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Abstract. In this paper, relationships between conditional variance statistic and the center 
frequency as well as the bandwidth of the filter are researched, and we find that conditional 
variance statistic is suitable for selecting the center frequency of the filter, but undesirable for 
selecting the bandwidth. Meanwhile, considering that the traditional iterative way to select the 
optimal resonance frequency band will be affected by the step size, we choose to fix the bandwidth 
at five times fault characteristic frequency, then Whale Optimization Algorithm (WOA) is utilized 
to select the optimal center frequency so as to give consideration to both computing efficiency and 
accuracy of the selection of center frequency. To further suppress the in-band noise, the filtered 
signal is analyzed by high order energy operator, and the optimal two energy operators are chosen 
based on Fault Characteristic Index (FCI) for cross-correlation spectrum analysis. Simulation and 
experimental results indicate that the proposed algorithm can extract the fault feature of rolling 
bearings under strong background noise effectively. 
Keywords: fault diagnosis, conditional variance statistic, cross-correlation spectrum, rolling 
bearing. 

1. Introduction 

Rolling bearings are widely used as one of the important parts of rotating machinery, and their 
operating conditions directly affect the performance of the whole machine. Therefore, condition 
monitoring and fault diagnosis for rolling bearings are particularly important. Due to the 
complexity of mechanical equipment and its harsh operating environment, bearing fault signals 
are often submerged in strong background noise, and the measured vibration signals are usually 
non-stationary and nonlinear, which greatly increase the difficulty of fault feature extraction of 
bearing vibration signals. 

In order to extract the fault feature of rolling bearings under strong background noise, 
researchers have proposed many effective methods, such as wavelet transform [1], empirical mode 
decomposition (EMD) [2], variational mode decomposition (VMD) [3], blind deconvolution 
algorithm [4-7] and so on. However, strong background noise will interfere with the selection of 
wavelet basis, which directly affects the effectiveness of wavelet transform; EMD has the 
problems of end effect and mode mixing, and the algorithm lacks rigorous mathematical  
reasoning; the performance of VMD depends on the selection of decomposition number and 
penalty parameter seriously; minimum entropy deconvolution (MED), which aims to restore 
single dominant pulse, is susceptible to random impulse noise; what’s more, the performance of 
blind deconvolution algorithm based on the cyclostationarity of fault signal, such as maximum 
correlated kurtosis deconvolution (MCKD), multipoint optimal minimum entropy deconvolution 
(MOMEDA) and maximum second-order cyclostationarity blind deconvolution (CYCBD) relies 
on the selection of fault period, which is usually difficult due to speed fluctuations or rolling 
element slippage. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2020.21698&domain=pdf&date_stamp=2021-02-04
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Envelope analysis is the most mature method in bearings’ fault diagnosis [8], its performance 
depends on the correct selection of resonance frequency band. To solve the problem, Antoni 
proposed Fast Kurtogram to select the resonance frequency band based on the maximum kurtosis 
[9]. However, the center frequency and bandwidth selected by Fast Kurtogram are not accurate 
enough, which results in the loss of some useful information, especially under strong 
non-Gaussian noise, Fast Kurtogram usually fails to extract the fault feature [10]. To solve these 
problems, Xu et al. [11] constructed a set of filters with variable bandwidth by empirical wavelet 
transform and obtained a series of empirical modal components, then the optimal empirical mode 
component was selected according to the maximum kurtosis, simulation and experimental results 
verified the effectiveness of the method. Based on the cyclostationarity of bearing fault signal, 
Barszcz et al. [12] proposed protrugram, which fixed the bandwidth and selected the best filter 
parameters with the maximum squared envelope spectrum kurtosis. However, this method ignores 
the impulsiveness of the bearing fault signal, which may influence its performance. To alleviate 
this problem, Antoni took into account the impulsiveness of the fault signal in the time domain 
and the cyclostationarity in the frequency domain, then proposed infogram [13]. This algorithm 
calculated the negentropy of squared envelope signal and squared envelope spectrum, then their 
mean value was used as the objective function to select the optimal frequency band, simulation 
and experimental results verified its effectiveness. However, under strong impulsive noise, the 
negentropy of the squared envelope signal may be much larger than that of the squared envelope 
spectrum, which makes the selected filter band favors impulsiveness more than cyclostationarity 
[14]. Recently, Gini index which is a measure of sparsity has been used to extract the fault feature 
of rolling bearings. Miao et al. [15] found that Gini index is more robust to random impulse noise 
than kurtosis, and used it to select the resonance frequency band. Moreover, he further compared 
Gini index with kurtosis, results showed that although Gini index is more robust to impulsive noise 
than kurtosis, its robustness to random white noise is weaker [16]. 

Justyna et al. [14] performed a short-time Fourier transform on signal and selected the 
resonance frequency band based on the maximum conditional variance statistic, results showed 
the feasibility of this algorithm. Then he further compared conditional variance statistic with 
kurtosis, Gini index, smoothness index and stability index (Alpha selector), results indicated that 
if the fault signal didn’t contain impulsive noise, all indicators could select the resonant frequency 
band appropriately, but the method based on the conditional variance statistic performed best; if 
the fault signal contained strong impulsive noise, only the method based on conditional variance 
statistic could accurately select the resonant frequency band of the signal [17]. However, the 
algorithm proposed by Justyna also has the following disadvantages: if the step size is too short, 
it will affect the calculation efficiency; if the step size is too long, the precise center frequency 
cannot be selected. 

Aiming at the problem that it is difficult to extract the fault feature of rolling bearings under 
strong background noise, and considering the strong robustness of conditional variance statistic, 
we propose to optimize the parameters of the filter by conditional variance statistic. What’s more, 
this paper further researches the effect of bandwidth and center frequency on conditional variance 
statistic, results show that it can be used as the objective function to select the center frequency 
but is unreliable to select bandwidth. Fortunately, Barszcz et al. [12] pointed out that bandwidth 
should be more than three times of fault characteristic frequency. Duan et al. [18] further pointed 
out that when the bandwidth is 𝑛 times of fault characteristic frequency, it may also fail to extract 𝑛 fault related harmonics in the squared envelope spectrum, and proposed that the bandwidth 
should be slightly greater than four times of fault characteristic frequency. Based on the above 
considerations, we fix the bandwidth at five times fault characteristic frequency, and choose 
conditional variance statistic as the objective function, then WOA is utilized to select the optimal 
center frequency quickly; in order to further suppress the in-band noise, the filtered signal is 
analyzed by high-order energy operator, and the optimal two energy operators are selected based 
on FCI for cross-correlation spectrum analysis; finally, the fault feature is extracted by fast Fourier 
transform. 
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2. Basic principles 

In this section, conditional variance statistic is researched, and results indicate that it can be 
used as the objective function for selecting the center frequency of the filter, but is not suitable for 
selecting the bandwidth. Hence, we fix the bandwidth at five times fault characteristic frequency, 
and WOA is utilized to quickly select the appropriate center frequency; then the filtered signal is 
analyzed by high-order energy operator analysis; finally, the optimal two energy operators are 
selected based on FCI for cross-correlation spectrum analysis. 

2.1. Selection of the optimal filtering frequency band 

2.1.1. Conditional variance statistic 

Conditional variance statistic is derived from the statistical phenomenon commonly known as 
the 20/60/20 rule. Suppose a set of data 𝑌 conforms to a Gaussian random distribution, with mean 𝛼 and standard deviation 𝜎. Φఈ,ఙ  denotes its distribution function. when 0 < 𝑞 < 0.5, we can 
obtain left partitioning 𝐿, right partitioning 𝑅 and middle partitioning 𝑀 of 𝑌 using Eq. (1): 

⎩⎨
⎧𝐿 = ൫−∞,𝜙,ఙିଵሺ𝑞ሻ൧,𝑅 = ൣ𝜙,ఙିଵሺ1 − 𝑞ሻ,∞൯,𝑀 = ቀ𝜙,ఙିଵሺ𝑞ሻ,𝜙,ఙିଵሺ1 − 𝑞ሻቁ , (1)

where 𝜙,ఙିଵሺ𝑞ሻ denotes the inverse of 𝜙,ఙ , if 𝑌 conforms to normality assumption and 𝑞 equals 
to 0.2, we get that: 𝜎ଶ = 𝜎ோଶ = 𝜎ெଶ , (2)

where 𝜎ଶ = 𝑉𝑎𝑟(𝑌|𝑌 ∈ 𝐴) is the conditional variance of 𝑌 on set 𝐴, and Eq. (2) is only satisfied 
when 𝑞 equals to 0.2 [19]. 

Due to the fact that 𝑞 = 0.2 is the unique value to satisfy Eq. (2), a goodness-of-fit test statistic 
can be constructed by it. In other words, we can determine whether the sample belongs to Gaussian 
distribution by the comparation on the value of conditional variance and the conditional central 
variance [14]. On this basis, literature [20] proposed a test statistic to measure the degree of heavy 
tail of the data. Given a set of data 𝑌 = (𝑌ଵ, … ,𝑌), there is a statistical test: 

𝑁 = 1𝜌 ቆ𝜎ොଶ − 𝜎ොெଶ𝜎ොଶ + 𝜎ොோଶ − 𝜎ොெଶ𝜎ොଶ ቇ√𝑛, (3)

where 𝑞  equals to 0.2, 𝜌 ∈ 𝑅  is a constant, 𝑛  is the length of the signal, 𝜎ොଶ  denotes sample 
variance and 𝜎ොଶ is the conditional sample variance on set 𝐴. 

Literature [20] pointed out that the asymptotic distribution of 𝑁 is standard normal if the 
sample is independent and identically distributed. Moreover, if the sample belongs to (symmetric) 
heavy tailed distribution, the values of statistic 𝑁 should be larger than 0 because of the high 
values of conditional tail variances on sets 𝐿 and 𝑅. Hence, 𝑁 could be utilized to measure the 
fatness of tail, and the bigger the value of 𝑁, the fatter the tails [14]. 

For seven quantile conditioning subsets, the (unique) ratio guaranteeing conditional variance 
equality is equal to 0:004/0:058/0:246/0:384/0:246/0:058/0:004, it can be expressed as: 
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⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝐴ଵ = ൫−∞,𝜙,ఙିଵ(0.004)൧,𝐴ଶ = ൫𝜙,ఙିଵ(0.004),𝜙,ఙିଵ(0.062)൧,𝐴ଷ = ൫𝜙,ఙିଵ(0.062),𝜙,ఙିଵ(0.308)൧,𝐴ସ = ൫𝜙,ఙିଵ(0.308),𝜙,ఙିଵ(0.692)൧,𝐴ହ = ൫𝜙,ఙିଵ(0.692),𝜙,ఙିଵ(0.938)൧,𝐴 = ൫𝜙,ఙିଵ(0.938),𝜙,ఙିଵ(0.996)൧,𝐴 = ൫𝜙,ఙିଵ(0.996),∞൯,

 (4)

𝜎భ = 𝜎మ = 𝜎య = 𝜎ర = 𝜎ఱ = 𝜎ల = 𝜎ళ . (5)

Considering that extreme sample tail sets estimators might be related to noise components, 
only choose to construct test statistics with sample conditional variance of set 𝐴ଷ, 𝐴ସ and 𝐴ହ, 
which can be expressed as [14]: 

𝑁ଶ = ቆ𝜎ොయଶ − 𝜎ොరଶ𝜎ොଶ + 𝜎ොఱଶ − 𝜎ොరଶ𝜎ොଶ ቇଶ √𝑛, (6)

where 𝜎ොଶ is the sample variance and 𝜎ොଶ is the conditional sample variance on 𝐴, 𝑛 is the length 
of the signal. In literature [14], Justyna used N2 to measure the impact of the non-extreme  
(trimmed) tail variance on the central part of the distribution and squared the variance sum in 
Eq. (6) to get more accurate cluster split. 

Justyna selected the resonant frequency band of the signal by 𝑁ଶ [14], which can be explained 
as follow: when a faulty bearing is operating, it will produce resonance of the system. If the 
selected filter frequency band happens to be the resonant frequency band of the system, the filtered 
signal will definitely behave with heavy tail distribution, the value of 𝑁ଶ will be larger; else, the 
filtered signal will be closer to the Gaussian distribution and 𝑁ଶ will be closer to 0. 

However, our research find that 𝑁ଶ can be used as an objective function for selecting the center 
frequency of the filter, but it is not suitable for selecting the bandwidth. To prove these findings, 
this paper constructs a faulty simulation signal as Eq. (7): 

⎩⎪⎪⎨
⎪⎪⎧𝑥ଵ(𝑡) =  𝐴ேୀଵ 𝑠(𝑡 − 𝑖𝑇 − 𝑡) + 𝐵(𝑡) + 𝑛(𝑡) + 𝑚(𝑡),𝐴 = 4cos ቀ2𝜋𝑓𝑡 + 𝜋2ቁ + 0.5,𝐵(𝑡) = 1.2cos ቀ2𝜋𝑓ଵ𝑡 + 𝜋2ቁ + 0.9cos(2𝜋𝑓ଶ𝑡),𝑠(𝑡) = 𝑒ିଶగ௧sin(2𝜋𝑓𝑡),

 (7)

where, 𝑓 = 42 Hz represents rotating frequency, 𝐴 denotes the amplitude modulation with the 
cycle of 1/𝑓, 𝑓 = 3200 Hz is the natural frequency of the system and 𝑟 = 0.05 is the damping 
coefficient. 𝑡 = 0.01𝑇-0.02𝑇 denotes the delay caused by the slippage of rolling element in 𝑖th 
cycle. 𝑇 = 1/185 s represents the period during which the fault occurs, which means the fault 
characteristic frequency is 185 Hz. The harmonic 𝐵(𝑡) is applied to simulate the interference 
components and the value of 𝑓ଵ and 𝑓ଶ is 80 Hz and 100 Hz respectively. 𝑚(𝑡) represents random 
impulsive noise, 𝑛(𝑡)  represents Gaussian noise. The signal-to-noise ratio of this signal is  
–8.18 dB if no white noise is added, and the ratio is –14.4 dB after adding white noise. The 
sampling frequency is 32768 Hz and the sampling time is 1 s. 

In order to prove that 𝑁ଶ  is suitable for selecting the center frequency of the filter, the 
bandwidth is fixed at five times the fault characteristic frequency, and the value of 𝑁ଶ  under 
different center frequencies are calculated, the relationship between center frequency and 𝑁ଶ is 
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shown in Fig. 1. From which we have conclusion that 𝑁ଶ shows a trend of increasing first and 
then decreasing, and reaches the maximum when the center frequency is selected as 3200 Hz. At 
the same time, when the selected center frequency is less than 3200 Hz, as it increases, the filtered 
signal contains more useful information, which results in the better performance of envelope 
analysis; while when it is greater than 3200 Hz, with the increasing of center frequency, the useful 
information contained in the filtered signal decreases, so the effect of fault feature extraction 
deteriorates gradually. Therefore, the relationship between 𝑁ଶ and center frequency is consistent 
with the theoretical analysis, which indicates 𝑁ଶ is suitable for selecting the center frequency. 

 
Fig. 1. Curve of relationship between  

center frequency and 𝑁ଶ 

 
Fig. 2. The curve of the relationship  

between 𝑁ଶ and bandwidth 

To explore the relationship between bandwidth and 𝑁ଶ, we fix the center frequency at 3200 Hz, 
and the bandwidth is selected between three times and eleven times of fault characteristic 
frequency, which is [555, 2035]. The corresponding curve of them is shown in Fig. 2, Where 𝑁ଶ 
reaches the maximum when the bandwidth is 680 Hz, the minimum when the bandwidth is 980 Hz. 

 
a) 

 
b) 

Fig. 3. The squared envelope spectrum of the filtered signal at different bandwidth:  
a) the bandwidth 980 Hz, b) the bandwidth 680 Hz 

In order to prove that 𝑁ଶ is unreliable for selecting the bandwidth, two band-pass filters with 
a center frequency of 3200 Hz and bandwidths of 980 Hz and 680 Hz are designed respectively to 
filter the simulation signal and perform envelope demodulation. Fig. 3(a) is the squared envelope 
spectrum of the filtered signal at a bandwidth of 980 Hz, where fault characteristic frequency 
185 Hz and its harmonics 370 Hz, 555 Hz and 740 Hz are clearly visible, and one of its harmonics 
925 Hz can even been identified faintly. Fig. 3(b) is the squared envelope spectrum of the filtered 
signal when the bandwidth is 680 Hz, where only the fault characteristic frequency and two of its 
harmonics 370 Hz and 555 Hz can be identified. Comparing Fig. 3(a) with Fig. 3(b), the squared 
envelope spectrum of the filtered signal with the bandwidth of 980 Hz performs better. Therefore, 𝑁ଶ is not appropriate for selecting the bandwidth. 

From the above analyses, we come to the conclusion that 𝑁ଶ is suitable for selecting the center 
frequency of the filter, but is unreliable for selecting the bandwidth. Hence, in this paper, the 
bandwidth is fixed at five times the fault characteristic frequency, and 𝑁ଶ is utilized for selecting 
the optimal center frequency. 



RESEARCH ON FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON CONDITIONAL VARIANCE STATISTIC AND CROSS-CORRELATION SPECTRUM.  
BAOYU HUANG, YONGXIANG ZHANG, DANCHEN ZHU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 145 

2.1.2. Whale optimization algorithm 

Whale optimization algorithm [21] inspired by humpback whale hunting behavior is a 
meta-heuristic optimization algorithm, and its mathematical model can be expressed as the 
following three steps [21]: 

1) Encircling prey. 
Humpback whales can recognize the location of prey and encircle them, and this behavior can 

be represented by the following formulas: ൜𝐷 = |𝐶𝑋∗(𝑡) − 𝑋(𝑡)|,𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴𝐷, (8)

where 𝑡 indicates the current iteration, 𝑋∗ is the position vector of the best solution obtained so 
far, 𝑋 is the position vector, |∙| is the absolute value, and ·stands for dot product. To obtain the 
optimal solution, the position of the whale needs to be updated according to the following formula 
during each iteration: ቄ𝐴 = 2𝑎𝑟 − 𝑎,𝐶 = 2𝑟,  (9)

where 𝑎 linearly from 2 to 0 during the iterations and 𝑟 is selected randomly between 0 and 1. 
2) Bubble-net attacking method. 
The bubble-net attack method is a unique attack method for humpback whales. Two methods 

are designed to mathematically model its behavior. 
The first method is shrinking encircling mechanism, which can be realized by reducing the 

value of 𝑎 in Eq. (9). The fluctuation range of 𝐴 is determined by the value of 𝑎. Here we set 𝐴 as 
random values in [–1, 1], then if 0 ≤ 𝐴 ≤ 1, whales will attack towards the prey. 

The second approach is called spiral updating position, which is utilized to mimic the 
helix-shaped movement of whales based on the position of the whale and prey. The formula can 
be represented as follows: 𝑋(𝑡 + 1) = 𝐷′𝑒cos(2𝜋𝑙) + 𝑋′(𝑡), (10)

where, 𝐷′ = |𝑋∗(𝑡) − 𝑋(𝑡)|  denotes the distance between the 𝑖 th whale and its prey, 𝑏  is a 
constant utilized to simulate the shape of the logarithmic spiral, 𝑙 is selected randomly between  
–1 and 1. 

To model the bubble-net attack method, assuming that the humpback whale has a 50 % 
probability of choosing a method to update its position, the following modeling can be performed: 𝑋(𝑡 + 1) = ൜𝑋∗(𝑡) − 𝐴𝐷,       0 ≤ 𝑝 < 0.5,𝐷ᇱ𝑒cos(2𝜋𝑙) + 𝑋∗(𝑡),   0.5 ≤ 𝑝 ≤ 1, (11)

where 𝑝 is a random number between 0 and 1. 
3) Search for prey. 
The same approach based on the variation of the 𝐴 vector can be utilized to search for prey, if |𝐴| ≥ 1, the search agent will be forced to move far away from a reference whale. This allows the 

WOA algorithm to perform a global search. The mathematical model is as follows: ൜𝐷 = |𝐶𝑋ௗ(𝑡) − 𝑋(𝑡)|,𝑋(𝑡 + 1) = 𝑋ௗ(𝑡) − 𝐴𝐷, (12)

where, 𝑋ௗ indicates the random position vector selected from the current population. 
According to the above analyses, The WOA algorithm can be illustrated as follows [15]:  
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Step 1: Initialize the whales’ population 𝑋  (𝑖 = 1, 2,..., 𝑛). 
Step 2: Initialize 𝑎, 𝐴, 𝐶, 𝑙 and 𝑝.  
Step 3: Calculate the fitness of each search agent. 𝑋∗ is the best search agent;  
Step 4: When 𝑝 < 0.5, if |𝐴| < 1, update the current population position with Eq. (8), else, 

update the current population position with Eq. (12); when 0.5 < 𝑝 < 1, use Eq. (10) to update the 
position of the current population; 

Step 5: Update 𝑎, 𝐴 and 𝐶;  
Step 6: Calculate the fitness of each search agent.  
Step 7: Update the value of 𝑋∗.  
Step 8: Determine whether the current iteration number 𝑡 < maximum number of iteration, if 

yes, repeat Steps 4 to 7. Else, return to 𝑋∗. 
2.1.3. Using WOA to optimize filter center frequency 

Considering the strong robustness of 𝑁ଶ and the powerful optimization ability of WOA, this 
paper fixes the bandwidth at five times the fault characteristic frequency, then uses WOA to 
quickly select the optimal center frequency 𝑋∗, and 𝑁ଶ is used as the objective function of WOA. 

2.2. Cross-correlation spectrum analysis 

Due to the fact that there still contains some noise interference in the filtered signal, it is 
necessary to further suppress the in-band noise. Klausen [22] pointed out that cross-correlation 
analysis could enhance the same frequency components in two signals and suppress uncorrelated 
components, so as to achieve the goal of removing random noise. 

Considering the advantages of enhancing the impact component of signal and easy calculation, 
higher order energy operator [23] is often used to extract the fault feature of rolling bearings. 
Therefore, based on literature [22], we propose to utilize the optimal two energy operators of the 
filtered signal for cross-correlation spectrum analysis. The choice of the energy operator affects 
the extraction of fault features, so this paper constructs FCI to select the optimal two energy 
operators for cross-correlation spectrum analysis, the expression is as follows: 

𝐹𝐶𝐼 = 𝑠𝑢𝑚(𝑚ଶ(𝑘 ∗ 𝑓𝑎𝑢𝑙𝑡) ∗ 𝑘ଶ)𝑠𝑢𝑚൫𝑚ଶ(1:𝐾 ∗ 𝑓𝑎𝑢𝑙𝑡)൯ − 𝑠𝑢𝑚൫𝑚ଶ(𝑘 ∗ 𝑓𝑎𝑢𝑙𝑡)൯, (13)

where, 𝑚 represents the amplitude of the squared envelope spectrum, 𝑘 represents the order of the 
fault feature, and 𝑘 = (1, 2,..., 𝐾), 𝐾 takes 3, 𝑓𝑎𝑢𝑙𝑡 represents fault feature frequency. FCI can be 
understood as the ratio of the energy of fault characteristic frequency in the squared envelope 
spectrum to the rest energy within the spectrum range. Therefore, the larger the FCI is, the higher 
the energy proportion corresponding to fault characteristic frequency will be, and the better the 
fault feature extraction effect will be. Note that the energy of each order of fault characteristic 
frequency is multiplied by 𝑘ଶ, this is because the higher order of fault characteristic frequencies 
are more difficult to detect, so a greater weight is given. 

At the same time, for discrete signals, the higher order energy operator can be calculated  
as [23]: 𝐸𝑂ሾ𝑥(𝑛)ሿ = 𝑥(𝑛)𝑥(𝑛 + 𝑘 − 2) − 𝑥(𝑛 − 1)𝑥(𝑛 + 𝑘 − 1), (14)

where, 𝑘 is the order of the energy operator. Considering that the higher order energy operator 
will increase the high frequency noise in the signal while enhancing the fault impact, this paper 
sets the maximum order to 10. 

According to FCI, the optimal two energy operators are selected and expressed as 𝐸𝑂ଵሾ𝑥(𝑛)ሿ 
and 𝐸𝑂ଶሾ𝑥(𝑛)ሿ respectively. Zero-average them as follows: 
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൜𝐸𝑂ଵ௭ሾ𝑥(𝑛)ሿ = 𝐸𝑂ଵ ሾ𝑥(𝑛)ሿ − 𝑚𝑒𝑎𝑛ሼ𝐸𝑂ଵ ሾ𝑥(𝑛)ሿሽ,𝐸𝑂ଶ௭ሾ𝑥(𝑛)ሿ = 𝐸𝑂ଶ ሾ𝑥(𝑛)ሿ − 𝑚𝑒𝑎𝑛ሼ𝐸𝑂ଶ ሾ𝑥(𝑛)ሿሽ. (15)

Therefore, the cross-correlation calculation and normalization of two order energy operators 
can be obtained: 

𝑅ாைೖభாைೖమ(𝑚) = ⎩⎨
⎧1𝐿  𝐸𝑂ଵ௭ൣ𝑥(𝑛 + 𝑚)𝐸𝑂෨ଶ௭𝑥(𝑛)൧, 𝑚 ≥ 0,ିିଵ

ୀ𝑅෨ாைೖభாைೖమ(−𝑚),       𝑚 < 0,  (16)

where, 𝐿 represents the length of signal. 

2.3. The principle of the proposed algorithm based on conditional variance statistic and 
cross-correlation spectrum 

Considering that conditional variance statistic can be used as the objective function for 
selecting the center frequency of the filter, but not bandwidth, we choose to fix the bandwidth at 
five times the fault characteristic frequency, and use WOA to select the optimal center frequency 
quickly. To further suppress in-band noise, cross-correlation analysis based on higher order energy 
operator is utilized. In order to better display the proposed algorithm, the flowchart is shown in 
Fig. 4.  

 
Fig. 4. The flowchart of the proposed algorithm 

3. Simulation verification  

To verify the effectiveness of the proposed algorithm for extracting the fault feature, this 
section constructs a simulation signal under strong background noise, where repetitive transients 
and harmonic components are the same as those in for Eq. (7). The signal-to-noise ratio of the 
signal is –8.2 dB if no white noise is added, and the ratio is –15.2 dB after adding white noise. 

Fig. 5 are the time domain waveform of the simulation signal and its squared envelope 
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spectrum. The envelope spectrum is obtained by performing Hilbert transform and FFT on the 
signal directly. Disturbed by strong background noise, repetitive transients related to the local 
damage can hardly be observed in the time domain waveform and only fault characteristic 
frequency 185 Hz along with one of its harmonics 370 Hz are able to be observed in the envelope 
spectrum. 

 
a) 

 
b) 

Fig. 5. Simulation signal: a) time domain waveform; b) squared envelope spectrum of a) 

 
Fig. 6. Time domain waveform of the filtered signal 

 
a) 

 
b) 

Fig. 7. Results of the proposed method: a) the curve of FCI; b) cross-correlation spectrum 

Next, the proposed algorithm is applied to the fault simulation signal. The fixed bandwidth is 
five times of fault characteristic frequency, namely 925 Hz; the optimal center frequency selected 
by whale optimization algorithm is 3270 Hz, which is basically consistent with the actual center 
frequency of 3200 Hz. Fig. 6 is the time domain waveform of the filtered signal, where background 
noise is significantly suppressed. Further, the filtered signal is analyzed by higher order energy 
operator. Fig. 7(a) shows the relationship between the order of energy operator and FCI, from 
which the optimal two energy operators with the largest FCI are selected for cross-correlation 
spectrum analysis, namely the fifth and ninth order; Fig. 7(b) is the cross-correlation spectrum, 
where noise components are obviously suppressed, fault characteristic frequency 185 Hz and its 
harmonics 370 Hz and 555 Hz are prominent, what’s more, the sidebands 101 Hz, 269 Hz, 412 Hz 
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and 454 Hz which are modulated by rotating frequency can be observed too. Compared with 
Fig. 5(b), the proposed algorithm performs better. 

In order to highlight the superiority of the proposed method, now we use Fast Kurtogram, 
EMD and Fast-SC [24] to deal with the simulation signal. 

 

a) 

 

b) 
Fig. 8. Results of fast kurtogram: a) the paving of fast kurtogram;  

b) the squared envelope spectrum of the signal filtered by fast kurtogram 

Fig. 8 are the results of Fast Kurtogram. Due to the interference of strong impulsive noise, the 
optimal center frequency determined by Fast Kurtogram is 1024 Hz, which is inconsistent with 
the actual center frequency, and the selected bandwidth is 682.7 Hz; the squared envelope 
spectrum of the selected frequency band showed in Fig. 8(b) also contains no useful information. 
Comparing Fig. 7(b) with Fig. 8(b), the proposed algorithm performs better. 

Since the useful components in the original signal are mostly concentrated in the first few 
intrinsic mode functions (IMF) obtained by EMD, we only take the first four IMFs for analysis. 
Fig. 9(a) is the time domain waveform of the first four IMFs and Fig. 9(b) is their squared envelope 
spectrum, from which we come to the conclusion that the third IMF contains the most useful 
information. To observe the performance of EMD more intuitively, we enlarge the squared 
envelope spectrum of the third IMF, which is shown in Fig. 10. In Fig. 10, although fault 
characteristic frequency 185 Hz and its harmonics can be observed, there still contains some noise 
interference. Comparing Fig. 7(b) with Fig. 10, the proposed algorithm performs better. 

 
a) 

 
b) 

Fig. 9. Results of EMD: a) the time domain waveform of the first four IMFs;  
b) the squared envelope spectrum of the first four IMFs 

What is more, the analysis result of Fast-SC is shown in Fig. 11, where fault characteristic 
frequency and its harmonies can also be observed in its enhanced envelope spectrum. However, 
compared with Fig. 7(b), there still contains some noise interference, which indicates that the 
proposed algorithm performs better. 
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Fig. 10. The squared envelope spectrum  

of the third IMF 

 
Fig. 11. Result of Fast-SC 

 

4. Experimental verification 

In this section, the vibration signal collected from a bearing test rig is analyzed to further 
evaluate the effectiveness of the proposed method for fault diagnosis of rolling element bearings. 
The test rig shown in Fig. 12 contains several main components, including bearing support 
structure, main shaft, experimental bearing, servo-driven motor, radial loading device, axial 
loading device and control system et al. 

The experimental bearing type is 7010C with a local damage on the outer race generated by 
laser wire-electrode cutting, the fault size of the outer race was 0.5 mm (width) × 0.5 mm (depth). 
The outer diameter of the bearing is 80 mm and the inner diameter is 50 mm, the rolling element 
diameter is 8.7 mm, the number of rolling elements is 19, and the contact angle is 15°. The test 
speed is 3000 r/min, in order to obtain detailed signal data, the sampling frequency is set to the 
highest sampling frequency of the instrument, which is 131072 Hz, and the sampling time is 1 s. 
The theoretical fault characteristic frequency is calculated as 413.6 Hz. 

In order to reduce the calculation, the signal is resampled to 32768 Hz. Fig. 13 are the time 
domain waveform the experimental signal and its squared envelope spectrum. Due to the 
interference of strong background noise, repetitive transients related to local damage can hardly 
be observed in the time domain waveform and its squared envelope spectrum also contains no 
useful information. 

 
Fig. 12. The test rig 

Next, the proposed algorithm is applied to the experimental signal. The bandwidth is fixed at 
five times fault characteristic frequency; the optimal center frequency selected by whale 
optimization algorithm is 2971 Hz. Fig. 14 is the time domain waveform of the filtered signal, 
compared with Fig. 13(a), noise interference is effectively suppressed. Further, the filtered signal 
is analyzed by higher order energy operator. Fig. 15(a) reflects the relationship between the order 
of energy operator and FCI, and the optimal two energy operators with the largest FCI are selected 
for cross-correlation spectrum analysis, namely the ninth and tenth order. Fig. 15(b) is the 
cross-correlation spectrum, it is obviously that noise components are suppressed, fault 
characteristic frequency 417 Hz and its harmonics 833 Hz and 1250 Hz are prominent. Compared 
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with Fig. 13(b), the proposed algorithm performs better. What’s more, note that due to the 
fluctuation of the rotating speed or the sliding of the rolling bearing, the actual fault characteristic 
frequency is not equal to the theoretical value.  

 

a) 

 

b) 
Fig. 13. Experimental bearing vibration signal:  

a) time domain waveform; b) squared envelope spectrum of a) 

 
Fig. 14. Time domain waveform of the filtered signal 

 
a) 

 
b) 

Fig. 15. Results of the proposed method: a) the curve of FCI; b) cross-correlation spectrum 

To further prove that 𝑁ଶ is not suitable for selecting the bandwidth of the filter, we fix the 
center frequency at 2971 Hz, and the bandwidth is selected between three and eleven times of 
fault characteristic frequency. The relationship between 𝑁ଶ and bandwidth is shown in Fig. 16, 
where 𝑁ଶ reaches the maximum when the bandwidth is 2000 Hz, and the minimum when the 
bandwidth is 3100 Hz. Then two band-pass filters with a center frequency of 2971 Hz and 
bandwidths of 2000 Hz and 3100 Hz are designed to filter the experimental signal and perform 
envelope demodulation. Fig. 17(a) and Fig. 17(b) are the squared envelope spectrum of the filtered 
signal when the bandwidth is 2000 Hz and 3100 Hz, comparing Fig. 17(a) with Fig. 17(b), we find 
both of them perform well. Therefore, it is unreliable to select the bandwidth by 𝑁ଶ. 

For comparison, Fast Kurtogram, EMD and Fast-SC are now utilized to analyze the 
experimental signal.  
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Fig. 16. The curve of the relationship between 𝑁ଶ and bandwidth 

 
a) 

 
b) 

Fig. 17. The squared envelope spectrum of the filtered signal at different bandwidth:  
a) the bandwidth 2000 Hz, b) the bandwidth 3100 Hz 

Fig. 18 are the results of Fast Kurtogram. Due to the interference of strong background noise, 
optimal center frequency determined by Fast Kurtogram is 256 Hz, and the selected bandwidth is 
512 Hz; in the squared envelope spectrum of the optimal analysis frequency band, the prominent 
frequency 50 Hz corresponds to the rotation frequency of the rolling bearing, however, fault 
characteristic frequency and its harmonics cannot be Identified, which indicates Fast Kurtogram 
fails to extract the fault feature. 

 
a) 

 
b) 

Fig. 18. Results of fast kurtogram: a) the paving of fast kurtogram;  
b) the squared envelope spectrum of the signal filtered by fast kurtogram 

Similar to the simulation signal, we only give the time domain waveform and their squared 
envelope spectrum of the first four IMFs obtained by EMD, which is shown in Fig. 19, and the 
squared envelope spectrum of the third IMF which contains the most useful information is shown 
in Fig. 20. In Fig. 20, although fault characteristic frequency 417 Hz and its harmonics can be 
observed, there still exists some noise interference, compared with Fig. 15(b), the proposed 
algorithm performs better. 

What’s more, the analysis result of Fast-SC is shown in Fig. 21, where fault characteristic 
frequency and its harmonies are also prominent. However, compared with Fig. 15(b), there still 
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exists some noise interference in the enhanced envelope spectrum, so the proposed algorithm 
performs better. 

 
a) 

 
b) 

Fig. 19. Results of EMD: a) the time domain waveform of the first four IMFs;  
b) the squared envelope spectrum of the first four IMFs 

 
Fig. 20. The squared envelope spectrum  

of the third IMF 

 
Fig. 21. Result of Fast-SC 

 

5. Conclusions 

From the analyses of simulation and experimental signal, the algorithm proposed in this paper 
based on conditional variance statistic and cross-correlation spectrum analysis is feasible, and we 
have the conclusions as follow: 

1) Compared with kurtosis and Gini index, conditional variance statistic is more robust and 
can be utilized as the objective function for selecting the optimal center frequency. However, we 
find that conditional variance statistic is undesirable for selecting the optimal bandwidth. 

2) Finding the optimal center frequency by iteration will be affected by step size. If the step 
size is too long, the accurate center frequency cannot be selected; if the step size is too short, the 
calculation efficiency will be affected. In this paper, the bandwidth is fixed at five times fault 
characteristic frequency and WOA is applied to quickly select the optimal center frequency, what 
is more, 𝑁ଶ is utilized as the objective function, so both of the calculation efficiency and accuracy 
of the selection of center frequency can be taken into consideration. To further suppress the noise 
interference, cross-correlation spectrum analysis is applied. 

3) The analyses of the simulation and experimental signal indicate that the proposed method 
can effectively extract the fault feature of rolling bearings under strong background noise. 
Compared with classic Fast Kurtogram, EMD and Fast-SC, the proposed algorithm performs 
better. 
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