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Abstract. Oscillation has become one of the important problems faced by modern power grids. 
Multi-types of oscillations may occur simultaneously in the power system and the oscillation 
frequency span is extremely large. For signals with wide-band oscillation modes, the signals in 
different frequency bands are first separated by a band-pass filter, and then the Improved 
Variational Mode Decomposition (IVMD) method with high noise robustness is used to extract 
each oscillating mode signal. Finally, the combinations of Hankel total least squares (HTLS) and 
adaptive neural network algorithm (Adaline ANN) is used to estimate the frequency, attenuation 
factor, amplitude and phase of low-frequency oscillations. Furthermore, the introduction of 
Adaline neural network solves the problem that the mode amplitude and phase are difficult to 
determine after IVMD processing, so that the detection accuracy is improved. Simulation and case 
analysis show that this method can effectively distinguish and extract different types of oscillation 
modes in the signal, and accurately identify the information of each mode. The IVMD-HTLS-
Adaline method can effectively identify signals that have experienced severe oscillations or 
noise-like signals with potential oscillations. 
Keywords: variational mode decomposition, power system, parameter identification, Adaline, 
oscillation. 

1. Introduction 

With the large-scale access of renewable energy, the widespread application of power 
electronic equipment, and the large-scale interconnection of AC and DC in modern power grids, 
the resource allocation is optimized and the system reliability is improved; the weak links in the 
system increase and the anti-interference performance decreases. In recent years, new types of 
faults have continued to emerge, and security and stability issues have become increasingly 
prominent [1-3]. Oscillation is one of the issues that threatens the stable operation of the power 
system. Typical oscillations in current power systems include Low-frequency oscillations (LFO) 
[4-6] caused by regional or interval weak damping and sub-synchronous Oscillation (SSO) caused 
by series compensation capacitors or energy interaction between the power electronics equipment 
and generator set [7-10]. In addition, Super-synchronous Oscillation (SurSO) occasionally occurs 
with sub-synchronous oscillation [11]. Normally, oscillation can be tested in four ways: 
mechanism, acoustics, electrics and electromagnetic [12-19]. Here, we will focus on the electrical 
signal waves.  

According to different damping, the oscillation signals of power system can be divided into 
two categories: (1) Maintain or diverge the oscillation signal (when the system is weakly damped 
or negatively damped); (2) Damped oscillation signal (when the system is in positive damping). 
The former occurs less frequently, but once it occurs, it will cause great harm to the system. The 
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latter occurs more frequently and is easily masked by noise, also known as noise-like oscillation 
signals. The rapid and real-time extraction of modal information from the oscillating signal is 
helpful to the adjustment of power grid dispatching and control strategies. Before the oscillation, 
the mode identification can be found from the noise-like oscillation signal, and the potential 
oscillation mode of the system can also be found to provide an early warning for the system. 
Oscillation mode identification is the key of real-time efficient control and risk early warning of 
power systems. 

Frequency, damping ratio, oscillation amplitude and phase are the key information of 
oscillation mode, as well as the key parameters to realize oscillation monitoring, early warning, 
control and protection. At present, the research methods of power system oscillation mainly 
include model analysis and measurement analysis. The model analysis method depends on the 
precise model of the system. Large-scale systems and non-linear power electronic devices will 
affect the accuracy of the model, leading to analysis errors [20]. Measurement analysis analyzes 
the actual measurement data of the system, and the results are close to the operating conditions. 
Combining measured data with signal processing technology is a common method for power 
system oscillation identification. 

The Prony algorithm can directly extract the characteristic quantity of the signal to identify 
more accurate oscillation modal information [21, 22], but it is highly sensitive to noise. In actual 
engineering, the filtering algorithm is often combined with the Prony algorithm, and the 
dimensionality of the signal is reduced through the filtering algorithm, or the modal signal is 
extracted from it. Mean filtering (Average Filter, AF), empirical mode decomposition, 
autoregressive moving average algorithm, wavelet method and singular value decomposition are 
commonly used filtering algorithms, which have been applied to the identification of oscillation 
modes [23-29]. However, the mean filtering can only reduce the noise interference and cannot 
remove the noise. The essence of wavelet denoising is to fit the signal in a specific frequency band. 
If there are multiple oscillation modes with similar frequencies, the wavelet method cannot 
distinguish them. Methods such as Hilbert transform and singular value decomposition may 
produce large errors when processing low signal-to-noise ratio signals. In addition, in the face of 
multi-types of coexisting pan-band oscillations with large oscillation frequency spans, the above 
methods often identify high amplitude oscillations during processing, and other oscillations may 
be considered as noise and ignored. How to carry out unified modal identification of pan-band 
oscillation signals and extract modal information of multiple types of oscillations is an important 
issue for modal identification of power systems. 

Variational Mode Decomposition (VMD) algorithm can effectively separate modal signals and 
is not sensitive to noise [30]. Based on the Improved VMD (Improved VMD, IVMD) method, a 
method for identifying pan-band oscillations in complex power systems is proposed. First, 
different types of band-pass filters are used for separation. Secondly, the modal signals in each 
band-pass filtered signal are extracted using IVMD. Finally, the Hankel total least squares (HTLS) 
algorithm and the adaptive artificial neural network (Adaline Artificial Neural Network, Adaline 
ANN) are used to estimate the frequency, attenuation factor, amplitude, and phase of 
low-frequency oscillations respectively, so as to achieve unified identification of pan-band 
oscillations. Meanwhile, the performance of the proposed algorithm is verified by simulation and 
measurement examples. 

2. Modal identification framework for Broad-Band oscillation 

2.1. Broad-Band oscillation signal 

The oscillation may include multiple oscillation modal signals in different frequency bands 
and noise signals generated by measurement or the system itself. The original measurement signal 
with broad-band oscillation can be expressed as 𝑦(𝑡): 
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𝑦(𝑡) = 𝑦(𝑡) + 𝑦ே௦(𝑡)ே
ୀଵ . (1)

In Eq. (1): 𝑦ே௦(𝑡) is the noisy signal, and 𝑦(𝑡) (𝑛 = 1,2,⋯ ,𝑁)is the modal signals for 𝑁 
different frequency bands, and: 𝑦(𝑡) = 𝐴(𝑡)𝑒ି௧cos(2𝜋𝑓𝑡 + 𝜃). (2)

In Eq. (2): 𝐴(𝑡) is the amplitude of the 𝑛th oscillation mode at time 𝑡; 𝜃 is the initial phase; 𝐷 and 𝑓 are the damping ratio and frequency of oscillation respectively. 

2.2. Modal identification framework 

The framework for modal oscillations identification in a broad-band is shown in Fig. 1. The 
identification process is divided into the following three steps. 

Step-1. Multiple Band Pass Filters (BPF) is used to decompose the original signal into multiple 
filtered signals in different frequency bands, so as to separate the oscillation signals. 

Step-2. The IVMD algorithm is used to extract the oscillation modal signal from each BPF 
filtered signal. 

Step-3. The HTLS-Adaline algorithm is used to identify the oscillation mode signals provided 
by IVMD, and obtain the information of each oscillation mode. The original signal is filtered 
through band-pass filtering, IVMD modal signal extraction and HTLS-Adaline identification to 
obtain modal parameters. 
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Fig. 1. Framework of the mode identification for broad-band oscillation 

3. Broad-band oscillation mode identification base on VMD-HLS-Adaline 

3.1. Band-pass filter design 

There are mainly three types of oscillations that cause power systems accidents: low-frequency 
oscillation, sub-synchronous oscillation and super-synchronous oscillation. The low-frequency 
oscillation is further divided into local mode and interval mode. The frequencies of each type of 
oscillations are in different ranges. Thus, this article designs four BPFs. A proper signal length 
selection can improve the accuracy of pattern recognition and ensure the rapidity of recognition. 
Because each oscillation frequency is different, it is obviously inappropriate to use the same length 
of data for identification. Table 1 shows the BPF filter bandwidth and identification sampling time 
corresponding to various oscillations in this paper. 
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Table 1. Time lengths and frequency bands for different BPFs 
Band-pass filter Oscillation type Sampling time / s Oscillation frequency / Hz 

BPF-1 LFO (interval modal) 10 0.2-1 
BPF-2 LFO (local mode) 2 1-5 
BPF-3 SSO 0.4 10-50 
BPF-4 SurSO 0.4 70-110 

According to the analysis of the modal identification algorithm [31], if it is necessary to obtain 
the oscillation frequency and amplitude more accurately, the sampling time of the identification 
signal must be greater than 1 oscillation period. In order to obtain accurate damping ratio 
information, the sampling time needs to be longer than two oscillation periods. Therefore, for 
low-frequency oscillations, in order to ensure rapid identification, the minimum band-pass 
frequency of the band-pass filter is 0.2 Hz, and the sampling time is selected to be twice the 
oscillation period, that is 10 s. For sub-synchronous oscillation, the identification speed is 
considered comprehensively. The minimum oscillation frequency is 10 Hz as the benchmark and 
the sampling time is 4 times. The oscillation period is 0.4 s. The mechanism of super-synchronous 
oscillation determines that it appears in pairs with sub-synchronous oscillation and the frequencies 
are complementary. The sampling time of the synchronous oscillation is the same as that of the 
sub-synchronous oscillation, and is also 0.4 s. 

3.2. Modal signal extraction based on improved VMD algorithm 

3.2.1. VMD algorithm 

The VMD algorithm is a new adaptive signal decomposition method proposed by 
Dragomiretskiy et al. in 2014. The target modal is solved by the inherent modal function [30]. In 
view of the accuracy and noise robustness of the VMD algorithm, this paper uses the VMD method 
to extract and separate modal signals. The variational problem corresponding to the VMD 
algorithm is to find the KIMF components with the smallest sum of the estimated bandwidth. The 
variational problem is transformed into an augmented Lagrange equation and the equation is 
solved by the Alternating Direction Method of Multipliers (ADMM) to obtain the solution of the 
modal function 𝑢ାଵ(𝑡): 

𝑢ොାଵ(𝜔) = ൭𝑓መ(𝜔) −𝑢ො(𝜔)ஷ + 𝜆መ(𝜔)2 ൱ × 11 + 2𝛼(𝜔 −𝜔)ଶ. (3)

Similarly, the solution of the center frequency value of the modal component is: 

𝜔ାଵ =  𝜔|𝑢ො(𝜔)|ଶ𝑑𝜔ஶ |𝑢ො(𝜔)|ଶ𝑑𝜔ஶ , (4)

where, {𝜔} = {𝜔ଵ,𝜔ଶ,⋯ ,𝜔}  and {𝜔} = {𝜔ଵ,𝜔ଶ,⋯ ,𝜔}  is the component and its center 
frequency respectively. The flow of VMD algorithm is as follows: 

Step 1. Initialize {𝜔} = {𝜔ଵ,𝜔ଶ,⋯ ,𝜔} and 𝑛 = 0. 
Step 2. 𝑛 ← 𝑛 + 1, update 𝑢 and 𝜔 according to Eq. (3) and Eq. (4). 
Step 3. Update 𝜆: 

𝜆መାଵ(𝜔) ← 𝜆መ(𝜔) + 𝜏 ൭𝑓መ(𝜔) −𝑢ොାଵ(𝜔) ൱. (5)

Step 4. Repeat steps 2 and 3 until the iteration stop condition is satisfied with 
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∑ ‖𝑢ොାଵ − 𝑢ො‖ଶଶ/‖𝑢ො‖ଶଶ < 𝜀. End the loop and output the results to get 𝐾 modal components and 
their center frequencies. 

3.2.2. Determination of VMD penalty factor based on PSO algorithm optimization 

The penalty factor 𝛼 in the VMD algorithm has a great impact on the decomposition results. 
The study found that the smaller the penalty parameter 𝛼, the larger the bandwidth of each IMF 
(Intrinsic Mode Function) component, and vice versa [32]. Therefore, when using VMD to 
decompose the oscillation signal of the power system, it is very important to choose the 
appropriate penalty factor parameter 𝛼 . In this paper, genetic mutation particle swarm 
optimization is used to optimize the penalty parameters to obtain the optimal 𝛼. 

Particle swarm optimization is a global optimization algorithm proposed by Eberh and 
Kennedy et al. in 1995. This method is a swarm intelligent optimization algorithm, and it has the 
advantages of few parameters, easy adjustment, and easy to fall into a local optimum. In order to 
obtain the global optimal approximate solution [33], this paper introduces the idea of genetic 
algorithm mutation in particle swarm algorithm to construct a genetic mutation particle swarm 
algorithm. 

Definition of genetic mutation particle swarm algorithm: In an 𝐷-dimensional search space, 
label population 𝑋, and it is composed of m particles, 𝐗 = [𝐱ଵ, 𝐱ଶ,⋯ , 𝐱]. The position of each 
particle in the search space can be represented by a 𝐷 -dimensional vector, that is,  𝐱 = [𝑥ଵ, 𝑥ଶ,⋯ , 𝑥]. 𝐷 is the number of parameters to be optimized, and the moving speed of  𝑖-th particle is 𝐯 = [𝑣ଵ, 𝑣ଶ,⋯ , 𝑣]. The local extremum of particles is 𝐩 = [𝑝ଵ,𝑝ଶ,⋯ ,𝑝]; 
the global extremum of the population is 𝐆ଵ = [𝑔ଵ,𝑔ଶ,⋯ ,𝑔], and the sub-global optimal value 
is 𝐆ଶ = [𝑔′ଵ,𝑔′ଶ,⋯ ,𝑔′]. The maximum individual optimal algebra is max𝐴𝑔𝑒, and the mutation 
probability is𝑞. In order to prevent particles from falling into the local optimum, it is necessary to 
record the individual optimal maintaining algebra of the particles during the iteration process. 
When the individual optimal maintaining algebra does not reach max𝐴𝑔𝑒, each particle updates 
the position of the next generation by individual local extreme value and global extreme value. 
The formula is updated as: 𝐯ାଵ = 𝜔𝐯 + 𝑐ଵ𝜂(𝐩 − 𝐱) + 𝑐ଶ𝜂(𝐆ଵ − 𝐱), (6)𝐱ାଵ = 𝐱 + 𝐯ାଵ. (7)

In the formula, 𝜔 is the inertia weight; 𝜂 is a random number between [0, 1]; 𝑐ଵ and 𝑐ଶ are the 
learning factors respectively that represent the local search ability and the global search ability; 𝑛 
is the number of iterations, and 𝐯 , 𝐩 , 𝐆ଵ  and 𝐱  are 𝐷-dimensional vectors respectively. The 
determination of the inertia weight 𝜔  of the current number of iterations adopts the linear 
decreasing weight method proposed by Shi [34], and the formula is as follows: 

𝜔 = 𝜔୫ୟ୶ − (𝜔୫ୟ୶ − 𝜔୫୧୬)𝑛𝑛୫ୟ୶ . (8)

In the formula, 𝜔୫ୟ୶  and 𝜔୫୧୬  are the maximum and minimum inertia weights; 𝑛  is the 
current number of iterations, and 𝑛୫ୟ୶ is the defined maximum number of iterations. When the 
individual optimal retention algebra reaches max𝐴𝑔𝑒, the genetic mutation operation is used to 
update the position and velocity of the particle to make it jump out of the local optimal. Selection 
of fitness function for genetic mutation particle swarm optimization algorithm: In the parameter 
optimization, the evaluation criterion of the decomposition effect of VMD method uses the 
concept of envelope entropy 𝐸 proposed by Tang Gui-ji et al. [35]. The envelope entropy of 𝑥(𝑗) 
time signal 𝑐 of length 𝑁 is defined as: 
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𝐸 = −𝑝 log൫𝑝൯ே
ୀଵ ,      𝑝 = 𝑎(𝑗) 𝑎(𝑗)ே

ୀଵ൘ . (9)

In the formula, 𝑎(𝑗)  is the envelope signal of 𝑥(𝑗)  after Hilbert demodulation, and  𝑗 = 1,2,⋯ ,𝑁. 𝑝 is the result of normalizing 𝑎(𝑗). Normalization not only avoids the influence of 
different envelope amplitudes of IMF components, but also reduces the interference of weak noise. 𝐸 is obtained according to the information entropy calculation rules. This article measures the 
decomposition effect of VMD according to 𝐸. 

The VMD method is used to decompose the BPF filtered oscillation signal. When the 
component contains more noise, the sparseness of the component signal is weak and the envelope 
entropy is large. On the contrary, when a regular oscillation signal appears in the component, the 
signal will have strong sparseness, and the calculated envelope entropy is small at this time. 
Therefore, under the influence of parameter 𝛼, the minimum entropy 𝐸 of the 𝐾 components is 
selected as the local minimum entropy min𝐸. The component corresponding to the minimum 
entropy value contains rich feature information. The local minimum entropy is used as part of the 
fitness function of the entire search process to find the parameter 𝛼 corresponding to the global 
optimal component. Through the above analysis of parameter 𝛼 , a proper 𝛼  will reduce the 
iterations of VMD, that is, the VMD method has a high decomposition efficiency. Therefore, it is 
necessary to achieve the highest decomposition efficiency in the case of the best decomposition 
effect. This article builds the fitness function based on min𝐸, add 𝑡𝑖𝑚𝑒 (iterations) as follows min𝐹 = min𝐸 + 𝛽 ⋅ 𝑡𝑖𝑚𝑒, where 𝛽 is the quantization factor of the fitness function. 

In this paper, the number of modal components 𝐾 and penalty factor 𝐴 in VMD decomposition 
are set as model hyper parameters. In the process of VMD optimization by PSO, the number of 
particle is set as 30, and the maximum number of iterations is set as 500.The learning factor is set 
as 𝑐ଵ = 𝑐ଶ = 2; the velocity inertia factor is set as 𝑤 = 0.8, and the velocity coefficient is setas 𝜆 =  1. The maximum and minimum inertia weights are set as 𝜔୫ୟ୶ =  0.9 and 𝜔୫୧୬ =  0.1 
respectively, and the quantization factor of the fitness function is set as 𝛽 = 1/1000. The parameter 
optimization process based on genetic mutation particle swarm optimization algorithm is shown 
in Fig. 2. 
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Fig. 2. Parameter optimization process based on genetic mulation particle swarm optimization 
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The BPF signal is decomposed by improved VMD to obtain the oscillation mode 𝑢(𝑡) 
extracted by VMD. When the accuracy of BPF and VMD is high enough, for modal signal 𝑢(𝑡), 
there is 𝑢(𝑡) ≈ 𝑦(𝑡). 

Therefore, through BPF and IVMD, all oscillation modal signals can be separated from the 
original signal. The convergence process of VMD optimization using PSO is shown in Fig. 3. 

 
Fig. 3. Convergence process of fitness function in VMD optimization by PSO 

3.3. VMD-HTLS algorithm for frequency and attenuation factor 

After the modal signals 𝑢(𝑡) are obtained by the IVMD decomposition, the HTLS algorithm 
is used to identify the modal parameters, such as the oscillation frequency and attenuation factor. 
HTLS algorithm is a subspace rotation invariant method, which has high computing efficiency 
and strong anti-noise ability. Its calculation steps are described in [29]. The main idea is to 
construct a Hankel matrix using the sampled signal, and perform Vander Mang decomposition on 
it. Using the translation-invariant characteristic of the van der Mun matrix to construct the 
equivalent relationship, and the eigenvalues of the oscillating modes are obtained. The main idea 
of IVMD-HTLS is: IVMD is used to decompose the BPF filtered sequence, and then the HTLS 
algorithm is used to calculate the oscillation frequency and attenuation factor for each component 
after decomposition. Because the FOMC-HTLS algorithm cannot give the amplitude and phase 
of the original signal 𝑦(𝑛), and the information of each mode is incomplete. It is not conducive to 
the reconstruction of the signal and the quantitative evaluation of the algorithm. Therefore, this 
paper introduces the Adaline God network to oscillate modal information (Amplitude and Phase). 

3.4. Adaline neural network solves amplitude and phase 

3.4.1. Adaptive linear neural network 

Adaptive linear (Adaline) neural network is a neuron model proposed originally by Widrow 
and Hoff [36]. It is widely used in signal processing and other fields. 

 
Fig. 4. The principle of adaptive linear neural network 
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In Fig. 4, 𝑥ଵ , 𝑥ଶ ,⋯, 𝑥  are the 𝑛 input signals of the adaptive linear neural network at 
time𝑘.The input signal vector form is expressed as 𝐗 = [𝑥ଵ, 𝑥ଶ,⋯ , 𝑥]், and this is often 
called the input pattern vector of Adaline neural network. The weight vector corresponding to each 
group of input signals is 𝐖 = [𝑤ଵ,𝑤ଶ,⋯ ,𝑤]். The Adaline neural network output is: 𝑦ො(𝑘) = 𝐗்𝐖. (10)

Let 𝐴 be the ideal response signal, and define the error function as: 𝑒(𝑘) = 𝑦(𝑘) − 𝑦ො(𝑘). (11)

The working process of Adaline neural network is as follows [36]: the ideal response signal 𝑦(𝑘) is compared with the output signal 𝑦ො(𝑘) of the neural network to obtain different 𝑒(𝑘). 
Feed𝑒(𝑘)into the learning rules, and adjust the weight vector according to the learning rules to 
make 𝑦ො(𝑘) and 𝑦(𝑘) consistent. 

The learning rule of Adaline neural network is Widrow-Hoff rule, which is the least square 
error algorithm (LMS). The rule weight vector adjustment expression is: 𝐖(ାଵ) = 𝐖(ାଵ) + 𝜂𝑒(𝑘)𝐗(ାଵ). 

In the formula, 𝜂  is the learning rate of the Adaline neural network, 𝜂 ∈ (0,1). Its value 
directly affects the weight vector adjustment accuracy and the convergence velocity. 

3.4.2. Solution of oscillation modes by Adaline neural network 

The specific steps of Adaline neural network to solve the amplitude and phase are as follows, 
and a known low-frequency oscillation discrete sampling signal model is established: 

𝑥(𝑛) = 𝐴𝑒ఈ௧ெ
ୀଵ cos(2𝜋𝑓𝑛Δ𝑡 + 𝜃),      𝑛 = 0,1,2,⋯ ,𝑁 − 1. (12)

When the attenuation factor and frequency are known, Eq. (12) can be written as: 

𝑥(𝑛) = [𝐴𝑒ఈ௧cos(2𝜋𝑓𝑛Δ𝑡)cos𝜃 −ெ
ୀଵ 𝐴𝑒ఈ௧sin(2𝜋𝑓𝑛Δ𝑡)sin𝜃] 

      = [𝐴cos𝜃𝑒ఈ௧cos(2𝜋𝑓𝑛Δ𝑡) −ெ
ୀଵ 𝐴sin𝜃𝑒ఈ௧sin(2𝜋𝑓𝑛Δ𝑡)] 

      = [𝑝𝑒ఈ௧cos (2𝜋𝑓𝑛Δ𝑡) −ெ
ୀଵ 𝑞𝑒ఈ௧sin(2𝜋𝑓𝑛Δ𝑡)]. 

(13)

In the formula, 𝑝 = 𝐴cos𝜃 and 𝑞 = 𝐴sin𝜃. The matrix expression of Eq. (13) is: 𝐱 = 𝐩𝐂 − 𝐪𝐒. (14)

Among them: 𝐩 = ൣ𝑝ଵ,𝑝ଶ,⋯ ,𝑝ொ൧,       𝐪 = ൣ𝑞ଵ,𝑞ଶ,⋯ , 𝑞ொ൧, 
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𝐂 = ൦cos(2𝜋𝑓ଵΔ𝑡) cos(2𝜋𝑓ଵ2Δ𝑡) ⋯ cos(2𝜋𝑓ଵ𝑁Δ𝑡)cos(2𝜋𝑓ଶΔ𝑡) cos(2𝜋𝑓ଶ2Δ𝑡) ⋯ cos(2𝜋𝑓ଶ𝑁Δ𝑡)⋮ ⋮ ⋮ ⋮cos(2𝜋𝑓ொΔ𝑡) cos(2𝜋𝑓ொ2Δ𝑡) ⋯ cos(2𝜋𝑓ொ𝑁Δ𝑡)൪, 
𝐒 = ൦sin(2𝜋𝑓ଵΔ𝑡) sin(2𝜋𝑓ଵ2Δ𝑡) ⋯ sin(2𝜋𝑓ଵ𝑁Δ𝑡)sin(2𝜋𝑓ଶΔ𝑡) sin(2𝜋𝑓ଶ2Δ𝑡) ⋯ sin(2𝜋𝑓ଶ𝑁Δ𝑡)⋮ ⋮ ⋮ ⋮sin(2𝜋𝑓ொΔ𝑡) sin(2𝜋𝑓ொ2Δ𝑡) ⋯ sin(2𝜋𝑓ொ𝑁Δ𝑡)൪. 

Similarly, define the error function: 𝑒(𝑛) = 𝑥(𝑛) − 𝑥ො(𝑛). (15)

In the formula, 𝑥(𝑛) is the actual sample, and 𝑥ො(𝑛) is the output of the neural network. Define 
the performance indicators as: 

𝐽 = 12 𝑒ଶ(𝑛)ேିଵ
ୀ . (16)

Because the attenuation factor and frequency are known, 𝐩 and 𝐪 are unknown in Eq. (14), 𝐂 
and 𝐒 are the input vectors of the neural network. According to the training principle of the 
steepest descent method, the weight vectors p and q are adjusted to: 

𝐩ାଵ = 𝐩 − 𝜂 𝜕𝐽𝜕𝐩 = 𝐩 + 𝜂𝑒𝐂் , (17)𝐪ାଵ = 𝐪 − 𝜂 𝜕𝐽𝜕𝐪 = 𝐪 + 𝜂𝑒𝐒் . (18)

When the Adaline neural network training is completed, the amplitude and phase of the 
oscillation mode are solved from the obtained weight vector and Eq. (19): 

ቐ𝐴 = ඥ𝑝ଶ(𝑖) + 𝑞ଶ(𝑖),𝜃 = arctan𝑞(𝑖)𝑝(𝑖) .  (19)

In this paper, the number of neurons in Adaline neural network is equal to the number 𝐾 of 
modal components after VMD decomposition. The activation function of neurons is a constant 
function, that is, 𝑓 = 1. The learning rule is the minimum mean square error (LMS) criterion, and 
the learning rate 𝜂 = 0.0015. The maximum number of network iteration is 5000, and the network 
iteration stops when the error 𝛿 satisfies 𝛿 < 0.0001.  

4. Simulation and analysis of actual examples 

4.1. Simulation analysis 

In order to verify the effectiveness of the method in this paper, an oscillating signal 𝑦௧௦௧ is 
constructed by simulation: 𝑦௧௦௧ = 𝑦ிைଵ + 𝑦ிைଶ + 𝑦ௌௌைଵ + 𝑦ௌௌைଶ + 𝑦ௌ௨ௌை + 𝑦ே௦ . 

In the formula: 𝑦ிைଵ  is the low-frequency oscillation interval mode; 𝑦ிைଶ  is the 



PARAMETER IDENTIFICATION OF OSCILLATIONS IN POWER SYSTEMS BASED ON IMPROVED VARIATIONAL MODAL DECOMPOSITION AND HTLS-
ADALINE METHOD. CHUNLU WAN, KANG WANG, ZHIXIANG WU 

152 JOURNAL OF VIBROENGINEERING. FEBRUARY 2022, VOLUME 24, ISSUE 1  

low-frequency oscillation local mode; 𝑦ௌௌைଵ is the sub-synchronous oscillation and paired with 
the super-synchronous oscillation signal 𝑦ௌ௨ௌை; 𝑦ௌௌைଶ is another independent sub-synchronous 
oscillation, and 𝑦ே௦ is the white noise. In line with the real situation, the test signal satisfies the 
following conditions and assumptions: (1) All oscillation frequencies are randomly selected within 
the frequency band of the oscillation type; (2) Low frequency oscillation is the main mode of 
oscillation; the amplitude is higher than the sub-synchronous oscillation, and the local mode of 
low frequency oscillation is higher than the interval mode; (3) In the pair of sub-synchronous and 
super-synchronous oscillations, the amplitude of sub-synchronous oscillation mode is slightly 
higher than the super-synchronous mode. Based on the above assumptions, the specific parameters 
of each mode of the test signal are finally selected as: 

⎩⎪⎪⎨
⎪⎪⎧𝑦ிைଵ(𝑡) = 2.35 × cos(2𝜋 × 0.65𝑡 + 𝜋 3⁄ ),    𝑦ிைଶ(𝑡) = 3 × cos(2𝜋 × 2.05𝑡 + 𝜋 5⁄ ),            𝑦ௌௌைଵ(𝑡) = 0.58 × sin(2𝜋 × 25.56𝑡 + 𝜋 6⁄ ),𝑦ௌௌைଶ(𝑡) = 0.25 × sin(2𝜋 × 22.84𝑡 + 𝜋 4⁄ ),𝑦ௌ௨ௌை(𝑡) = 0.42 × sin(2𝜋 × 92.32𝑡 + 𝜋 3⁄ ),𝑦ே௦(𝑡) = 0.14 × random[−1,1].          

 
That is, the test signal 𝑦௧௦௧ contains 5 oscillating signals with different frequencies and a white 

noise signal with amplitude of 0.16. The frequency band of the test signal oscillation 𝑦௧௦௧  is 
0.63-93.42 Hz. Each test signal is equal amplitude oscillation. The time domain form of the test 
signal 𝑦௧௦௧ is shown in Fig. 5. Using the proposed method after the constructed test signal 𝑦௧௦௧ 
is extracted by band-pass filtering and IVMD, the oscillation modal signals in each frequency 
band are shown in Fig. 6. It can be seen from Fig. 6 that the method proposed in this paper can 
accurately distinguish the modalities of different frequency bands and effectively extract all 
corresponding modal signals. 

 
Fig. 5. Test signal 𝑦௧௦௧  

 
Fig. 6. Mode signals extracted by IVMD 
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The modal signals are extracted for each IVMD obtained in Fig. 6, and the modal identification 
is performed through the HTLS-Adaline algorithm to obtain the parameter information of the 
corresponding modal. The identification results of this method compared with those of other 
methods is shown in Table 2. The selected comparison methods are: (1) the classic EMD-based 
HTLS algorithm (EMD-HTLS); (2) the VMD-based HTLS algorithm (VMD-HTLS); (3) the 
proposed method is based on the algorithm of IVMD-HTLS and Adaline (IVMD-HTLS-Adaline). 

Table 2. Mode identification of test signal 
 Test signal EMD-HTLS VMD-HTLS Proposed method 

Modal Freq 
/ Hz Amp Phase 

/ rad 
Fre Amp Phase 

/ rand 
Freq / 

Hz Amp Phase 
/ rad 

Freq / 
Hz Amp Phase 

/ rad error 𝑦ைଵ 0.65 2.35 1.0472 0.6648 2.2517 1.1815 0.6619 2.3841 0.9122 0.6512 2.3492 1.0488 
2.029% 15.637% 12.82% 1.044% 5.199% 12.89% 0.264% 0.945% 0.153% 𝑦ைଶ 2.05 3.00 0.6283 2.0641 3.1125 0.4868 2.4833 2.0855 0.7318 2.0525 3.0263 0.6338 
4.321% 5.670% 22.52% 2.762% 4.775% 16.473% 0.233% 1.315% 0.875% 𝑦ௌௌைଵ 25.56 0.58 0.5236 26.992 0.6233 0.6670 25.173 0.5922 0.5961 25.612 0.5842 0.5168 
5.384% 23.122% 27.38% 2.231% 8.612% 13.846% 0.158% 4.122% 1.299% 𝑦ௌௌைଶ 22.84 0.25 0.7854 25.237 0.2747 1.0141 22.157 0.2419 0.7741 22.774 0.2484 0.7880 
10.13% 15.772% 29.11% 6.002% 5.409% 1.438% 0.487% 0.727% 0.331% 𝑦ௌ௨ௌை 92.32 0.42 1.0472 – – – 93.451 0.4438 1.1187 92.259 0.4291 1.0482 

1.104% 7.437% 6.828% 0.215% 2.843% 0.096% 

It can be seen from Table 2 that when the test signal oscillates in multiple frequency bands, 
the proposed method can effectively identify all oscillation modes. The maximum error of the 
oscillation frequency identification result is 1.55 %, with an average error of 0.67 %, and that of 
the oscillation amplitude identification result is 9.09 %, with an average error of 2.54 %. In 
comparison, the EMD-HTLS method has the worst frequency identification and amplitude 
identification results, and the average error is also the highest. The VMD-HTLS method has a 
good identification effect on the dominant oscillation mode (𝑦ிைଶ) with the highest amplitude. 
The frequency and amplitude identification results are close to those of this method, but the phase 
identification results are not as good as those of this method. For the sub-modes 𝑦ிைଵ and 𝑦ௌௌைଵ, 
the VMD-HTLS frequency identification effect is close to the proposed method, but the amplitude 
and phase identification results are far worse than it. In particular, for mode 𝑦ௌௌைଶ  with low 
amplitude and high frequency, the recognition results of EEMD-HTLS and VMD-HTLS are poor. 
For the super-synchronous oscillation mode 𝑦ௌ௨ௌை with a frequency of 93.42, the EEMD-HTLS 
method failed to identify it, and the result of VMD-HTLS is inconsistent with the actual one. 
Therefore, the method proposed in this paper has obvious advantages in identifying multi-mode 
coexisting pan-band oscillations. 

4.2. Actual study data 

In order to prove the effectiveness of the proposed method, the actual oscillation data of Hunan 
Power Grid was selected and the oscillation mode identification analysis was carried out. The 
oscillation event is as follows: On June 24, 2018, a low-frequency oscillation occurred in a thermal 
power plant in Hunan Power Grid. The system started to oscillate at low frequency in the 120th 
second. After 30 s, the system quickly started to emit an alarm. The system maintained an alarm 
for about 180 s. In 60-120 s before the oscillation, the system has a noise-like oscillation, and the 
system did not issue an alarm at this time. The range of the oscillation signal and noise-like signal 
has been marked in the figure. The system sampling frequency is 100 Hz. The oscillation signal 
at 165-195 s is selected, and the modal identification of this method is adopted. The original signal 
used for identification is shown in Fig. 7. 

It can be seen from Fig. 6 that the amplitude of the oscillation signal is high, and the highest 
frequency fluctuation exceeds 100 MW, which is higher than 30 % of the system output power. 
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At this time, the signal is affected by a certain degree of noise. For the original oscillation signal 
data shown in Fig. 7, the modal signals are extracted by the proposed algorithm as shown in Fig. 8. 
This method decomposes three modes from the oscillation signal data, which are the main modes 
of the system oscillation. Among the three modes, the first mode has the highest amplitude and is 
the dominant oscillation mode. The extracted modal signals are linearly superimposed, and the 
reconstructed signals are shown in Fig. 8. 

 
Fig. 7. Original oscillation data used for mode identification 

 
Fig. 8. Mode signals extracted from the original oscillation data 

 
Fig. 9. Reconstructed signal based on mode signals from IVMD 

Comparing Fig. 9 with Fig. 7, it is not difficult to find that the reconstructed signal is basically 
the same as the original signal waveform. That is, the three modal signals separated cover the main 
oscillations of the system. The method in this paper can effectively extract all the main oscillation 
modal signals. Using the Prony algorithm to perform parameter identification on the modal signals 
in Fig. 6, the information of the main oscillation modes can be obtained. Table 3 compares the 
results of this method with the MF-Prony and EMD-Prony parameter identification results. It can 
be seen from the results that for the oscillation signal, both the proposed method MF-Prony or 
EMD-Prony can identify the mode with the largest amplitude. In the three methods, the MF-Prony 
frequency identification error is the highest, and the results of this method are similar to the 
EMD-Prony method. During the severe oscillation, the dominant modal frequency is about 
1.48 Hz, and the minor dominant modal frequency is about 2.02 Hz. 
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Table 3. Mode identification result and comparison of original oscillation data 
Method Modal Frequency / Hz Amplitude / MW Damping Phase / rad 

EEMD-HTLS 
1 1.44 28.2 –1.18 2.6539 
2 1.61 13.7 –1.59 0.2355 
3 2.32 8.5 –2.31 2.9813 

VMD-HTLS 
1 1.48 30.6 –0.52 3.1348 
2 1.51 16.3 –1.01 0.1653 
3 1.08 8.7 –1.03 2.1981 

IVMD-HTLS-Adaline 
1 1.48 32.7 –0.94 3.0273 
2 2.02 17.9 –1.40 0.0985 
3 0.49 3.2 0.18 2.3499 

5. Conclusions 

A VMD-based method for power system pan-band oscillation signal extraction and modal 
identification is proposed. This method can effectively extract low-frequency oscillation, 
sub-synchronous oscillation, and super-synchronous oscillation of multi-type and pan-band 
oscillations from power system operating data. Based on the oscillation discrimination, modal 
extraction and parameter identification, the identification results plays an important role in the 
analysis and control of system dynamic stability, as well as the identification and location of 
oscillation sources. It is helpful for early warning and timely suppression of system oscillation. 
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