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Abstract. Traditionally, modal analysis and the extraction of modal parameters from vibration 
data is a process that requires a more or less extensive amount of manual interaction from setting 
input parameters up until finding the eigenfrequencies. The growing interest in continuously 
monitoring mechanical structures e.g. for automated damage detection methods has led to the 
development of many approaches to automate different aspects of modal analysis. In this context, 
the Covariance-driven Stochastic subspace identification (Cov-SSI) is a widely used method. The 
present paper provides an automated Cov-SSI algorithm combined with a peak-picking approach 
for the automatic determination of input parameters. In this regard, using the 
Prominence-parameter allows to examine the PSD by finding the most relevant peaks. The herein 
shown algorithm is currently suitable for systems with a limited number of sensors. Cov-SSI 
results are arranged in stability plots and interpreted using the hierarchical clustering method. By 
creating stability plots for a wide range of block rows a sensitivity analysis is used to find the 
optimal result based on the averaged standard deviation of damping of the clusters in every 
stability plot. A second aspect of this paper is comparing the common method for order reduction 
with a modified method described in [1], which preserves the orthogonality of the 𝐔, 𝐒 and 𝐕 
matrix of the singular value decomposition. Exemplary results on both methods are provided using 
simulated data (state-space, 3 DoF). 
Keywords: automated operational modal analysis, covariance-driven stochastic subspace 
identification, sensitivity analysis, determining input parameters, modified order reduction. 

1. Introduction 

Stochastic subspace identification is a widely used method to extract modal parameters from 
vibration data. In this context, two methods can be distinguished, namely the data-driven 
(Data-SSI) and covariance-driven (Cov-SSI) method. This paper will present an automated 
algorithm based on the Cov-SSI method. In general, the automation of Cov-SSI concerns two 
main steps. First of all, the model order and the number of block rows must be set as input 
parameters. The most common way to analyze a system is to create stability plots and search for 
the eigenfrequencies as vertical alignments of poles over many different model orders. Since the 
optimal number of block rows cannot be received analytically, stability plots for wide range of 
block rows are created. For this step, a peak-picking approach is used to set proper values for input 
parameters. The second main step of automation regards the interpretation of the stability plots. 
Each stability plot is analyzed via a hierarchical clustering method and the results are used in a 
sensitivity analysis to find the optimal value of block rows. A description of this principle can be 
found in [2]. Besides the common order reduction method, the algorithm uses the alternative 
method proposed in [1]. While the common method reduces the order of the Hankel matrix after 
the SVD, the modified method interchanges the sequence. Therefore, this paper also provides a 
brief comparison between both methods. 
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2. Basic description of Cov-SSI 

First, we would like to provide a brief overview over the method, a more comprehensive 
description can be found in [3]. The Cov-SSI method is based on the assumption that a mechanical 
system can be transformed into its state space formulation defined by the State Space Equation in 
Eq. (1) and the Measurement Equation in Eq. (2): 𝐱௞ାଵ = 𝐀ௗ𝐱௞ + 𝐰௞, (1)𝐲௞ = 𝐂𝐱௞ + 𝐯௞. (2)

With this, one defines the following identities for the Output covariance matrix 𝐑௜ and the 
State output covariance matrix 𝐆: 𝐑௜ = 𝐄ሼ𝑦௞ାଵ𝑦௞் ሽ, (3)𝐆 = 𝐄ሼ𝑥௞ାଵ𝑦௞் ሽ. (4)

By assuming that all other relevant variables are not correlated with each other, Eq. (3) can be 
formulated as in Eq. (5): 𝐑௜ = 𝐂𝐀ௗ௜ିଵ𝐆. (5)

The Output covariance matrices 𝐑௜ for different values of 𝑖 describing the respective block 
rows of the covariance are used to construct a block Hankel matrix of covariances Eq. (6): 

൫𝐇ఈ,ఉ൯𝟎 =  ⎣⎢⎢
⎢⎡ 𝐂𝐆 𝐂𝐀ௗ𝐆 ⋯ 𝐂𝐀ௗఉିଵ𝐂𝐀ௗ𝐆 𝐂𝐀ௗଶ 𝐆 ⋯ 𝐂𝐀ௗఉ⋮ ⋮ ⋱ ⋮𝐂𝐀ௗఈିଵ𝐆 𝐂𝐀ௗఈ ⋯ 𝐂𝐀ௗఈାఉିଶ⎦⎥⎥

⎥⎤. (6)

The dimension of the 𝑝 × 𝑝 block Hankel matrix depends on the number of sensors and the 
number of block rows used and is determined by Eq. (7): 

𝑝 = 𝑛௦௘௡௦௢௥௦ ⋅ maxሺ𝑖ሻ2 . (7)

Decomposing the block Hankel matrix of Eq. (6) by using the singular value decomposition 
yields the matrices 𝐔, 𝐒 and 𝐕, where 𝐒 contains singular values in decreasing order Eq. (8): 𝜎ଵ > 𝜎ଶ > ⋯ > 𝜎௞ > 0. (8)

In general, all singular values will be larger than 0 due to unavoidable noise influences. In 
order to construct a stability plot for multiple model orders an order reduction according to the 
respective model order 𝑘 is performed. The System matrix 𝐀ௗ is then obtained by Eq. (9): 𝐀ௗ = 𝐒௞ି ଵ ଶ⁄ 𝐔௞൫𝐇ఈ,ఉ൯ଵ𝐕௞𝐒௞ି ଵ ଶ⁄ . (9)

The matrix ൫𝐇ఈ,ఉ൯ଵ is constructed by shifting ൫𝐇ఈ,ఉ൯଴ by one block row. By calculating the 
eigenvalue decomposition of the discrete System matrix 𝐀ௗ modal parameters are obtained. 

3. The algorithm 

The first step of the algorithm is the determination of proper input parameters. Based on the 
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two order reduction methods, the algorithm splits into two branches, Fig. 1. The upper one utilizes 
the common order reduction method. As stated before, this means the actual order reduction of 
the Hankel matrix takes place after the singular value decomposition. Therefore, the number of 
block rows influences the matrix given to the SVD. To find the optimal number of block rows the 
algorithm iterates from a minimal value to a maximal value to calculate a large number of results. 
After the iteration, every stability plot is clustered. A sensitivity analysis, which will be described 
later in more detail, extracts the optimal number of block rows. The lower branch uses the 
modified order reduction method. Since this modified method does the order reduction method 
before the SVD, the actual number of block rows does not matter. The matrix given to the SVD is 
always the same. Therefore, no iteration or sensitivity analysis is necessary. Because the modified 
order reduction method from [1] would use the same sub-matrix of the Hankel matrix regardless 
of the value of block rows, stability plots for different block row values would be exactly the same. 
Therefore, the iterative approach with a following sensitivity analysis does not apply to this 
modified method. Only one stability plot needs to be calculated and analyzed, which means a 
significantly reduced calculation effort. 

 
Fig. 1. General steps of the algorithm 

To determine proper values for block rows and model orders some information about the 
analyzed system must be acquired from the data. Namely this concerns the number and 
frequencies of the unknown eigenfrequencies. In the proposed algorithm this is done by examining 
the PSD of the data, where eigenfrequencies are visible due to their dominant visual appearance. 
The algorithm utilizes this to distinguish possible eigenfrequencies from noise influences by using 
the so-called ‘Prominence’, a parameter originating from Geography to describe the elevation of 
mountains relative to surrounding mountains. Some basic information and background can be 
found in [4]. This principle is shown in Fig. 2, where the prominence of a peak is basically its 
height above the lowest contour line that inherits the peak itself, but not a higher peak. It can be 
measured by drawing a horizontal line from any local maximum to both sides until the line either 
crosses the signal or reaches the start or end of the signal (black dashed line). On both sides 
covered by the horizontal line one can find a minimal value of the signal. The higher of both 
minima marks the relevant level (red dashed line) for the prominence of a peak. With this it is also 
clear that any noise peaks would have a vanishing prominence. 

 
Fig. 2. Exemplary prominence of a peak 
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Now, with the estimated 𝑛 eigenfrequencies 𝑓ଵ, … , 𝑓௡ of the analyzed signal, one can set values 
for model order 𝑘 and block rows 𝑖 Eqs. (10-13): 𝑖௠௜௡ =  𝑓௦ 𝑓ଵ⁄ , (10)𝑖௠௔௫ = 10 ⋅ 𝑖௠௜௡, (11)𝑘௠௜௡ = 2 ⋅ 𝑛, (12)𝑘௠௔௫ = 𝑛ௌ௘௡௦௢௥௦ ⋅ 𝑖௠௜௡. (13)

where 𝑖௠௜௡  – minimal number of block rows, 𝑖௠௔௫  – maximal number of block rows, 𝑘௠௜௡  – 
minimal model order, 𝑘௠௔௫ – maximal model order. 

Since eigenfrequencies are estimated by calculating the eigenvalue decomposition, each 
eigenfrequency is represented by two (complex conjugated) eigenvalues, which leads to Eq. (12). 
The block Hankel matrix varies in size due to the iteration over the block rows Fig. 1. In this 
context Eq. (13) describes the maximum model order that can be calculated when using the 
smallest possible block Hankel matrix. Eq. (13) introduces a dependency on the number of  
sensors, which can be problematic, if a very large number of sensors is used. As described in [5], 
choosing a minimal number of block rows depends on the lowest frequency of interest and the 
sampling frequency. They proposed a rule of thumb similar to Eq. (10), but with an additional 
factor. This factor was herein omitted, which led to overall better results. To cover a large range 
of block rows, the corresponding maximal value is set by Eq. (11). The clustering of each stability 
plot is done via the hierarchical clustering method. This method has the advantage to work without 
any prior knowledge about the desired result, i.e. no number of clusters or their initial position 
must be provided. The applied criteria determine the characteristics of a cluster. In this context the 
criteria define the shape of an eigenfrequency in the plain of frequency and damping in the stability 
plot. In [6] a further description on hierarchical clustering is provided. First soft criteria are applied 
for the initial determination of clusters. The Modal Assurance Criterion (MAC) and a distance 
measure with respect to frequency and damping are used for this purpose. While the MAC 
compares the similarity of two mode-shapes and further details on this can be found in [7], the 
distance measure is shown in Fig. 3. Finally, hard validation criteria are used to eliminate 
physically meaningless poles and clusters. Therefore, poles with negative or very high damping 
(> 25 %), as well as very small cluster are omitted. The clustering yields a set of clustered stability 
plots. In the final step of the algorithm a sensitivity analysis w.r.t. the number of block rows is 
performed to find an optimal set of modal parameters. The basic idea is that with few block rows, 
the entire signal and noise contents are distributed over few singular values. With an increasing 
number of block rows, more singular values are rejected by model order reduction. Since the 
smallest singular values should contain mainly noise influences, this process improves the quality 
of the data for SSI-Cov. This is the decreasing part of the polyfit-approximation shown in Fig. 4 
at around 25 block rows. With more block rows, the rejected singular values are no longer 
negligible small. In the corresponding part around 50 block rows the data quality is decreasing, 
since relevant signal information is cut out, too. With even more block rows this process reaches 
an equilibrium. For the sensitivity analysis this means that for every single stability plot with m 
clusters a mean standard deviation of the damping is calculated Eq. (14): 

𝑠఍ =  ∑ 𝑠఍,௣௠௣ୀଵ𝑚 . (14)

As described in [2], for the optimal choice of the number of block rows this value should have 
a minimum. An exemplary result for the sensitivity analysis is given in Fig. 4. The aforementioned 
trend to first decrease at relatively few block rows before increasing with more block rows is 
clearly visible. Outliers do appear at lower block rows, though the basic principle is still applicable. 
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Fig. 3. Ellipse in plain of frequency and damping as distance measure 

 
Fig. 4. Sensitivity analysis criterium with polyfit approximation 

4. Verification 

The algorithm is validated on the example of a 3-DoF state space system. Additionally, three 
harmonic signals with 17 Hz, 40 Hz and 54 Hz respectively were added to the signal to simulate 
non-white noise excitation e.g. the influence of rotating machine parts, whose frequency can 
mirror into the calculation result. Table 1 provides the analytical parameters of the system. 

Table 1. Analytical modal parameters  
of the 3-DoF state space system 

Mode Eigenfrequency [Hz] Damping [%] 
1 27,3825 0,0564 
2 45,3543 0,102 
3 63,4344 0,161 

Harmonics 17, 40, 54 0, 0, 0 

Fig. 5 shows the stability plot for the conventional order reduction and the block row value 
that was found to be optimal by the sensitivity analysis. The stability plot for the modified order 
reduction is given in Fig. 6. Additional to the generally clearer appearance due to the more random 
distribution of mathematical poles, which is described in [1] in more detail, another important 
distinction between both methods can be made. The frequencies of the poles belonging to the 
added harmonics vary significantly more than those belonging to actual eigenfrequencies, when 
the modified method is used. For this system the iteration over the block rows ranged from 20 up 
to 200. As already indicated in Fig. 4, most times the optimum can be found at lower numbers of 
block rows. Accordingly, in this case the optimum was found at 40 block rows. As stated before, 
depending on the approach how the modified order reduction method is calculated, no sensitivity 
analysis is performed. This is the reason why there is only one result for the minimal number of 
block rows. Furthermore, as can be seen in both plots, the maximal order was set to 60. In a manual 
approach the model order would be set to a very high number to take the generally unknown real 
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model order into account. Examining the PSD by using the Prominence parameter leads to a more 
reasonable value based on the actual system. This reduces the calculation effort considerably 
without losing quality of the result. In both stability plots, all three eigenfrequencies are clearly 
visible. Table 2 provides the corresponding calculation results. Comparing the modal parameters 
calculated with the two methods, the frequency estimates are almost equal. The damping estimates 
of the modified order reduction, however, differ more from the analytical results. This observation 
is based on the pre-SVD order reduction. At low model orders the Hankel matrix contains fewer 
system relevant information. A wider scattering around the analytical values of the corresponding 
modal parameters frequency and damping can be observed. The observation, that modal 
parameters calculated with the modified order reduction method show more variations around 
their analytical counterparts, especially the damping values (see. Table 2), should be the subject 
of further studies. 

 
Fig. 5. Stability plot for 3-DoF system with conventional order reduction  

and resulting eigenfrequencies (boxed) 

 
Fig. 6. Stability plot for 3-DoF system with modified order reduction  

and resulting eigenfrequencies (boxed) 

In both results none of the added harmonics is misinterpreted as an eigenfrequency, although 
at least Fig. 5 would visually allow for this mistake. In most results for different numbers of block 
rows, the added harmonic frequencies were found to be an eigenfrequency by the clustering. 
Therefore, with the damping criterion from Eq. (14), the sensitivity analysis was able to find the 
most optimal result. 
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Table 2. Calculated modal parameters of a 3-DoF state space system  
 Common order reduction Modified order reduction 

Mode Eigenfrequency [Hz] Damping [%] Eigenfrequency [Hz] Damping [%] 
1 27.3151 -0.25 % 0.0565 +0.18% 27.3116 -0.26 % 0.0713 +26.4 % 
2 45.242 -0.25 % 0.0942 -7.65% 45.2302 -0.27 % 0.11 +7.84 % 
3 63.29 -0.23 % 0.16 -0.62% 63.2853 -0.24 % 0.17 +5.59 % 

Harmonics –, –, – –, –, – –, –, – –, –, – 

5. Conclusions 

The goal of this work was to develop an algorithm that allows a fully automated modal  
analysis. The first relevant step was the determination of input parameters. Using the prominence 
of a peak as a reference for its relevance, the algorithm mimics a visual interpretation of the PSD. 
In the example of chapter 4 the automatically determined input parameters led to good results. 
Further tests with more complicated systems have shown that especially weakly excited modes 
are hard to detect on this way. The averaged damping standard deviation as a criterion of the 
sensitivity analysis proved to locate the most optimal modal parameters in a set of results. If, 
however, some eigenfrequencies are not found by the peak-picking approach, the input parameters 
are not fitting for the actual system, which complicates the later analysis of the calculation results. 
One important step to improve the algorithm in future works is to improve the examination of the 
PSD to reliably analyze systems with weakly excited modes. Finally, the modified order reduction 
yielded good results with just the minimal number of block rows. As further tests have shown, the 
results of both order reduction methods converge to one another, if higher model orders are chosen 
for the modified method. This also indicates the necessity of further improvements in input 
parameter estimation, e.g. different approaches for both methods. 
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