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Abstract. In connection with the complex operating conditions of gearbox, multiple vibration 
excitation sources, and difficulty in extracting vibration signal fault features, a novel method of 
gearbox fault diagnosis is proposed. based on the fusion of EEMD and improved Elman neural 
network (Elman-NN) is developed. The wavelet packet is utilized to denoise the collected 
vibration signals of four different types of gearboxes: broken teeth, cracks, wear, and normal, and 
then use the EEMD method to decompose the denoised vibration signals, and use the correlation 
coefficient criterion means to carry out the IMF pseudo component elimination, and then get a 
more effective signal. Calculate the energy feature of the effective signal and use it as the enter 
feature of the Elman-NN. Based on standard Elman-NN, a self-feedback factor 𝛽 is added to 
construct a reformed Elman-NN. Experimental results indicate that compared with the 
standardized Elman-NN, the improved Elman-NN has higher diagnostic accuracy and diagnostic 
efficiency. 
Keywords: gearbox fault, the EEMD method, IMF component screening, improved Elman-NN. 

1. Introduction 

As the core component of mechanical transmission system, gearbox is widely used in various 
mechanical equipment [1]. Because the working environment of the gearbox is usually more 
complicated, long-term operation, coupled with the influence of various factors such as 
temperature and lubrication, the gears of gearbox are prone to pitting, broken teeth, and wear 
failures, and the gearbox bearings are prone to failures such as wear and bending. If the 
abnormality cannot be detected in time, long-term operation will cause damage or abnormal 
accumulation gradually, causing irreversible consequences. Therefore, it is necessary to monitor 
the status of the gearbox in real time, accurately determine the type and location of the fault, and 
maintain it in time to achieve the goal of minimizing the expected loss. 

The empirical mode decomposition (EMD) method is a new time-frequency analysis method 
proposed by Huang, and it is an adaptive time-frequency localization analysis method [2]. EMD 
is superior to the Fourier transform method, yet the more important disadvantage of EMD is modal 
aliasing. In order to solve this problem better, Huang also proposed an improved EMD method, 
namely EEMD (Ensemble Empirical Mode Decomposition) method [3]. Because the gear fault 
signal is nonlinear and non-stationary, and the Elman-NN has strong nonlinear mapping and fault 
tolerance, it is especially suitable for nonlinear pattern recognition and classification, so it is 
introduced into fault diagnosis. Ayodeji [4] introduced an Elman-NN to perform nuclear power 
plant fault diagnosis, and the results show that the diagnosis method is feasible. Chemseddine [5] 
proposed a novel fault diagnosis method for gearbox system based on the fusion of HEWT-SVD 
and Elman-NN. The results show that the diagnostic performance of this method is better than 
(HHT)-SVD, (LMD)-SVD and (WPT)-PCA methods. Baraldi [6] developed a fault diagnosis 
method based on Auto-Associative Kernel Regression, Fuzzy Similarity and Elman Recurrent  
NN. This combined method can overcome the limitations of these three independent methods. 
Considering that the standard Elman-NN can only identify the first-order dynamic model, as the 
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hidden layer or the order of the system increases, its dynamic memory and association capabilities 
are significantly weaker. Based on the advantages of the EEMD method and the shortcomings of 
the standard Elman-NN, this paper puts forward a gearbox fault diagnosis means based on the 
fusion of EEMD and the improved Elman-NN.  

2. Extraction of effective IMF components based on EEMD method 

EEMD is an improved algorithm of EMD, which can overcome the modal aliasing 
phenomenon caused by non-white noise interference generated by EMD algorithm [3]. After the 
initial signal is decomposed by EEMD, due to multiple factors such as decomposition error and 
interpolation error, the IMF component in the decomposition result is prone to false components. 
If the false component exists in the feature domain, it will obviously cause a large error in the 
extracted degradation performance index. Therefore, it is very necessary to remove the false 
component. Considering that the correlation between the false component and the initial signal is 
small, the false component can be distinguished by introducing a correlation coefficient. We can 
make the mathematical expression of the correlation coefficient be described as follows: 

𝜆௝ = ∑ (𝑥௜ − 𝑥̅)(𝑦௜ − 𝑦ത)௡௜ୀଵඥ∑ (𝑥௜ − 𝑥̅)ଶ௡௜ୀଵ ඥ∑ (𝑦௜ − 𝑦ത)ଶ௡௜ୀଵ . 
where 𝜆௝ (𝑗 = 1, ..., 𝑙) are the correlation coefficients between all IMF components and the original 
signals; 𝑥 and 𝑥̅ represent respectively the initial signal and its average value; 𝑦 and 𝑦ത represent 
respectively the IMF component signal and its average value; 𝑛  represents the number of 
acquisition data samples of vibration signal. 

Then, set the threshold value 𝜇  for distinguishing false components. If the correlation 
coefficient between the IMF component and the initial signal is less than the 𝜇, it will be removed. 
Finally, the IMF components larger than the 𝜇 will be retained and reconstructed, so as to obtain 
an effective initial signal to achieve a reduction of noise. 

3. The improved algorithm of Elman-NN 

Elman-NN is a feedback neural network (NN), a typical localized regression network, a 
forward NN which is provided with localized memory units and localized feedback connections. 
The standardized Elman-NN uses the BP algorithm, which can only identify first-order dynamic 
models. When the hidden layer or the order of the system increases, its dynamic memory and 
association capabilities are limited. To this end, this paper uses a reformed Elman-NN to analyze 
and diagnose multiple failure modes of asynchronous motor rolling bearings. The improved 
Elman-NN adds a self-feedback factor 𝛽 (𝛽 ∈ [0, 1]) on the basis of the standard network. That is, 
mutual feedback and self-feedback are introduced between nodes in the same layer of feedforward 
network, which makes this network better achieve the recognition of non-linear mapping pattern, 
while the self-feedback link of correlated nodes also largely streamlines the network scale and 
improves the learning speed. The structure of improved Elman-NN structure is shown in Fig. 1. 
When 𝛽 is close to 1, it indicates that it can contain more distant info. When 𝛽 is equal to 0, this 
reformed Elman-NN degenerates into a standardized Elman-NN. 

Suppose that 𝑋 which is the input vector of the whole network is 𝑟-dimensional, 𝑌 which is 
the output vector is 𝑚-dimensional, 𝑌௃ which is the output vector of the hidden layer and 𝑌௅ which 
is the output vector of the successor layer are 𝑠-dimensional. The mathematical model which 
belongs to the improved Elman-NN [7] is described as follows: 𝑛𝑒𝑡௃(𝑘) = ෍൫𝑋(𝑘)𝑤௝௜ (𝑘) + 𝑌௅(𝑘)𝑤௝௟ ൯, (1)
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𝑛𝑒𝑡௅(𝑘) = 𝑓 ቀ𝑛𝑒𝑡௃(𝑘)ቁ ,     𝑌௅(𝑘) = 𝑌௃(𝑘 − 1) + 𝛽𝑌௅(𝑘 − 1), (2)𝑛𝑒𝑡ை(𝑘) = 𝑌௃(𝑘),     𝑌(𝑘) = 𝑔 ቀ𝑤௢௝ (𝑘).𝑛𝑒𝑡ை(𝑘)ቁ, (3)𝐸 = ෍ ሾ𝑦(𝑘) − 𝑦ௗ(𝑘)ሿଶ௦௞ୀଵ . (4)

Eq. (4) is used to obtain partial derivatives of 𝑤௢௝, 𝑤௝௜, and 𝑤௝௟ and set them to 0. Finally, the 
learning algorithm which belongs to the reformed Elman-NN is obtained: 𝛿௜ = ൫𝑦ௗ௜(𝑘) − 𝑦௜(𝑘)൯𝑔௜ᇱ(•),     𝛿௝ = ෍ ൫𝛿௜ 𝑤௢௝ ൯௠௜ୀଵ 𝑓௝ᇱ(•), (5)𝜕𝑦௝(𝑘)𝜕𝑤௝௟ = 𝑓௝ᇱ(•)𝑦௝(𝑘 − 1) + 𝛽 𝜕𝑦௝(𝑘 − 1)𝜕𝑤௝௟ , (6)

where 𝑤௢௝, 𝑤௝௜, and 𝑤௝௟ respectively denote the 𝑗th node in the hidden-layer to the 𝑜th node in the 
output-layer, the 𝑖th node in the input-layer to the 𝑗th node in the hidden-layer, and the 𝑙th node 
in the inheriting layer to the 𝑗 th node in the hidden-layer. While 𝑔(•)  and 𝑓(•)  respectively 
represent activation functions of the output-layer neurons and the hidden-layer neurons. 𝑜𝑢𝑡( ) 
represents the output of input-layer; 𝑛𝑒𝑡( ) represents the net input of a certain layer; 𝐼 represents 
the input-layer; 𝐽 represents the hidden-layer; 𝐿 represents the receiving layer; 𝑂 represents the 
output-layer; 𝑦(𝑘)  represents the real output of network; 𝑦ௗ(𝑘)  is the expected output; 𝐸 
represents the error objective function; 𝑘  is the iteration order. 𝜂ଵ , 𝜂ଶ , and 𝜂ଷ  respectively 
represent the learning steps of 𝑤௝௟ , 𝑤௝௜ , and 𝑤௢௝ , 𝛿௜  and 𝛿௝  are respectively denoted as the 
deviation values of the 𝑖th node in output-layer and the 𝑗th node in hidden-layer. 

 
Fig. 1. The improved structure of Elman-NN 

4. Experiment analysis 

4.1. The collection of experiment data 

The experiment device is shown in Fig. 2(a). The included hardware mainly includes the 
QPZZ-II fault diagnosis test platform system, several acceleration sensors, two data collectors, 
and one signal conditioner. The small gear of this experiment platform is the driving wheel, which 
the motor shaft is connected to; the big gear is the driven wheel, which the magnetic powder brake 
is connected to through a coupling. Paste a circle of black tape on the driving shaft (leaving a slit 
of about 2 mm to reflect light), and use an infrared speedometer to measure the shaft speed. The 
number of teeth of the pinion is 55; the number of teeth of the big gear is 75. And two acceleration 
sensors are respectively installed in vertical and horizontal directions of the big gear outside the 
gearbox. The calibration values of these two sensors are respectively 99 mV/g and 102 mV/g. The 
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layout of measuring point is shown in Fig. 2(b). 
A dual-channel data collector is used to collect normal signals and three typical fault signals 

of cracks, broken teeth and wear. To ensure that enough data samples are collected, the sampling 
frequency must be 2.56 or more times of the analysis frequency. 

 
a) Schematic diagram of experimental platform 

 
b) Schematic diagram of measuring point layout 

Fig. 2. Schematic diagram of experimental acquisition device 

4.2. Signal denoising and effective signal screening 

The wavelet packet method is utilized to denoise the normal signal and the three typical fault 
signals of cracks, broken teeth, and wear. Then use EEMD to decompose the signals, and set the 
Nstd in the EEMD algorithm to 0.2, and add 1000 times of Gaussian white noise, then we get 1 
margin and 10 IMF components, as shown in Fig. 3. Finally, use the correlation coefficient 
criterion shown in Eq. (1) to screen the effective IMF components. In the screening, set the 
correlation coefficient threshold 𝜇 = 0.15, and the correlation coefficients of IMF1, IMF2, and 
RES are all less than 0.15, so they are eliminated. The remaining components are reconstructed to 
obtain the effective signal after screening. 

 
Fig. 3. IMF components of the fault signal of a cracked gear 

4.3. The extraction of energy feature 

When the system is excited, the generated vibration signal will modulate the amplitude or 
frequency of some components, causing the energy of the signal to change. Therefore, the energy 
change of each component reflects the fault condition of the gear, and the energy of every 
component is normalized as the input of the network. The data samples of the normalized vector 
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of energy failure characteristics of different gear failure types are shown in Table 1. Due to space 
reasons, only 5 sets of training sample data for different failure types are given. In the actual 
analysis, the sample data used is 100 sets, each set of data includes 4 energy characteristic values 
of different frequency bands. 

Table 1. Sample data of energy characteristics of different fault types (only 5 groups listed) 

Fault 
types 

Serial 
number 

The feature vectors of fault 
signal Fault 

types 
Serial 

number 

The feature vectors of fault 
signal 

E1 E2 E3 E4 E1 E2 E3 E4 

Broken 
tooth 
signal 

1 0.5049 0.2352 0.2350 0.025 

Wear 
signal 

1 0.2920 0.4547 0.1690 0.0843 
2 0.5477 0.1972 0.2416 0.0134 2 0.2356 0.4945 0.1781 0.0917 
3 0.5849 0.2222 0.1765 0.0163 3 0.2675 0.4550 0.2119 0.0656 
4 0.3691 0.3503 0.2661 0.0146 4 0.2520 0.4875 0.1670 0.0935 
5 0.6534 0.1560 0.1809 0.0096 5 0.2523 0.4394 0.1824 0.1260 

Crack 
signal 

1 0.8225 0.1595 0.0155 0.0025 

Normal 
signal 

1 0.2304 0.3153 0.2038 0.2504 
2 0.8104 0.1636 0.0237 0.0023 2 0.3818 0.2736 0.2095 0.1350 
3 0.8444 0.1363 0.0172 0.0021 3 0.0972 0.3067 0.3075 0.2886 
4 0.8143 0.1600 0.022 0.0037 4 0.0984 0.3961 0.2656 0.2399 
5 0.8354 0.1409 0.0211 0.0026 5 0.0841 0.3380 0.3439 0.2340 

4.4. The analysis of diagnosis result 

There are 4 types of gearbox faults studied in this paper: broken gear tooth fault (1, 0, 0, 0), 
crack fault (0, 1, 0, 0), wear fault (0, 0, 1, 0), no fault (0, 0, 0, 1). In order to facilitate comparison, 
the structural parameters of the Elman-NN before and after the improvement are basically the 
same. The selection is as follows: the number of input neurons is 4 (energy characteristics of 4 
frequency bands), and the output neurons are 4 (4 failure types). The transfer functions belonging 
to hidden layer and output layer are respectively set as tansig and logsig functions, the number of 
training is set to 1000, the index minimum mean square error is set to 10-10, and 𝛽 = 0.38. Fig. 4 
and Fig. 5 are the training conditions of Elman-NN before and after improvement. The standard 
Elman-NN needs to be trained for 83 steps to achieve the set average square error, the diagnosis 
time is 0.4038 seconds, and the diagnosis error is 1.0e-07×[0.0038, 0.0025, 0.5413, 0.0040]. The 
informed Elman-NN just needs to train 32 steps to achieve the set average square error, the 
diagnosis time is 0.3204 seconds, and the diagnosis error is 1.0e-07×[0.0002, 0.0517, 0.1469, 
0.0039]. From the result, it is not difficult to see that the improved Elman-NN can effectively 
diagnose different types of gear faults, but the improved Elman-NN has shorter diagnosis time 
and higher diagnosis accuracy. 

 
a) Number of iterations b) Training process 

Fig. 4. Output result of standard Elman-NN 
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Fig. 5. Improved Elman-NN 

5. Conclusions 

In this work, in order to more efficiently and accurately identify broken teeth, cracks, wear and 
normal gear conditions involved in the gearbox, a fault diagnosis method based on the fusion of 
EEMD and improved Elman-NN is introduced. Through the EEMD decomposition of gear 
vibration signals of different types of failures, the correlation coefficient criterion method is 
utilized to implement effective IMF component screening, to obtain more pure vibration 
information. In order to build the Elman-NN with faster learning speed, I add a feedback factor to 
the standardized Elman-NN to make the network realize the pattern recognition of nonlinear 
mapping better. And to a large extent, the self-feedback connection of the correlated nodes 
simplifies the scale of the network. Therefore, the learning speed of the network is improved. The 
analysis results of experiment indicate the improved Elman-NN diagnosis system has the 
characteristics of higher accuracy and shorter diagnosis time. 
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