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Abstract. Methods of digital image analysis find wide application both in scientific research and 
in many branches of industry. During the last decades, interest has grown in images with 
multifractal structure which are obtained in biology, medicine, chemistry and studying the soil. 
The mathematics of fractals and fractal geometry are well known and studied. However, despite 
this, a common approach to designing the methods of practical investigation of such images has 
not been developed until now. The main purpose of this work is to propose the using of multifractal 
formalism as the mathematical tool for the statistical description of multifractal sets. Such a 
description adequately depicts the chaotic behavior of the majority of real systems. The method 
for calculation of Rényi and singularity spectra based on using parametrized spectra, which are 
obtained from escort (zooming) distributions of an initial measure, is considered. The method for 
comparing images based on using vectors of divergences calculated for the sequence of escort 
distributions is proposed. The role of parametrized spectra as the tool for the approximation of 
any part of the singularity spectrum is substantiated. An estimation of the rate of growth of the 
divergence vector is obtained. Main theoretical results are confirmed by numerical experiments 
with images of biomedical preparations. These show the ability of the implemented methods to 
find subtle distinctions in image structure for a simple choice of an initial measure. 
Keywords: multifractal spectrum, Rényi spectrum, image analysis, direct multifractal 
transformation, escort distribution. 

1. Introduction 

Digital image analysis has a wide application in many areas of scientific exploration. The 
methods of image analysis are based on revealing some distinguishing features, such as 
morphometric, morphological or textural This method has been very promising in biology and 
medicine [1, 2], last years it holds much favor in investigation of the quality of food [3, 4]. Modern 
technologies give a possibility to use SEM images in engineering, construction and material 
sciences [5, 6].  

It is a matter of general experience that many digital images appearing in investigations in 
different fields are phase portraits of complex systems. A great number of physical systems 
demonstrate chaotic behavior. Their phase portraits have a complex structure which may be 
interpreted as a fractal or multifractal set having the property of statistical scaling invariance (or 
statistical self-similarity). This property is described by a scaling component which is called 
fractal dimension of a set. Multifractals are unions of fractal subsets; each subset is characterized 
by its own scaling component. Such subsets are arranged in a complex intertwined way. For a 
multifractal set one can consider a natural generalization of fractal dimension – multifractal 
spectrum, i.e. the set of fractal dimensions of its subsets. 

A natural way for studying multifractal sets is a statistical description. As chaotic systems 
generate on their phase spaces highly nonuniform probability distributions (measures), one can 
consider a partition of the space. The measure of 𝑖-th box of the partition may be interpreted as 
the relative frequency of visits to this box by the system trajectories. Such an approach is called 
multifractal formalism. 

Multifractal formalism describes statistical properties of a probabilistic measure in terms of its 
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moments of an order 𝑞, i.e. 𝑞-powers of the box measures of a partition. Assuming that 𝑞 is a real 
parameter, we obtain moments of any order. The sum of moments is called generalized statistical 
sum. The first characteristics of multifractal sets based on the calculation of generalized statistical 
sum was proposed by Rényi. It has come to be known as the spectrum of generalized dimensions 
or Rényi spectrum. It describes a measure distribution by using its moments. Another method for 
multifractal description is to calculate the singularity exponents for each box and group all the 
boxes with close values of exponent into one subset. In doing so, we divide the multifractal into 
nonintersecting subsets. Fractal dimensions of these subsets form a multifractal spectrum, which 
is called singularity spectrum. 

Under the conditions that the sum of the moments follows the power law and the exponent is 
a differentiable function, the Rényi and singularity spectra are connected by the Legendre 
transformation. Since in the literature the Rényi spectrum was introduced earlier than the 
singularity one and its computation is easier than the latter, it gained wide acceptance. 

As the Legendre transformation is defined between smooth functions given analytically, it may 
lead to an incorrect result if one of the spectra was obtained approximately from experiments. One 
of the reasons is that the log-log plots used when calculating Rényi spectra by definition show a 
scatter not perfect linear behavior. In addition, Rényi dimensions for large negative 𝑞’s may have 
considerable error intervals, because they characterize the nonuniformity of the measure in rarer 
regions and depend on both the number of points in a box and the box size.  

To overcome this impediment one should obtain the singularity spectrum as two 𝑞-parametrized functions. For this purpose, we use moments of a measure normalized by the 
generalized statistical sum and generate from the initial measure a set of its 𝑞 -parametrized 
renormalization (escort distributions). Such a transformation is called direct multifractal 
transformation. Then we calculate the set of information dimensions for supports of the escort 
distributions, and the set of average values of singularity exponents of the initial measure with 
respect to these distributions. What is important is that the constructed functions are connected by 
the Legendre transformation. The singularity spectrum is obtained by excluding parameter 𝑞. By 
now the most effective approach to calculate Rényi spectra is to compute firstly the singularity 
spectrum and then the Rényi spectrum by using the Legendre transformation.  

Escort distributions are independent in the sense that multifractal transformations form a group, 
and the set of all probability distributions may be divided into nonintersecting classes of 
equivalence. The important role of these distributions in the study of multifractal systems was 
discussed in [7, 8]. Such a sequence of measures may be used when comparing images by 
calculation of Rényi divergences (𝛼-divergences) between not only initial measures but also the 
generated escort distributions of these measures. In doing so we obtain a vector of divergences 
and its rate of growth shows how similar the images are. 

The main objectives of our work are to substantiate the advantages of multifractal formalism 
and to demonstrate that the applications of escort distributions are a reliable mathematical method 
for the analysis of complex images generated by chaotic systems. The implemented methods for 
obtaining parametrized spectra and vectors of divergences allow us to find unique classifying signs 
for high resolution textures. Of fundamental importance is the possibility to calculate parametrized 
spectra for any given interval of the parameter 𝑞 with a small enough step. In other words we may 
approximate any part of singularity spectrum (and the Rényi spectrum as well) with a given 
precision. 

2. Methodology 

As it was mentioned in the previous section, one of main goals of our study is to show the 
applications of some methods of multifractal analysis to complex digital images. This study 
consists of two parts. In the first part, we give the descriptions of Rényi and multifractal spectra, 
escort distributions, direct multifractal transformation and Rényi divergences. Escort distribution 
is a tool for dividing a multifractal set into nonintersecting subsets, and based on them 
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parametrized spectra gives the possibility to calculate singularity spectrum. We also consider a 
new method for image comparing which is based on the calculation of divergences on the 
sequences of escort distributions and give the estimation of the rate of growth of the divergence 
vector. The second part contains the results of applications of computational methods to the 
images of pharmaceutical solutions with nanoparticles of silver and images of bone tissues. In the 
conclusion, we summarize the results of the work. 

2.1. Rényi spectrum  

Consider a set 𝑀 ⊂ 𝑅, and a partition on 𝑁ሺ𝜀ሻ boxes with box size 𝜀. Define a probability 
measure  𝑝(𝜀) = {𝑝(𝜀)}, 𝑖 = 1, … ,𝑁(𝜀), ∑ 𝑝(𝜀) = 1.ே(ఌ)ୀଵ  

Consider also the generalized statistical sum (sum of moments of measure): 

𝑆(𝑞, 𝜀) = 𝑝ே(ఌ)
ୀଵ (𝜀), (1)

where 𝑞 ∈ 𝑅. 
For 𝑞 ∈ 𝑅ା introduce the function: 

𝐻(𝑞, 𝜀) = 11 − 𝑞 ln 𝑆(𝑞, 𝜀), (2)

which specifies a class of Rényi entropies. When 𝑞 = 1 we have Shannon’s entropy: 

𝐻(1, 𝜀) = − 𝑝(𝜀) ln𝑝(𝜀).ே(ఌ)
ୀଵ  

Generalized Rényi dimensions (or Rényi spectrum) may be defined as: 

𝐷 = limఌ→𝐻(𝑞, 𝜀)ln 𝜀 ,     𝑞 ∈ 𝑅ା. (3)

But it is more common to assume that 𝑞 ∈ 𝑅 and define Rényi dimensions by using Eq. (1): 

𝐷 = limఌ→ 1𝑞 − 1 ln 𝑆 (𝑞, 𝜀)ln 𝜀 . (4)

It is easy to check that 𝐷 is a nonincreasing function of 𝑞. 
In multifractal techniques, it is assumed that for a box of size 𝜀 𝑝(𝜀) satisfies the relation: 𝑝(𝜀)~𝜀ఈ . (5)

It is also assumed that: 𝑆(𝑞, 𝜀)~𝜀ఛ(), (6)

where 𝜏(𝑞) is 𝐶ଵ function. 
Here and throughout the symbol ~  indicates the asymptotic relation, namely Eq. (5) and  

Eq. (6) should read: 
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𝛼 = limఌ→ ln𝑝(𝜀)ln 𝜀 ,      𝜏(𝑞) = limఌ→ ln 𝑆(𝑞, 𝜀)ln 𝜀  . 
Taking into account the assumptions made we may write Eq. (4) in the form: 

𝐷 = limఌ→ 1𝑞 − 1 ln 𝑆(𝑞, 𝜀)ln 𝜀 = 𝜏(𝑞)𝑞 − 1. (7)

Note that as a rule we choose a partition of the set considered so that 𝑝(𝜀) ≤ 𝜀ఈ, but some 
authors consider the partition with boxes of size 𝜀  such that 𝑝(𝜀) ≥ 𝜀ఈ  and assume that 𝑆(𝑞, 𝜀)~𝜀ିఛ() [9]. In this case we have: 

𝐷 = limఌ→𝐻(𝑞, 𝜀)ln 𝜀 = limఌ→
11 − 𝑞 ln 𝑆(𝑞, 𝜀)ln 𝜀 = −𝜏(𝑞)1 − 𝑞 = 𝜏(𝑞)𝑞 − 1. 

Rényi dimensions for 𝑞 =  0, 1, 2 are respectively capacity, information and correlation 
dimensions. In this work we use information dimension: 

𝐷ଵ = limఌ→∑ 𝑝(𝜀) ln𝑝(𝜀)ே(ఌ)ୀଵ ln 𝜀 . (8)

Rényi spectrum {𝐷} may be successfully applied as a classifying sign in image analysis. In 
[10] generalized dimensions were used to define the degree of destruction of metal; in [11] the 
authors analyzed and classified images of petroglyphs of Karelia. The papers [12, 13] are devoted 
to the application of Rényi spectra to the analysis of images of biomedical preparations. 

2.2. Direct multifractal transformation and escort distribution  

Consider an initial measure {𝑝(𝜀)}  and the measure {𝜇(𝑞, 𝜀)}  obtained by the following 
transformation: 

𝜇(𝑞, 𝜀) = 𝑝(𝜀)∑ 𝑝ே(ఌ)ୀଵ (𝜀). (9)

This formula defines a sequence of renormalization of initial distribution, and the 
transformation is called direct multifractal transformation. If 𝑝(𝜀) = 𝑐𝑜𝑛𝑠𝑡  (and hence  = 1 𝑁(𝜀))⁄  then 𝜇(𝑞, 𝜀) = 𝑝(𝜀)  for any 𝑞 . Because of this, it is natural to interpret the 
transformation as a method to reveal a degree of nonuniformity of the initial measure. The 
transformations form a group: there are unity and inverse elements for 𝑞 ≠ 0, and for 𝑞 = 0 the 
uniform distribution is the fixed point of the transformation. With respect to the transformation 
the set of all probability measures is divided into nonintersecting equivalence classes. It means 
that when changing 𝜀 we come to different initial measures 𝑝(𝜀), and different sequences of 
measures given by Eq. (9). The set of generated measures gives a multifractal description of an 
image (object). 

It is interesting to note the connection of the sequence Eq. (9) with a class of optimization 
problems (conditional extremum task). Let 𝑝 = {𝑝}, 𝑖 = 1, … ,𝑁, ∑ 𝑝 = 1ேୀଵ  be a probability 
measure defined on a partition with a given box size. Find the distribution {𝜇} maximizing 
Shannon's entropy −∑ 𝜇 ln 𝜇ேୀଵ  subject to the conditions that: 

 𝜇 = 1,   ேୀଵ  𝜇 ln𝑝 = 𝑘ேୀଵ  . (9a)
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The solution of the problem is so called escort distribution: 

𝜇(𝛽) = 𝑝ఉ∑ 𝑝ఉேୀଵ  , (10)

where 𝛽 – the Lagrange multiplier. It is defined from the conditions Eq. (9a). The distribution 
Eq. (10) is a particular case of Eq. (9), where the Lagrange multiplier is considered as a parameter. 

Thus distribution Eq. (9) may be interpreted as a parametrized set of solutions for a sequence 
of optimization problems of the given class. In other words, for any initial probability distribution 𝑝 = {𝑝} there is the distribution of the form Eq. (10) that maximizes Shannon entropy under the 
conditions Eq. (9a). And vice versa, there is 𝛽  such that the distribution Eq. (10) solves the 
optimization problem described. 

2.3. From Rényi spectrum to the multifractal one. Legendre transformation  

Rényi spectrum describes the changing of an initial measure by the use of its moments. 
Multifractal spectrum shows the distribution of the measure in accordance with singularity 
components 𝛼, namely consists of fractal dimensions of subsets which are unions of boxes having 
close values of exponents. In literature it is also known as scaling spectrum. 

A natural method accepted in multifractal formalism to connect Rényi spectrum (defined by 
parameter 𝑞) and multifractal spectra (defined by scaling exponents) is to assume that the number 
of boxes with exponent 𝛼 is distributed with a probability density. 

Denote by 𝑛(𝛼) the number of boxes with exponents 𝛼, such that 𝛼 ∈ ሾ𝛼,𝛼 + 𝑑𝛼ሿ. Then the 
probability that 𝛼  belongs to this interval is  𝑛(𝑧)𝑑𝑧 ≈ 𝑛(𝛼)𝑑𝛼ఈାௗఈఈ . It is also assumed that 𝑛(𝛼)~𝜀ି(ఈ), where 𝑓(𝛼) is a differentiable function. It is the fractal dimension of the set of boxes 
with exponent 𝛼. In such a manner we model a distribution of the measure on nonintersecting 
subsets having different fractal dimensions. 

In terms of the probability density generalized statistical sum may be written as: 𝑆(𝑞, 𝜀) ≈ න𝑛(𝛼)𝜀ఈ𝑑𝛼  ≈ න𝜀ఈି(ఈ)𝑑𝛼. (11)

To take all the boxes with a given exponent 𝛼 we have to find 𝛼 for which the integrand 
function has maximum. Clearly this value depends on 𝑞. 

As 𝜀 is small enough the integrand is maximal when 𝑞𝛼 − 𝑓(𝛼) is minimal. The conditions of 
extremum existence is ௗௗఈ (𝑞𝛼 − 𝑓(𝛼)|ఈୀఈ() = 0 , and we obtain: 

𝑞 = 𝑑𝑓(𝑎)𝑑𝛼 . (12)

The value of the integral in Eq. (11) is proportional to the value of the integrand in the 
extremum point 𝛼 = 𝛼(𝑞),  and substituting this value in Eq. (11) we have  𝑆(𝑞, 𝜀) ≈ 𝜀ఈ()ି(ఈ()). Thus, for any 𝑞 we find the fractal dimension of the set consisting from 
the boxes with exponent 𝛼 = 𝛼(𝑞).  

According to Eq. (6) we obtain the relation between 𝜏(𝑞) and 𝑓(𝛼): 𝜏(𝑞) = 𝑞𝛼(𝑞) − 𝑓൫𝛼(𝑞)൯    or     𝑓൫𝛼(𝑞)൯ = 𝑞𝛼(𝑞) − 𝜏(𝑞). (13)

Note that: 
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𝑑𝜏(𝑞)𝑑𝑞 = 𝛼(𝑞). (14)

Using Eq. (7) we obtain 𝐷 = ଵିଵ (𝑞𝛼(𝑞) − 𝑓൫𝛼(𝑞)൯. 
The transfer from variables {𝑞, 𝜏(𝑞)} to {𝛼, 𝑓(𝛼)} is given by formulas Eq. (13) and Eq. (14) 

and is called the Legendre transformation. Inverse transformation from {𝛼, 𝑓(𝛼)} to {𝑞, 𝜏(𝑞)} is 
performed by using Eq. (12) and 𝜏(𝑞) = 𝛼 ௗ(ఈ)ௗఈ − 𝑓(𝛼). It is useful to note that Eq. (13) leads to 
the calculation of 𝜏(𝑞) via 𝛼(𝑞) and 𝑓൫𝛼(𝑞)൯, and 𝐷. 

The detailed description of the Legendre transformation is given in [15, 16]. 

2.4. From multifractal spectrum to Rényi  

The main approach to calculation of the Rényi spectra was initially based on Eq. (4) and Eq. (7), 
where for finding 𝜏(𝑞) = limఌ→ ୪୬  ௌ(,ఌ)୪୬ ఌ  the approximation by linear regression method is used. It 
has been noted by many researchers that this way may lead to large calculation errors. 

In [17] a more sophisticated method was proposed, which allows us to find 𝜏(𝑞)  more 
accurately, namely by using relation Eq. (13) and special sequences 𝛼(𝑞) and 𝑓൫𝛼(𝑞)൯. The 
author considered escort distributions defined by Eq. (9). For these measures in view of 
assumptions Eq. (5) and Eq. (6) we have 𝜇(𝑞, 𝜀)~𝜀ఈିఛ()~𝜀(ఈ). These distributions form an 
ensemble of measure theoretic supports, and the support of 𝜇(𝑞, 𝜀) consists of boxes having 
singularity exponent 𝑞𝛼 − 𝜏(𝑞).  The main idea of the method is to calculate a spectrum of 
singularity exponents and fractal dimensions of obtained measure theoretic supports (information  
dimensions) as the functions of parameter 𝑞. Excluding 𝑞 we obtain 𝑓(𝛼). When dealing with 
such a sequence of measures the spectrum of singularity exponents seems to be a set of derivatives 
of 𝜏(𝑞) with respect to 𝑞, and the Legendre transformation holds. Hence, we may find the Rényi 
spectrum via parametrized spectra by using Eq. (4). Thus, in image analysis it may be sufficient 
to use only the spectra 𝛼(𝑞) and 𝑓൫𝛼(𝑞)൯. In [18] parametrized spectra were successfully applied 
to analyze images of biological preparations obtained by the method of crystallization with 
additives. 

Consider a set 𝑀 in phase space and its partition {𝑀} on 𝑁(𝜀) boxes of size 𝜀. Let {𝑝(𝜀)} – 
a normed measure defined on {𝑀}. Construct a sequence of measures 𝜇(𝑞, 𝜀) = {𝜇(𝑞, 𝜀)} by 
using direct multifractal transformation Eq. (9). Calculate averages of exponents 𝛼 over 𝜇(𝑞, 𝜀): 

𝛼(𝑞, 𝜀) = ∑ 𝜇(𝑞, 𝜀)ln𝑝(𝜀)ேୀଵ ln 𝜀 , (15)

and the limit of 𝛼(𝑞, 𝜀) when 𝜀 tends to zero: 

𝛼(𝑞) = limఌ→∑ ln𝑝(𝜀)𝜇(𝑞, 𝜀)ேୀଵ ln 𝜀  . (16)

For each measure 𝜇(𝑞, 𝜀)𝜇(𝑞, 𝑙) calculate the information dimensions 𝑓(𝑞) of its support: 

𝑓(𝑞) = limఌ→∑ 𝜇(𝑞, 𝜀) ln 𝜇(𝑞, 𝜀)ேୀଵ ln 𝜀  . (17)

Thus, we obtain two spectra: information dimensions of supports of the measures from a given 
sequence, and the set of averaged exponents calculated with respect to the measures as the 
functions of 𝑞. To calculate 𝑓(𝑞) (𝛼(𝑞) respectively) one should for every 𝑞 take several values 
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of 𝜀, calculate points ൫ln 𝜀 , 𝑓(𝑞, 𝜀)൯ (or (ln 𝜀 ,𝛼(𝑞, 𝜀))) and by applying the least square method 
obtain approximate values for 𝑓(𝑞) (𝛼(𝑞)).  

Now we can find the derivative of 𝜏(𝑞) with respect to 𝑞. We have: 

𝑑𝜏(𝑞)𝑑𝑞 = limఌ→ 1ln 𝜀 ∑ 𝑝(𝜀) ln𝑝(𝜀) ∑ 𝑝 (𝜀) = limఌ→∑
𝑝(𝜀)∑ 𝑝 (𝜀) ln𝑝(𝜀) ln 𝜀  

      =  limఌ→ ∑ 𝜇(𝑞, 𝜀) ln𝑝(𝜀) ln 𝜀 = 𝛼(𝑞). 
Besides that: 

𝑓(𝑞) = limఌ→∑ 𝜇(𝑞, 𝜀) ln 𝜇(𝑞, 𝜀)ேୀଵ ln 𝜀 = limఌ→ ∑ 𝜇(𝑞, 𝜀) ln 𝑝(𝜀)∑ 𝑝(𝜀)ேୀଵ ln 𝜀        = 𝑞 limఌ→ ∑ 𝜇(𝑞, 𝜀) 𝑙𝑛 𝑝(𝜀)ேୀଵ ln 𝜀 − limఌ→∑ 𝜇(𝑞, 𝜀) ln 𝑆(𝑞, 𝜀)ேୀଵ ln 𝜀        = 𝑞𝛼(𝑞) − limఌ→ ln 𝑆(𝑞, 𝜀)ln 𝜀 = 𝑞𝛼(𝑞) − 𝜏(𝑞). 
This is the Legendre transformation and: 

𝐷 = 𝜏(𝑞)𝑞 − 1,       𝐷ଵ = 𝑓൫𝛼(1)൯ = 𝛼(1). 
2.5. Rényi divergences 

For given distributions 𝑝 = {𝑝} and 𝑣 = {𝑣} Rényi (or 𝛼-) divergences for 𝛼 > 0, 𝛼 ≠ 1 are 
defined by the formula: 𝐷ఈ(𝑝, 𝑣) = 1𝛼 − 1 ln 𝑝ఈଵ 𝑣ଵିఈ . (18)

It is easy to check that 𝐷ఈ(𝑝, 𝑣) is nonnegative and decreases as a function of 𝛼. For 𝛼 = 1 
this divergence is defined as: 𝐷ଵ(𝑝, 𝑣)  =  𝑝ଵ ln 𝑝𝑣 , (19)

and called the Kullback-Leibler divergence. 
For image analysis we propose to calculate Rényi divergences on the sequence of escort 

distributions. As mentioned above, the supports of these measures are nonintersecting subsets of 
a given multifractal set. When comparing images we use a vector of divergences instead of one 
value. The main sign of the closeness of images is the rate of the growth of the vector: for images 
with similar texture the vector grows more slowly than for images from different cl asses. 

2.6. The estimation of the rate of the growth for the divergence vector 

For given distributions 𝑝 = {𝑝}  and 𝑣 = {𝑣}  introduce the notations 𝜇(𝑘) = ೖ∑ ೖసభ  and 
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𝜈(𝑘) = ௩ೖ∑ ௩ೖసభ . Estimate the 1-divergencies between the members of corresponding sequences of 

measures 𝜇 and 𝜈, constructed for initial measures 𝑝 and 𝑣: 

𝐷ଵ൫𝜇(𝑘), 𝜈(𝑘)൯ = 𝜇(𝑘) ln 𝜇(𝑘)𝜈(𝑘)  =  𝑝∑ 𝑝 ln 𝑝∑ 𝑝 𝑣∑ 𝑣൘

ୀଵ  

     =  𝑝∑ 𝑝 ቆ ln 𝑝∑ 𝑝 − ln 𝑣∑ 𝑣 ቇ =   𝑝∑ 𝑝 ൬ 𝑘ln𝑝 − ln𝑝 ൰  
     − 𝑝∑ 𝑝 ൬ 𝑘ln𝑣 − ln𝑣 ൰ = 𝑘 𝑝∑ 𝑝 ln 𝑝𝑣  
     + 𝑝∑ 𝑝 ൬ln𝑣 − ln𝑝 ൰ = 𝑘 𝑝∑ 𝑝 ln 𝑝𝑣 +  𝑝∑ 𝑝 ln𝑣  𝑝൘ .  

Let: 𝑚 = 𝑚𝑎𝑥 𝑝𝑣 ,       𝑢 = 𝑚𝑖𝑛𝑝 ,       𝑟 = 𝑚𝑎𝑥𝑣 . 
Then: ln𝑣  𝑝൘ ≤ ln𝑟  𝑢൘ = ln𝑛𝑟 𝑛𝑢 = ln(𝑟 𝑢⁄ )⁄  
Hence ∑ ೖ∑ ೖ ln∑ 𝑣 ∑ 𝑝⁄ ≤ 𝑛𝑘 ln(𝑟 𝑢)⁄  and: 

𝐷ଵ൫𝜇(𝑘), 𝜈(𝑘)൯ ≤ 𝑛𝑘(𝑚 + ln(𝑟 𝑢)⁄  . (20)

For 𝛼 ≠ 1: 

𝐷ఈ(𝜇(𝑘), 𝜈(𝑘)) = 1𝛼 − 1 ln 𝑝ఈ(∑ 𝑝) ఈୀଵ 𝑣(ଵିఈ)(∑ 𝑣) ଵିఈ 
Assume that: 𝑝 ∈ ሾ𝑝,𝑝௫ሿ,      𝑣 ∈ ሾ𝑣,𝑣௫ሿ. 
Then we have: 𝑝ఈ(∑ 𝑝) ఈ ≤ 𝑝ఈ𝑛ఈ𝑝 ≤ 𝑝௫ఈ𝑛ఈ𝑝 ,       𝑣(ଵିఈ)(∑ 𝑣) ଵିఈ ≤ 𝑣௫(ଵିఈ)𝑛ଵିఈ𝑣(ଵି) . 
Denote by 𝑢 = 𝑝௫ 𝑝⁄ , 𝑢௩ = 𝑣௫ 𝑣⁄ .  
Then: 

𝐷ఈ(𝜇(𝑘), 𝜈(𝑘)) ≤ 1𝛼 − 1 ln 𝑝௫ఈ𝑛ఈ𝑝 ୀଵ 𝑣௫(ଵିఈ)𝑛ଵିఈ𝑣(ଵି) ≤ 1𝛼 − 1 ln𝑢ఈ𝑢௩(ଵିఈ) 
       = 𝑘𝛼 − 1 (𝛼 ln𝑢 + (1 − 𝛼) ln𝑢௩) = 𝑘𝛼𝛼 − 1 ln𝑢 − 𝑘 ln𝑢௩. (21)
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The obtained estimations show that the rate of the growth of the vector of divergences depends 
on the power of multifractal transformation 𝑘 , parameter 𝛼  and a characteristic of the 
nonuniformity of the distributions 𝑝 and 𝑣, which is estimated by 𝑢, 𝑢௩. 

The complexity (both in time and from memory) of the implemented algorithm is О(𝑘𝐿), 
where 𝐿 – the number of pixels in an image. 

3. Results and discussion 

In image analysis we have to model a measure distributed on the image. As direct multifractal 
transformation reveals a nonuniformity of a given distribution, the initial measure should reflect 
real structure of the image accurately enough. Taking a box measure as the normed sum of pixel 
intensities may result in degeneration of graphs 𝛼(𝑞) and 𝑓(𝑞) into straight lines. Hence for better 
results one needs to use a kind of filtration, for example the convolution of the measure with 
Laplasian or Gaussian. 

Below we show the results of calculation of parametrized spectra and Rényi divergences for 
images of pharmaceutical solutions with nanoparticles of silver and images of bone tissue – 
healthy and with osteoporosis. 

3.1. Pharmaceutical solutions with silver nanoparticles  

We consider images of pharmaceutical solutions in which silver nanoparticles in small and 
large concentrations were added. The solidified solutions without silver do not contain any 
organized structures. The structures appear when nanoparticles are added. All the images were 
obtained by using an atomic-force microscope on NTEGRA platform and have the size 658×636. 
The images are obtained in monochrome representation. 

 
a) 

 
b) 

 
c) 

Fig. 1. a) Solution without nanoparticles, b) small concentration of nanoparticles,  
c) large concentration of nanoparticles 

  
Fig. 2. The graphs of parametrized spectra for the image  
of pharmaceutical solution without silver nanoparticles 

All the calculations were performed in greyscale palette, the measure of the box was taken as 
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the normed sum of pixel intensities. The graphs of parametrized spectra for images Fig. 1(a)-(c) 
are shown below. The parameter 𝑞 changes in the interval [–2, 5] with step 0.5. 

  
Fig. 3. The graphs of parametrized spectra for the image  

of pharmaceutical solution with small concentration of silver nanoparticles  

  
Fig. 4. The graphs of parametrized spectra for the image  

of pharmaceutical solution with large concentration of silver nanoparticles 

The results of calculations of the divergence vectors for 𝛼 = 0.5, 1, 2 are given below. In Fig. 5 
the result of comparison of Fig. 1(a) and Fig. 1(b) (zero-small) is shown. Fig. 6 demonstrates the 
difference in structures between Fig. 1(a) and Fig. 1(c) (zero-large). 

 
Fig. 5. Vectors of divergences obtained when comparing images Fig. 1(a) and Fig. 1(b) (zero-small) 

We see that the difference between images with zero and small concentration is smaller than 
between zero and large. Graphs of divergence vectors lend credence to the estimations on the rate 
of the growth of the vectors depending on 𝑘 and 𝛼. 
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Fig. 6. Vectors of divergences obtained when comparing images (a) and (c) (zero-large) 

3.2. Images of bone tissue  

Consider the images of healthy tissue Fig. 7(a) and bone tissue with osteoporosis Fig. 7(b). 
The size is 412×400. Calculations were also performed in greyscale palette; the measure of the 
box is the normed sum of pixel intensities. The parameter 𝑞 changes in the interval [–5, 5] with 
step 0.5. 

 
a) 

 
b) 

Fig. 7. a) Healthy bone, b) osteoporosis 

  
Fig. 8. Graphs of parametrized spectra for the image of healthy bone (а) 

  
Fig. 9. Graphs of parametrized spectra for the image of bone with osteoporosis (b) 
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Fig. 10. Vectors of Rényi divergences when comparing healthy bone and bone with osteoporosis 

In this case vectors of divergences grow more slowly than in the previous example. This 
reflects a visual similarity of images in spite of the fact that they are in different classes. But a 
combination of the two methods makes it possible to distinguish between images. 

4. Conclusions 

Methods of fractal and multifractal analysis provide a way to find subtle differences between 
structures of complex high-resolution images. In the paper we consider two methods based on the 
approach of multifractal formalism and using escort distributions – a one-parametric set of normed 
distributions obtained from an initial measure through the use of the function of moments. The 
order of a moment acts as the parameter. 

We set and substantiate the importance of the applications of parametrized spectra as a 
mathematical tool both for description of multifractal structure and reliable calculation of 
singularity spectrum.  

We also propose a method for comparing digital images on the sequences generated escort 
distributions. This method results in obtaining a vector of Rényi divergences, and the rate of its 
growth indicates a closeness of images. The theoretical estimation of the rate is given, which is 
confirmed by the results of experiments. 

The implemented methods of multifractal analysis give a possibility to calculate any part of 
singularity spectrum by changing the parameter 𝑞 in a given interval with a small step. The results 
of experiments show that these methods allow finding differences in image structures even for a 
simple way of the modeling of the initial measure. 
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