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Abstract. Aiming at the shortcomings of traditional vibrating screens with large vibration mass, 
a double eccentric cam self-synchronous vibrating screen is proposed. The motion differential 
equation of the vibrating screen system is derived by using Lagrange equation and the steady state 
solution is obtained. According to Hamilton principle, the synchronization condition of the 
vibration system is deduced, and the stability condition of the self-synchronization motion is 
obtained. The influencing factors of synchronization and stability are investigated by using 
numerical calculation and simulation analysis methods. The results show that stable 
self-synchronous motion of the vibration system is implemented when the synchronization and 
stability conditions are satisfied; the value of the stable phase difference of two cams varies in the 
range of (–1.5 rad, 0), and compared with the residual torque difference, the eccentricity of 
eccentric cams has a greater impact on the stable phase difference; additionally, a linear motion 
track of the vibrating screen is achieved. 
Keywords: vibrating screen, self-synchronization, eccentric cam, phase difference. 

Nomenclature 𝛽 Dip angle of cam groove in the vertical direction (rad) 𝜓 Angular displacement of screen frame around its mass center (rad) 𝜑 Angular displacement of 𝑖-th cam rotation (rad) 𝑅 Contour radius of eccentric cam (m) 𝑒 Eccentricity of cams (m) 𝑚 Mass of screen frame (kg) 𝐽 Rotational inertia of screen frame with respect to its mass center (kg·m2) 𝐽 Rotational inertia of 𝑖-th cam (kg·m2) 𝑞 Generalized coordinate 𝑄 Generalized force 𝑇 Total kinetic energy (J) 𝑉 Total potential energy (J) 𝐷 Total dissipated energy (J) 𝑇ఝ Total rotational kinetic energy of two eccentric cams (J) 𝑘௫, 𝑘௬ ሺ𝑘௫ ൌ 𝑘௬ ൌ 𝑘ଵሻ Stiffness coefficients of the damping spring in 𝑥- and 𝑦-directions (N/m) 𝑘ట Stiffness coefficient in 𝜓-direction (N·m/rad) 𝑓௫, 𝑓௬  ሺ𝑓௫ ൌ 𝑓௬ ൌ 𝑓ଵሻ Damping coefficient of screen frame in 𝑥- and 𝑦-directions (N·s/m) 𝑓ట Damping coefficient in 𝜓-direction (N·m·s/rad) 𝑓ఝ Damping coefficient of 𝑖-th cam in its rotation direction (N·m·s/rad) 𝑓 Coefficient of friction between cam and cam groove 𝑇 Electromagnetic torque of 𝑖-th motor (N·m) 
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𝑇 Friction torque on 𝑖-th motor shaft (N·m) Δ𝑇 Residual torque difference (N·m) 2𝛼 Phase difference (rad) 𝜔 Motor speed (rad/s) 

1. Introduction  

The drilling vibrating screen is the primary solids control equipment for drilling fluid 
circulation. Its purpose is to fully recover the drilling fluid and remove as many solid particles as 
possible. Synchronous vibrating screens have been widely used in mining, metallurgy, petroleum 
and other industries, due to their simple structure and high efficiency [1, 2]. Blekhman [3] first 
proposed the synchronization theory of mechanical exciters in the 1950s. Since then, self 
synchronization theory has been introduced into many vibrating machines excited by two 
eccentric rotors. Zhao [4] described the synchronous behavior of the vibrating system with a 
dual-rotor system based on the concept of generalized synchronization. Through numerical and 
experimental research [5], researchers found that two eccentric rotors can synchronize in-phase or 
anti-phase under different conditions. For improving the exciting force, they applied different 
methods to achieve synchronous vibration of dual-rotor systems.  

Besides, numerous scientists have been doing extensive research on the synchronization of 
multi-rotor system [6-8]. Zhang [9] investigated the synchronization of three non-identical 
coupled exciters rotating with the same directions in a far-resonant vibrating system of plane 
motion. Kong [10] investigated the composite synchronization of four eccentric rotors driven by 
induction motors in a vibration system, and the numerical simulation and some experiments are 
employed to confirm the feasibility of the composite synchronization method. Overall, to obtain 
great exciting force, they generally drive the multi-rotor system synchronized by 
self-synchronization, coupling synchronization, composite synchronization and other methods. As 
the number of rotors or exciters rises, the vibration mass increases. In addition, with the 
development of vibrating screen, industries seem to be inclining towards larger or multilayer 
screens to reduce production costs [11]. The vibration mass increases with the increase of screen 
layers. Hence, for traditional vibrating screens, it is often necessary to increase the mass of the 
eccentric rotors or the power of the exciter to obtain greater exciting force, which will limit the 
screening capacity and screening efficiency of the vibrating screen. 

A lot of research on other forms of vibration machinery with low vibration mass has been 
published. Ran et al. [12] studied a double crank and connecting rod (CCR) vibrating screen, 
which can realize the translational circular motion of the vibrating screen connected with the CCR. 
The CCR mechanism can effectively reduce the vibration mass and realize reciprocating motion. 
But due to a large number of joints and taking up lots of space, it is easily damaged with large 
friction and inertial impact. The clearance faults on joint of moving mechanism are most common 
in CCR mechanism [13, 14]. At present, the cam mechanism is also frequently used to implement 
reciprocating motion. As long as the contour curve of the cam is appropriately designed, the 
required motion law can be accurately achieved [15, 16]. Xiao et al. [17] utilized the irregular 
movement of the cam to simulate the principle of manual screening and proposed a new type of 
double cam vibrating screen, improving the screening efficiency. The obvious advantages of the 
cam-type vibrating screen are compact structure and low vibration mass, avoiding the 
shortcomings of the CCR mechanism with many components. Meanwhile, the cam mechanism is 
also widely used in various automatic machinery, instruments and manipulation control devices 
[18-20]. However, rigid (gear) or flexible (belt, chain) transmission is always used to achieve 
synchronous motion in the various machines [21-22]. There is little research on the 
self-synchronization movement, especially the self-synchronization of cam-type vibrating screen. 
Consequently, a new type of double cam-driven self-synchronous vibrating screen has been 
proposed in this paper. The self-synchronization and stability conditions of the vibrating screen 
system are studied. Through numerical calculations and simulation analyses which are performed 
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by Matlab/Simulink, the factors affecting synchronization characteristics and stability of the 
system are investigated. 

2. Dynamic model 

The double eccentric cam self-synchronous vibrating screen is mainly composed of cams, 
camshafts, cam grooves, screen frame and so on, as shown in Fig. 1. The two motors are 
respectively installed on the motor seats which are fixed on the base. The camshaft is supported 
by a bearing seat installed on the base, the motor shaft is connected with the camshaft, and the 
cam is placed in a rectangular cam groove on the screen frame, which is tangent to the two long 
sides of cam groove, while maintaining a proper gap with the short sides. The screen frame is 
supported by damping springs. In the working process of the vibrating screen, the motor rotors 
running synchronously drive two camshafts to rotate synchronously, respectively, thus driving the 
eccentric cams to rotate around their respective camshafts. According to the geometric constraints 
of the cam mechanism, the rotation of eccentric cam can be converted into the reciprocating linear 
uniform motion of the follower (cam groove). Therefore, the new vibrating screen converts the 
synchronous rotation motion of the two eccentric cams into the vibration of the screen frame 
through the cam mechanism, so as to realize the vibration synchronous transmission of the system.  

 
Fig. 1. A motion diagram of the vibrating screen: 1 – screen frame, 2 – damping spring,  

3 – motor seat 1, 4 – base, 5 – motor seat 2, 6 – spring support, 7 – camshaft 1, 8 – cam 1,  
9 – cam groove 1, 10 – camshaft 2, 11 – cam 2, 12 – cam groove 2 

The friction and contact point are constantly changing during the rotation, so that the direction 
of the resultant force does not always point to the mass center of the screen frame, which result in 
a swing motion. 

The following assumptions were made when establishing the dynamic model: 
(1) The rotation centers of two cams are at the same distance from the mass center 𝐶 and the 

three centers are on a straight line. 
(2) The cam and cam groove are rigid components which are always in full contact [23]. 
(3) The damping of between cam and cam groove is equivalent to the friction coefficient 𝑓. 
(4) The inertial force generated by cam rotation is eliminated by setting the counterweight on 

the camshaft. 
Taking the rotation center o of cam 1 as the coordinate origin, the rectangular coordinate 

system shown in Fig. 2 is established. The screen frame reciprocates in the 𝑥- and 𝑦- directions 
and rotates in the 𝜓- direction, so there are three degrees of freedom in the system. The two cams 
respectively rotate around their own rotation axis, and their positions can be determined by the 
parameters 𝜑ଵ and 𝜑ଶ.  

According to the geometric constraint, the displacement response of the mass center in the 𝑥- 
and 𝑦- directions can be obtained, which relates to the parameters 𝜓, 𝜑ଵ and 𝜑ଶ. The displacement 
response is shown as: 
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𝑥 = 𝑒cosሺ𝛽 + 𝜓ሻ + 12 𝑒ሺsin𝜑ଵ + sin𝜑ଶሻ+ ൜−12 𝑒ሾcosሺ𝜑ଵ − 𝛽ሻ + cosሺ𝜑ଶ − 𝛽ሻሿ + 𝑅𝜓ൠ sinሺ𝛽 + 𝜓ሻ, (1)

𝑦 = 𝑒sinሺ𝛽 + 𝜓ሻ − 12 𝑒ሺcos𝜑ଵ + cos𝜑ଶሻ+ ൜12 𝑒ሾcosሺ𝜑ଵ − 𝛽ሻ + cosሺ𝜑ଶ − 𝛽ሻሿ − 𝑅𝜓ൠ cosሺ𝛽 + 𝜓ሻ, (2)

where 𝛽 is the dip angle of the cam groove in the vertical direction; 𝜓 is angular displacement of 
the screen frame around its mass center in plane 𝑜𝑥𝑦; 𝜑ଵ and 𝜑ଶ are the angular displacements of 
the cams rotation, respectively; 𝑅 is the contour radius of the eccentric cam; 𝑒 is the eccentricity 
of the eccentric cams. 

 
Fig. 2. The dynamic model of the double cam vibration system 

According to the dynamic theory and the physical model, the total kinetic energy 𝑇 of the 
vibrating model is obtained by: 𝑇 = 12𝑚ሺ𝑥ሶ ଶ + 𝑦ሶ ଶሻ + 12 𝐽𝜓ሶ ଶ + 12 𝐽𝜑ଶ, (3)

where 𝑚 (kg) is the mass of the screen frame; 𝐽 (kg·m2) is the rotational inertia of the screen frame 
with respect to its mass center; 𝐽  (kg·m2) is the rotational inertia of the 𝑖-th cam (including 
camshaft and motor shaft), 𝑖 = 1, 2; 𝑞  is the generalized coordinate of the system; 𝑄  is the 
generalized force of the system; ሺ•ሶ ሻ and ሺ•ሷ ሻ denote 𝑑 • 𝑑𝑡⁄  and 𝑑ଶ • 𝑑𝑡ଶ⁄ , respectively. 

Meanwhile, the total potential energy 𝑉 of the vibrating system can be written as: 

𝑉 = 12𝑘௫𝑥ଶ + 12 𝑘௬𝑦ଶ + 12𝑘ట𝜓ଶ, (4)

where 𝑘௫, 𝑘௬ (N/m) are the stiffness coefficients of the damping spring in the 𝑥- and 𝑦-directions, 
respectively; 𝑘ట (N·m/rad) is the stiffness coefficients in the 𝜓-direction. 

Furthermore, the whole dissipated energy 𝐷 of the vibrating model is described as: 

𝐷 = 12𝑓௫𝑥ሶ ଶ + 12𝑓௬𝑦ሶ ଶ + 12𝑓ట𝜓ሶ ଶ + 12𝑓ఝ𝜑ଶ + 12𝑓ሼሾ𝑅 + 𝑒sinሺ𝜑 − 𝛽 − 𝜓ሻሿ𝜑ሶ ሽଶ, (5)

where 𝑓௫ , 𝑓௬  (N·s/m) are the damping coefficient of the screen frame in 𝑥- and 𝑦-directions, 
respectively; 𝑓ట  (N·m·s/rad) is the damping coefficient in 𝜓 -direction; 𝑓  (N·m·s/rad) is the 
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damping coefficient of the 𝑖-th cam in its rotation direction; 𝑓 is the friction coefficient. 
Finally, dynamic equations of the system can be determined by Lagrange equation: 𝑑𝑑𝑡 ൬𝜕𝑇𝜕𝑞ሶ൰ − 𝜕ሺ𝑇 − 𝑉ሻ𝜕𝑞 + 𝜕𝐷𝜕𝑞ሶ = 𝑄 . (6)

Considering the generalized coordinate matrix is 𝑞 = ሾ𝜑ଵ,𝜑ଶ,𝜓ሿ் in the vibrating system, the 
generalized force matrix is established as ൣ𝑄ఝଵ,𝑄ఝଶ,𝑄ట൧் = ൣ𝑇ଵ − 𝑇ଵ,𝑇ଶ − 𝑇ଶ, 0൧், where 𝑇 
and 𝑇  are the electromagnetic torque of the 𝑖-th motor and the friction torque on the 𝑖-th motor 
shaft, respectively. Since 𝜓 has a smaller value than 𝛽, 𝜑ଵ and 𝜑ଶ, the value of 𝜓 can be ignored 
when calculating the trigonometric function of (𝜑 ± 𝜓), (𝜑 − 𝛽 ± 𝜓). When two identical 
motors are running stably, the asymmetry and damping caused by the system can also be ignored. 
Assuming that the stiffness and damping of the damping spring in the 𝑥- and 𝑦-directions are the 
same, which 𝑘௫ = 𝑘௬ = 𝑘ଵ, 𝑓௫ = 𝑓௬ = 𝑓ଵ. After arranging, the final dynamic equations of the 
vibration system can be expressed as: ሾ𝐽 + 𝑚(𝑒 − 𝑅)ଶሿ𝜓ሷ + ൫𝑘ట + 𝑘ଵ𝑅ଶ൯𝜓       = 14 𝑒ଶሾcos(𝜑ଵ − 𝛽) + cos(𝜑ଶ − 𝛽)ሿ{−𝑚[𝜑ሶଵଶsin(𝜑ଵ − 𝛽) + 𝜑ሶ ଶଶsin(𝜑ଶ − 𝛽)]       +𝑘ଵ[2 + sin(𝜑ଵ − 𝛽) + sin(𝜑ଶ − 𝛽)] +𝑓ଵ[𝜑ሶଵcos(𝜑ଵ − 𝛽) + 𝜑ሶ ଶcos(𝜑ଶ − 𝛽)]}, (7)

𝐽ଵ𝜑ሷ ଵ = 𝑇ଵ − 𝑇ଵ − 𝑒ଶ4 cos(𝜑ଵ − 𝛽){𝑚[൫2𝜓ሶ𝜑ሶ ଵ − 𝜑ሶ ଵଶ൯sin(𝜑ଵ − 𝛽)       +൫2𝜓ሶ𝜑ሶ ଶ − 𝜑ሶ ଶଶ൯sin(𝜑ଶ − 𝛽)] + 𝑘ଵ[2 + sin(𝜑ଵ − 𝛽) + sin(𝜑ଶ − 𝛽)]       +𝑓ଵ[൫𝜑ሶ ଵ − 𝜓ሶ൯cos(𝜑ଵ − 𝛽) + ൫𝜑ሶ ଶ − 𝜓ሶ൯cos(𝜑ଶ − 𝛽)]}, (8)

𝐽ଶ𝜑ሷ ଶ = 𝑇ଶ − 𝑇ଶ − 𝑒ଶ4 cos(𝜑ଶ − 𝛽){𝑚[൫𝜑ሶ ଵଶ + 2𝜓ሶ𝜑ሶ ଵ൯sin(𝜑ଵ − 𝛽)       −൫𝜑ሶ ଶଶ − 2𝜓ሶ𝜑ሶ ଶ൯sin(𝜑ଶ − 𝛽)] + 𝑘ଵ[sin(𝜑ଶ − 𝛽) − sin(𝜑ଵ − 𝛽) + 2]       +𝑓ଵൣ൫𝜑ሶ ଶ − 𝜓ሶ൯cos(𝜑ଶ − 𝛽) + ൫𝜑ሶ ଵ − 𝜓ሶ൯cos(𝜑ଵ − 𝛽)൧ൟ, (9)

where Eqs. (1-2, 7-9) constitute the dynamic differential equations of the double cam vibrating 
system. 

3. Synchronization theory 

In light of the literature [24], it should be noted that 𝜑ሶ  with respect to a periodic function of 
time is a slowly varying parameter. Due to the periodic motion of the vibrating system, the velocity 
of two motors also changes periodically. Assigning the least positive period of two motors as 𝑇, 
in which their average velocity over a period of time is approximately equal to a constant, so it 
can be expressed as: 

1𝑇 න 𝜑(𝑡)௧ା బ்
௧ 𝑑𝑡 = costant. (10)

The phase of cam 1 is ahead of the phase 2𝛼 of cam 2, thus: ቄ𝜑ଵ = 𝜑 + 𝛼 = 𝜔𝑡 + 𝛼,𝜑ଶ = 𝜑 − 𝛼 = 𝜔𝑡 − 𝛼. (11)

In order to simplify the calculation process, we have ignored the effect of some nonlinear terms. 
Eq. (7) can be transformed into: 
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[𝐽 + 𝑚(𝑒 − 𝑅)ଶ]𝜓ሷ + ൫𝑘ట + 𝑘ଵ𝑅ଶ൯𝜓 = 𝑘ଵ𝑒ଶcos𝛼cos(𝜑 − 𝛽)       +𝑓ଵ𝜔𝑒ଶcosଶ𝛼cosଶ(𝜑 − 𝛽) + 12 (𝑘ଵ − 𝑚𝜔ଶ)𝑒ଶcosଶ𝛼sin2(𝜑 − 𝛽). (12)

Performing Laplace transform on Eq. (12), the steady displacement response of 𝜓-direction 
can be obtained by: 𝜓 = −𝜆ଶcosଶ𝛼sin2(𝜑 − 𝛽) + 𝜆ଷcos𝛼cos(𝜑 − 𝛽) − 𝜆ଵcosଶ𝛼[1 + cos2(𝜑 − 𝛽)], (13)

where: 

𝜆ଵ = 12 𝑓ଵ𝜔𝑒ଶ𝑘ట + 𝑘ଵ𝑅ଶ − [𝐽 + 𝑚(𝑒 − 𝑅)ଶ]𝜔ଶ ,
𝜆ଶ = 12 (𝑚𝜔ଶ − 𝑘ଵ)𝑒ଶ𝑘ట + 𝑘ଵ𝑅ଶ − [𝐽 + 𝑚(𝑒 − 𝑅)ଶ]𝜔ଶ ,
𝜆ଷ = 𝑘ଵ𝑒ଶ𝑘ట + 𝑘ଵ𝑅ଶ − [𝐽 + 𝑚(𝑒 − 𝑅)ଶ]𝜔ଶ .

 
Substituting Eq. (13) into Eqs. (1-2), the steady responses of displacement in 𝑥 - and 𝑦-direction are obtained. 
In addition to gravity, the vibrating system is only affected by the electromagnetic torque and 

the friction torque which is on the cam shafts. According to the principle of Hamilton: 

𝛿𝐻 + 𝛿 න ൭𝑄
ୀଵ 𝛿𝑞൱ 𝑑𝜑 = 0ଶగ

 . (14)

The Hamiltonian action in a motion cycle is derived as: 

𝐻 = න (𝑇 − 𝑉)𝑑𝜑ଶగ
 = 𝜋 ൜12𝑚𝜔ଶ[(𝑒 − 𝑅)ଶ𝜆ଷଶ + 𝑒ଶ]cosଶ𝛼 − 𝑘ଵ𝑒ଶ + 2𝑇ఝ       −12𝑘ଵ(𝑒ଶ + 𝑅ଶ𝜆ଷଶ)cosଶ𝛼 + 12 𝜆ଷଶ൫𝐽𝜔ଶ − 𝑘ట൯cosଶ𝛼ൠ, (15)

where, 𝑇ఝ is the sum of the rotational kinetic energy of the two eccentric cams, which can be 
regarded as a constant when the motors are running stably.  

Derivative and simplify Eq. (15), then get: 𝜕𝐻𝜕𝛼 = 12𝜋൛−𝑚𝜔ଶ[𝑒ଶ + (𝑒 − 𝑅)ଶ𝜆ଷଶ] + 𝑘ଵ(𝑅ଶ𝜆ଷଶ + 𝑒ଶ) + ൫𝑘ట − 𝐽𝜔ଶ൯𝜆ଷଶൟsin2𝛼. (16)

The generalized force is described as: 

𝑄 = ൫𝑇ଵ − 𝑇ଵ൯ 𝜕𝜑ଵ𝜕𝛼 + ൫𝑇ଶ − 𝑇ଶ൯ 𝜕𝜑ଶ𝜕𝛼 = 𝑇ଵ − 𝑇ଶ + 𝑇ଶ − 𝑇ଵ. (17)

Substituting Eqs. (16) and (17) into Eq. (14), the balance equation can be obtained as: 𝜋2 {−𝑚𝜔ଶ[𝑒ଶ + (𝑒 − 𝑅)ଶ𝜆ଷଶ] + 𝑘ଵ(𝑅ଶ𝜆ଷଶ + 𝑒ଶ) + ൫𝑘ట − 𝐽𝜔ଶ൯𝜆ଷଶ}sin2𝛼       = 2𝜋൫𝑇ଵ − 𝑇ଶ + 𝑇ଶ − 𝑇ଵ൯. (18)
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Considering Eq. (18), the condition for the existence of real solutions is the self-
synchronization condition. In order to ensure the existence of the solution to 2𝛼, the absolute value 
of sin2𝛼 is not allowed to be greater than 1. Thus, the self-synchronization condition is described 
as: −1 ≤ Δ𝑇𝑆 ≤ 1, (19)

where Δ𝑇 = 𝑇ଵ − 𝑇ଶ + 𝑇ଶ − 𝑇ଵ is the residual torque difference of the two motors, and: 

𝑆 = 14 ൛−𝑚𝜔ଶ[𝑒ଶ + (𝑒 − 𝑅)ଶ𝜆ଷଶ] + 𝑘ଵ(𝑅ଶ𝜆ଷଶ + 𝑒ଶ) + ൫𝑘ట − 𝐽𝜔ଶ൯𝜆ଷଶൟ. (20)

The stability condition of the vibration system is analyzed based on three principles, which are 
the stability discrimination of the multivariate function system, the extreme value theory of the 
function and that Hamiltonian action has an extreme value, respectively. In the restraint system, 
the Hamiltonian action of real motion has a minimum value. Therefore, the stability condition of 
the vibration system is expressed as: 𝜕ଶ𝐻𝜕𝛼ଶ = 𝜋൛−𝑚𝜔ଶ[𝑒ଶ + (𝑒 − 𝑅)ଶ𝜆ଷଶ] + 𝑘ଵ(𝑅ଶ𝜆ଷଶ + 𝑒ଶ) + ൫𝑘ట − 𝐽𝜔ଶ൯𝜆ଷଶൟcos2𝛼 > 0, (21)

which is: 4𝜋𝑆cos2𝛼 > 0. (22)

4. Numerical analysis 

In order to verify the correctness of the above derivations, numerical analysis and simulation 
were carried out with Matlab. From Eqs. (21-22), it can be seen that the self-synchronous stable 
state is may determined by these independent parameters: the eccentricity, the radius of eccentric 
cam, the mass of screen frame, the stiffness of springs, the residual torque difference and other 
parameters.  

The estimation error of unknown quantity can be reduced through the understanding of known 
quantity with the controlling variable method, that is, only one of the factors is changed each time, 
while the remaining factors remain unchanged, so as to study the influence of the changed factor 
on things, conduct separate studies, and finally solve the problem comprehensively. Therefore, to 
judge the influence of relevant parameters on the synchronization state more accurately, the 
controlling variable method is used to discuss the influence of the eccentric cam eccentricity 𝑒 
and the residual torque difference ∆𝑇 respectively. 

Table 1. System simulation parameters 
Cams Motors Screen frame Damping springs 𝑒 = 0.002-0.004 (m) 𝜔 = 157 (rad/s) 𝑚 = 126 (kg) 𝑘௫ = 𝑘௬ = 250,000 (N/m) 𝑅 = 0.04 (m) 𝑓ఝ = 0.01 (N⋅m⋅s/rad) 𝐽 = 10 (kg⋅m2) 𝑘ట = 250,000 (N⋅m/rad) 𝑓 = 0.1 𝐽ଵ = 𝐽ଶ = 0.02 (kg⋅m2) 𝛽 = 0.25𝜋 (rad) 𝑓௫ = 𝑓௬ = 1,000 (N⋅s/m) 𝛥𝑇 = 0-5 (N⋅m)  – – 𝑓ట = 1,000 (N⋅m⋅s/rad) 

The accurate description of the movement process can be made by selecting system parameters 
reasonably. Performing numerical simulation analysis according to some system parameters given 
in Table 1. The relationship between the cam eccentricity 𝑒 and the stable phase difference 2𝛼 is 
shown in Fig. 3, considering the residual torque difference ∆𝑇 is equal to 0, 1, 2, 3, 4, 5 [N·m], 
respectively; the relationship between the residual torque difference ∆𝑇  and the stable phase 
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difference 2𝛼 is shown in Fig. 4, when the cam eccentricity 𝑒 is equal to 2, 2.5, 3, 3.5, 4 [mm], 
respectively. 

As shown in Fig. 3, while the value of residual torque difference is constant, the value of stable 
phase difference decreases with the increase of the eccentricity; when the eccentricity is constant, 
the greater the residual torque difference, the larger the stable phase difference; if the eccentricity 
exceeds 11 [mm], the value of the phase difference remains unchanged at 0 [rad]. Therefore, the 
eccentricity should be large enough, otherwise the synchronous state of zero phase difference is 
difficult to achieve; the smaller the residual torque difference, the wider the adjustable range of 
the eccentricity. 

As demonstrated in Fig. 4, when the eccentricity is determined, the stable phase difference 
increases with the increase of the residual torque difference. The value of the stable phase 
difference gradually decreases from 0 [rad] to –1.5 [rad]. If the residual torque difference 
continues to increase, the self-synchronization conditions cannot be satisfied, so that the 
synchronous state cannot be achieved; the smaller the eccentricity, the greater the influence of the 
residual torque difference on the synchronous state. In order to satisfy the self-synchronization 
and stability conditions, the residual torque difference must be small enough. Additionally, a 
reasonable adjustment of the eccentricity can make the phase difference meet the actual needs. 

As shown in Fig. 3, once the eccentricity exceeds a certain value, the phase difference tends 
to remain constant and the increase of the residual torque difference will not cause the phase 
difference to change. As shown in Fig. 4, the smaller the eccentricity, the faster the curve falls. 
Therefore, it is not difficult to find that the eccentricity has a greater influence on the stable phase 
difference. The eccentricity should be large enough, otherwise it is difficult to adjust the stable 
phase difference. In engineering applications, it is better to force the stable phase difference to be 
close to the ideal value firstly by adjusting the eccentricity, and then regulating the residual torque 
difference to make the stable phase difference achieve the ideal value.  

 
Fig. 3. The relationship between the eccentricity 𝑒  

and the stable phase difference 2𝛼 

 
Fig. 4. The relationship between the residual torque 

difference ∆𝑇 and the stable phase difference 2𝛼 

5. Simulation analysis  

Runge-Kutta algorithm ode45 and adaptive step size control are used for simulation, the 
schematic diagram of the flow chart of the simulation model, as shown in the Fig. 5. 

Assuming relevant simulation parameters according to Table 1, where 𝑒 = 3 [mm], 𝛽 = 0.25𝜋 
[rad], and selecting two same motors (∆𝑇 ≈ 0), the numerical analysis results show that the value 
of the stable phase difference is near 0 [rad]. The synchronous motion under various conditions 
was simulated to verify the correctness of the theoretical analysis. 
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Fig. 5. Schematic diagram of the simulation 

5.1. Two rotors rotate counterclockwise simultaneously with same initial phase 0 

The simulation results are shown in Fig. 6. The stable synchronous state of the system is 
implemented around 0.9 s. From Figs. 6(a, b), it can be seen that the displacements of the mass 
center in 𝑥- and 𝑦-directions are identical where the maximum displacement is 4.2 [mm]. Thus, 
the vibration trajectory is a straight line, and the centroid amplitude is equal to 3.0 [mm] which is 
the same as the eccentricity. As shown in Fig. 6(c), the maximum angular displacement in the 
stable synchronous state is 2.5×10-5 [rad], which indicates that the impact of swing can be 
neglected; As demonstrated in Fig. 6(d), the value of the stable phase difference is stabilized to 
0.04 [rad] (= 2.29°); As is shown in Fig. 6(e) the steady velocities of motors 𝜔  are close to 
157 [rad/s]; As revealed in Fig. 6(f), two rotors are with similar residual torque. The dynamics 
characteristics of the system obtained by simulations are in line with the numerical analysis results.  

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 6. Simulation results of counterclockwise rotation 
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5.2. Two rotors rotate clockwise simultaneously with same initial phase 0 

With other simulation parameters identical, the simulation results of rotating clockwise are 
shown in Fig. 7. The simulation results of displacements are the same as those in section 5.1, as 
shown in Figs. 7(a, b, c, f). As displayed in Fig. 7(d), the value of the stable phase difference is 
stabilized to 0.04 [rad] (= 2.29°), which is identical to that of counterclockwise rotation; The rotors 
rotate counterclockwise, and the steady velocities of motors are nearly 157 [rad/s] as shown in 
Fig. 7(e). The process of synchronous motion is identical to that of clockwise rotation. Therefore, 
the rotation direction of the rotors has no effect on the synchronous state. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 7. Simulation results of clockwise rotation  

5.3. Two rotors rotate simultaneously with different initial phases 

The two rotors are not necessarily in an ideal state with the same initial phase. Other simulation 
parameters were kept unchanged, the value of the initial phase difference Δ𝜑 was selected to be 𝜋 4⁄ , 𝜋 2⁄ , 3𝜋 4⁄ , 𝜋[rad], respectively, where the initial phase of rotor 2 is 0 [rad].  

Considering Δ𝜑 = 𝜋 4⁄ , the simulation results are shown in Fig. 8(a, b, c, d, e). The 
synchronous state is implemented at the same time with different initial. Displayed in Fig. 8(a, b), 
the maximum displacement of the mass center in 𝑥-direction is 4.1 [mm], so is that in 𝑦-direction. 
Owing to the different initial phases, there was a certain skew of the screen frame before operating, 
which resulted in the minimum displacements in 𝑥- and 𝑦-directions are neither 0 [mm]. It is not 
difficult to recognize that the amplitude of the mass center is 2.89 [mm]. As shown in Fig. 8(e), 
the stable phase difference with the value of 1.3×10-2 [rad]. 

Comparing Fig. 8(f) with Fig. 6-7(e), the larger the initial phase difference, the greater the 
value of the stable phase difference. Thence, the initial phase difference should be adjusted 
reasonably to control the phase difference with the variation range (0.04, 0.34) [rad]. 

5.4. Two rotors start non-simultaneously with different initial phases 

In order to research the influence of the different starting states on the synchronization further, 
the rotor 1 was operated when the rotor 2 had run for 5 seconds. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 8. Simulation results of different initial phases 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 9. Simulation results of starting at different time 

As shown in Figs. 9(a, b, c), the steady displacements of the mass center in the three directions 𝑥, 𝑦, 𝜓 are identical to those in the condition of simultaneous startup, respectively. From Fig. 9(d), 
it can be seen that the stable phase difference is –0.03 [rad] (= 1.72°), which matches the numerical 
analysis results. As displayed in Figs. 9(e, f), the steady velocities of motors are around 157 [rad/s]. 
Once the rotors rotated at the same speed with similar electromagnetic torque, the stable self-
synchronous state of the vibration system can be implemented. 

6. Conclusions 

On the base of the theoretical research and numerical analysis, the following conclusions are 
obtained. 
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1) A double eccentric cam self-synchronization vibration system is proposed. Lagrange 
equation is used to derive the dynamic differential equation of the system, steady state solution 
has been obtained. The synchronization condition and stability condition have been investigated, 
which are −1 ≤ Δ𝑇 𝑆⁄ ≤ 1 and 4𝜋𝑆cos2𝛼 > 0, respectively. 

2) The self-synchronous motion with stable phase difference can be implemented, where the 
value of the stable phase difference varies in the range of (–1.5, 0) [rad] by adjusting the 
eccentricity of the cams and the residual torque difference of the motors. The influence of the 
system parameters on synchronization is mainly manifested as the influence on the stable phase 
difference, where the eccentricity has a larger effect on the stable phase difference. 

3) The stable synchronous state of the vibrating system can be implemented, no matter the two 
identical motors with different initial phases start simultaneously or non-simultaneously. 
Moreover, the stable phase difference can be regulated in the variation range of (0.04, 0.34) [rad] 
for different initial phases, where the motion states are consistent. The rotation direction of the 
motors does not affect the synchronous state of the system. The angular displacement of the 
vibrating screen is extremely small; thus, the impact of swing can be neglected. In addition, the 
linear reciprocating motion of the vibrating screen can be achieved, and the amplitude can be 
designed since it is identical to the eccentricity of the eccentric cams. 

4) The validity of the used theory method and the correctness of the obtained results for the 
self-synchronization of double cam vibration system, are verified to be feasible by the analyses of 
the theories, numerical qualitative analyses and simulations. 
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