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Abstract. Loose particles inside components can be threats to their reliabilities. Automatic 
identification of loose particles’ material has great significance for finding the source of them. 
Machine learning methods based on hand-craft features have been widely applied on this problem. 
As deep learning has made success on various domains, based on PIND (particle impact noise 
detection) test, a method using spectrograms and CNN (convolutional neural network) is proposed 
in this paper. First, signals of loose particles including different material are collected by 
experiments. Then signals are converted to spectrograms. Finally, spectrograms are input to CNN 
for training and classification. Experiments show that the method can achieve 96 % accuracy on 
identifying five types of loose particles and has values of practically use.  
Keywords: loose particles, material identification, PIND (particle impact noise detection), 
spectrograms, deep learning. 

1. Introduction 

The existence of loose particles is one of the main threats to the reliability of aerospace 
components, which can lead to fatal accidents. For example, a small piece of iron sheet can move 
to bared wires and cause short circuits. Loose particles can be brought in while producing the 
components and it’s hard to clear them out absolutely. 

Detecting the loose particles before the components are put into use is one way to improve. 
Particle impact noise detection (PIND) test is a major method for detecting the presence of loose 
particles left inside components. Following MIL-STD-202G standard [1], the structure of PIND 
test is as shown in Fig. 1. Its process can be described as follows: 

1) Put the component to be tested on the shaker or turntable, and attach the acoustic sensor on 
it. 

2) The shaker produces impact and vibration, which makes loose particles inside the 
component free and impact with the component. 

3) The impact produces acoustic signal, which is collected by the acoustic sensor. The sensor 
can converts the acousitc signal to electrical signal, and then output it to oscilloscope and speaker. 

4) The oscilloscope can show visible waveform and the speaker can provide audible sound. 
The operator can use this information to determine the presence and classification of loose 
particles. 

Besides detecting the presence of loose particles, identifying the material is also necessary. It 
can help find the source of loose particles and can be helpful for reducing their generation. 
Material identification is actually a classification problem. Traditional methods usually use 
machine learning to solve the problem, the usual process is extracting features from acoustic 
signals firstly and training classifiers then. Shujuan Wang [2] proposed a LVQ (Learning Vector 
Quantization)-based method which uses energy distribution vectors in wavelet domain. Long 
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Zhang [3] compared the wavelet Fisher discriminant with AR model and LVQ neural networks 
and proves that the wavelet Fisher discriminant is better than others. JinBao Chen [4] uses MFCC 
(Mel Frequency Cepstrum Coefficient) feature to train HMM (Hidden Markov Model), achieving 
91 % accuracy on 4 types of material. Meng [5] combines MFCC with other features in time and 
frequency domain to train SVM (Support Vector Machine) model, achieving 98 % on 3 types of 
material. For these methods, the performance of identification is determined by whether the 
features can represent information of material completely and whether the classifier can map 
features to classes accurately. However, the hand-craft features may be hard to characterize the 
material information of original signals accurately, especially for complex signals with noisy 
signals. 

 
Fig. 1. The structure of PIND test 

In order to overcome the disadvantages of hand-craft features, we need an end-to-end 
algorithm which can gives the identification result directly, which means both features extraction 
and classification are finished by it. Recent work on speech recognition has shown good 
performance [6, 7]. Cummins N’s work [6] on speech emotion recognition has shown that using 
pre-trained CNN (convolutional neural network) to extract features from spectrograms is robust 
for noisy signals. Li P. [7] proposed an attention pooling based CNN which also receives a 
spectrogram as input, having shown excellent performance. As deep learning has not been applied 
on the problem of loose particles’ material identification, motivated by these works, a method 
using spectrogram and CNN is proposed. In this way, extracting features manually can be avoided. 
Instead, the network searches appropriate features from the spectrogram automatically. 
Experiments prove that deep learning method outperforms existing methods. 

2. Method 

2.1. Task description 

Identification of loose particles aims to predict their types artificially or automatically 
according to PIND signals collected by the detection system. The component which may have 
latent loose particles is put on the device, and by adding vibration acoustic signals are collected. 
To avoid collecting useless noise signals, a trigger thresh is set and we only record the signal when 
it reaches the thresh. Components having known loose particles are used for experiments, thus we 
can collect signals with known labels. Our method aims to train a model to classify the signals 
datasets. 
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2.2. Identification based on CNN 

The process of material identification using deep learning includes follows: 1) Preprocess 
original signals to reduce noises. 2) Calculate spectrograms of denoised signals. 3) Input 
spectrograms with their material labels to an end-to-end CNN to train the model. 4) Use the trained 
model to predict test signals’ material types. It can be shown as Fig. 2. 

 
Fig. 2. Process of proposed material identification method 

2.2.1. Spectrograms calculation 

Before calculating spectrograms, DB4 wavelet denoising is applied on signals as  
preprocessing. Related work in paper [8] has proved its effectiveness. As a CNN receives images 
as input, spectrograms are firstly calculated. 

Firstly, the signal is divided into several frames with the same length, and then a sequence of 
hamming windows are applied to these frames. Hamming window can be calculated as Eq. (1): 

𝑊ሺ𝑙ሻ ൌ 0.54 − 0.46cos 2𝜋𝑙𝐿 − 1 ,     0  𝑙  𝐿 − 1, (1)

where 𝐿 refers to the length of windows and should be same with frame length. Dot the signal by 
window to acquire the output. 

To avoid information missing at both ends of hamming window, there exists overlap between 
neighboring frames. Usually overlap is set to 1/3-1/2 of frame length and here we use half (0.5 ms). 
The process of applying windows is shown in Fig. 3. 

 
Fig. 3. Divide frames and apply hamming windows 

For each frame 𝐱 with length of 𝑁, we calculate the DFT (discrete Fourier transform) result 
as Eq. (2): 
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𝐗ሺ𝑘ሻ = 𝐱ሺ𝑛ሻ𝑒ିଶగே ேିଵ
ୀ ，𝑘 = 0,1,2, . . . ,𝑁 − 1. (2)

Assuming that the number of frames in one signal is 𝑀, then we concate all the DFT results 
(each is a 𝑁 × 1 vector) and get a 𝑀 × 𝑁 matrix as Eq. (3): 𝐒 = ሺ𝐗ଵ,𝐗ଶ,⋯ ,𝐗ெሻ. (3)

In ways similar to pseudo-color processing, the matrix can be mapped to an colored image. 
Thus, a spectrogram is calculated. 

2.2.2. Spectrograms of loose particle signals 

An example of loose particle signal with its spectrogram is shown as Fig. 4. As is shown in 
Fig. 4(b), the pulse signals around 0-20 ms, 45-60 ms, 65-80 ms, 85-95 ms have common features 
that the power around 50 kHz is especially high, and their shapes are also similar. 

 
a) Signal 

 
b) Spectrogram 

Fig. 4. An example of loose particle signal with its spectrogram 

Fig. 5 shows 2 spectrograms of different material’s loose particle signals. Epoxy’s frequency 
mainly focus on 50 kHz, while wire’s frequency has a higher range. On the one hand, there exists 
difference among spectrogram of different material’s loose particle signals. On the other hand, 
pulses in the same spectrogram are similar in peak position and envelope. So spectrograms are 
able to represent the information of material, and using spectrograms as the input of CNN is a 
available way to achieve automatic identification. 

 
a) Epoxy 

 
b) Wire 

Fig. 5. Spectrograms of different material’s PIND signals 
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2.2.3. CNN architecture 

Based on AlexNet [9], a similar CNN architecture is used for classifying the spectrograms. 
The architecture is shown as Fig. 6. For convolution layer, 11×11×64 denotes height × width × 
channel of kernels. For pooling layer, 3×3 denotes height × width of kernels. Stride and padding 
size is denoted by s and p (where 𝑝 = 0 is omitted). Number in fully connected layer shows the 
number of nodes, and dropout percentage is also given. Besides, in order to accelerate the training 
process, a pre-trained model trained on Image Net database is used. Though there are 1000 class 
in this model, it can still be applied on 5-class problem in later experiments. 

 
Fig. 6. Network architecture 

3. Experiments 

For experiments, a dataset of loose particle signals are collected, including 4794 sample 
signals. There are 5 different types of loose particles, including tin, epoxy, tinsel, aluminum and 
wire. Considering mass of loose particles are usually not stable, loose particles range from 
0.1 mg-4 mg are used. The dataset is divided into 2 part, 1/4 is randomly chosen for testing and 
others are for training. For spectrograms calculation, frame length is 1 ms and DFT length is 256. 

3.1. Network training and testing 

A pre-trained model trained on Image Net is used as initial model to accelerate the training 
process. Optimization method is gradient descent method, and learning rate is 0.003. Use cross 
entropy function as loss function. After enough iteration, accuracy on the training dataset is close 
to 100 %, and accuracy on the testing dataset is close to 96 %. 

3.2. Loose particles identification experiments 

We tested our model on loose particle signals datasets. Table 1shows the identification result 
in form of confusion matrix. The material in the left column denotes true labels, while the top row 
denotes predictions. The number at the intersect represent the amount. Though the identification 
accuracy on aluminum is obviously worse than other materials, the overall accuracy on the whole 
test datasets still achieves 96.16 %. 

Table 2 shows the results compared with other methods. As there is no open dataset of loose 
particle signals, results of [2-4] in the table is given by corresponding papers, and others come 
from experiments on our datasets. The proposed method outperforms [2-4] with more classes and 
shorter signals, and outperforms all methods with higher accuracy. 
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Table 1. Identification result (confusion matrix) on testing dataset 

True Predict 
Tin Epoxy Tinsel Al Wire Accuracy 

Tin 167 3 1 2 0 96.5 % 
Epoxy 4 471 1 2 3 97.9 % 
Tinsel 2 3 235 4 1 95.9 % 

Al 4 4 2 186 3 93.4 % 
Wire 0 4 0 2 95 94.0 % 

Table 2. Method comparison 
Method [2] [3] [4] [5] Ours 

Number of types 4 3 4 5 5 
Particle mass / mg 0.5-2.5 0.5-6 1-4 0.1-4 0.1-4 
Signal length / s 1 5 5 0.128 0.128 

Accuracy / % 83 87 91 92 96 

4. Conclusions 

Automatic material identification of loose particles has vital research value for improving the 
reliability and stability of components. Related researches before mostly used hand-craft and 
machine learning methods. As deep learning and spectrograms are widely used in speech 
recognition domain, this paper proposes to apply CNN with spectrograms on the loose particles’ 
material identification task. Experiments prove that the proposed method achieves higher accuracy 
and it is useful in practical production. The network structure used in this paper still need to be 
improved, and learning features from the signal directly is also an important trend in future 
research. 
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