency of the 
unbalances rotation are obtained. 

The obtained mathematical model verification was carried out using comparison of the steady 
oscillations acceleration amplitudes dependences along the main axes of the installation. 

Solutions comparison of the obtained motion differential equations system showed satisfactory 
coincidence of the calculated and experimental characteristics of the system, which, among other 
things, indicates the correct parameters determination of the vibrating screen laboratory sample. 

The results obtained in carrying out numerical experiments correspond to the physical concept 
of the processes occurring in the dynamic system of a vibrating technological machine. 

The proposed mathematical model and universal algorithm for determining the parameters of 
a vibrating machine can be used to study the behaviour of vibrating technological machines with 
a similar design scheme. 
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