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Abstract. This article considers longitudinal planar vibration of a two-axle automobile moving 
linearly with a constant velocity and subjected to pre-deterministic kinematic excitation caused by 
the rough road surface. The automobile is modeled as a vibration system which has three masses 
and four degrees of freedom. The deformed road is modeled as an elastic beam which is simply 
supported at the two ends and lying on Kelvin’s visco-elastic ground. The change in dimensions 
of the contact areas is considered. The loss of contact between the wheels and the road surface is 
taken into account by producing the contact state parameters in the differential equations of motion 
of the vibration system. The partial differential equation which describes the motion of deformed 
road is then transformed into a set of all ordinary differential equations by applying the 
Bubnov-Galerkin’s method. Some typical results coming from numerical consideration are also 
presented in the article. 
Keywords: vibration, automobile, planar model, half-car model, wheel separation, loss of contact, 
road deformation. 

1. Introduction 

When an automobile moves on rough roads, vertical vibrations appear as an inherent property. 
If the level of vibration exceeds a definite threshold, the wheels of the automobile may separate 
from the road and this phenomenon is called as the loss of contact, or the wheel separation in some 
documents. The loss of contact reduces controllability of the automobile both in velocity and 
direction, and therefore, the safety of movement. 

In many books and papers concerned with the vibration of automobiles, the loss of contact is 
either disregarded such as in the references from [1-13] or although regarded but all spring-damper 
couples which represent the wheels has the lower end consistently clamped to the road surface as 
in [14]. These physical models are widely applied and help scientists to gain a lot of significant 
results, but obviously not authentic. It is needed to propose other models which have the 
authenticity higher. 

Recently, the authors of this own article have started investigating into vertical vibration of 
automobiles with taking account of wheel separation or/and road deformation. The loss of contact 
is taken into account by introducing the so-called contact state parameters while the road 
deformation is taken into account by applying the models of elastic beam or rectangular plate on 
Kelvin's visco-elastic ground. In papers [15, 16], the one-fourth model is applied and the loss of 
contact is taken into account, but only the article [16] takes account of the road deformation. In 
the article [17], longitudinal vibration of automobiles is considered in the planar model (a half-car 
or one-second model), the loss of contact is also taken into account, but the road deformation is 
not regarded. This paper continues to consider longitudinal vibration of automobiles in the planar 
model where the loss of contact is taken into account by using two contact state parameters and 
the road deformation is taken into account by applying the models of the elastic beam on Kelvin's 
visco-elastic ground. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2021.21575&domain=pdf&date_stamp=2021-01-22
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2. Formulation of the problem 

2.1. Assumptions 

Vibration model of the vehicle-road coupled system is made with these assumptions: 
– Automobile under consideration has the body and two axles absolutely rigid and move 

linearly with a constant velocity. 
– Dynamic behavior of all spring-damper couples in the systems is linear. 
– Contact area (if exists) between each wheel and the road surface is a rectangle whose 

dimension in the direction of vehicle axle is unchanged while loaded. 
– The road profile is assumed to be predeterministic. 

2.2. Contact characteristics between the wheel and the road 

Fig. 1 shows a round wheel that is lying in contact state with the road surface and its vibration 
model. In the figure, 𝑟௪ is the radius of the wheel; 𝑏 – the width of the tyre, also the width of the 
contact area if exists; 𝑘 , 𝑐  – the wheel string-damper couple which represents the dynamic 
behavior of the wheel in vertical direction; 𝐶 - center of the wheel; 𝑄 – vertical load applied on 
the wheel axle; 𝑅 – reaction force from the road; ∆𝑧 – vertical compress deformation of the wheel 
or the spring representing its elasticity; 𝑑  – the length of the contact area; 𝐷 – the expected 
contact point between the road surface and the wheel. In general, 𝐷 is the shadow (in vertical 
direction) of the wheel center onto the road surface; if the contact state between the wheel and 
the road surface exists, 𝐷 is also the center of the contact area. 

 
a) 

 
b) 

Fig. 1. a) Contact characteristics and b) vibration model of a deformed wheel 

Assuming that the off-contact-area part of the wheel profile is still exactly rounded with the 
radius unchanged, we can get the relation between the length of contact area and vertical 
deformation of the wheel: 𝑑 = 2ඥ𝑟௪ଶ − (𝑟௪ − Δ𝑧)ଶ. (1)

Let 𝐹 be the resultant of spring and damping forces in the wheel spring-damper couple. From 
the equilibrium condition of forces acting in the wheel model one can get 𝑄 = 𝑅 = 𝐹. The value 
of 𝐹 can be expressed in term of vertical compress deformation of the wheel ∆𝑧 (∆𝑧 is also the 
spring which represents the wheel) as: 

𝐹 = 𝑘(Δ𝑧) + 𝑐 𝑑(Δ𝑧)𝑑𝑡 . (2)
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If the loss of contact really appears or starts to appear, the wheel is not deformed and the values 
of Δ𝑧, 𝑑 and 𝐹 are all equal to zero. 

Now if we redefine Δ𝑧  as the difference in vertical displacements of points 𝐷 and 𝐶 , i.e. Δ𝑧 = 𝑢 − 𝑢, noting that both road deformation and wheel separation are taken into account, 
then the expression in the right side of Eq. (2) can be used to verify if the loss of contact occurs or 
not. This expression can be called as the verifying value of contact force and denoted as 𝐹ത, so 
that: 𝐹ത = 𝑘(𝑢 − 𝑢) + 𝑐(𝑢ሶ  − 𝑢ሶ ). (3)

It is obvious that if 𝐹ത ≥ 0, the wheel still lies in the contact state with the road and 𝐹ത is also 
the resultant force of the wheel spring-damper couple. If 𝐹ത < 0, the wheel separates from the 
road and the resultant force of the wheel spring-damper couple is equal to zero. According to this 
reasoning, we introduce the so-called contact state parameter which is denoted as s and taken value 
as 𝑠 = 1 if 𝐹ത ≥ 0  and 𝑠 = 0 if 𝐹ത < 0 . The formula for the resultant force of the wheel 
spring-damper couple in all three different states of relative position of the wheel-road couple 
(really contacting, starting to separate or contact, and really losing contact) now can be uniquely 
written as follows: 𝐹 = 𝑠𝐹ത = 𝑠ሾ𝑘(𝑢 − 𝑢) + 𝑐(𝑢ሶ  − 𝑢ሶ )ሿ. (4)

In order to distinguish the front and the rear wheels later, we will use subscripts or superscripts 
“1” and “2” respectively, such as 𝑘, 𝑐, 𝐹, 𝑠, 𝑑, ∆𝑧, etc. (𝑗 = 1, 2). 

2.3. Vibration model of the vehicle-road coupled system 

Basing on the construction of two-axle automobiles and the assumptions mentioned above, we 
can make the longitudinal planar vibration model of an automobile taking road deformation into 
account as shown in Fig. 2. The vehicle is modeled as a vibration system of three masses 
corresponding to the body and the two axles while the deformable road is modeled as an 
homo-geneous elastic beam lying on the Kelvin’s visco-elastic ground. Fig. 2 describes the 
mechanical system under consideration in the so-called natural position in which all the springs 
are completely free and the road lies in the contact state with the two wheels. 

 
Fig. 2. Longitudinal vibration planar model of the vehicle-road coupled system 

Here are some explanations for Fig. 2: 
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𝐶, 𝐶ଵ, 𝐶ଶ – centers of gravity of the body, the front and the rear axles, respectively; 𝐴, 𝐵 – connection points of suspension spring-damper couples to the vehicle body; 𝑚, 𝐽, 𝑚ଵ, 𝑚ଶ – inertial characteristics of the vehicle body and the two axles; ሼ𝑘்ଵ, 𝑐்ଵሽ, ሼ𝑘்ଶ, 𝑐்ଶሽ – suspension spring-damper couples at the front and the rear axles; ሼ𝑘ଵ, 𝑐ଵሽ, ሼ𝑘ଶ, 𝑐ଶሽ – wheel spring-damper couples at the front and the rear axles; ሼ𝑘ௌ, 𝑐ௌሽ – stiffness and damping coefficient of Kelvin’s visco-elastic ground; 𝑎ଵ, 𝑎ଶ – distances in horizontal direction from the center of gravity of the vehicle body to the 
front and the rear axles; 𝑤 = 𝑤(𝑥, 𝑡) – displacement function of the beam representing the deformed road; 𝑢, 𝜑 – vertical and angular displacements of the vehicle body; 𝑢ଵ, 𝑢ଶ – vertical displacements of the front and the rear axles; 𝑢, 𝑢 – vertical displacements of points 𝐴 and 𝐵; 𝑟ଵ, 𝑟ଶ – representatives of the heights (or depths) at the expected contact points 𝐷ଵ, 𝐷ଶ from 
the nominal road surface due to the road roughness. 

It is noted that the displacements 𝑢, 𝜑, 𝑢ଵ, 𝑢ଶ are measured from the natural position of 
three masses (vehicle body and two axles). 

2.4. Determination of forces acting on the automobile 

Fig. 3 shows the force diagrams of three masses in vibration model after freeing them. In the 
figure, 𝐺, 𝐺ଵ, 𝐺ଶ are the gravitational forces of three masses; 𝐹்ଵ, 𝐹்ଶ, 𝐹்ଵᇱ , 𝐹்ଶᇱ  – the resultant 
forces of the suspension spring-damper couples; 𝐹ଵ, 𝐹ଶ - the resultant forces of the wheel spring-
damper couples, or the contact forces for simpliciy. Subscripts 𝑏, 1 and 2 used here imply that the 
concerned quantity belongs to or concerns with the vehicle body, the front and the rear axles, 
respectively. 

 
Fig. 3. Force diagrams of vehicle body and two axles 

The forces in Fig. 3 can be expressed as: 𝐺 = 𝑚𝑔,      𝐺ଵ = 𝑚ଵ𝑔,      𝐺ଶ = 𝑚ଶ𝑔, 𝐹்ଵ = 𝐹′்ଵ = 𝑘்ଵ(𝑢ଵ − 𝑢) + 𝑐்ଵ(𝑢ሶ ଵ − 𝑢ሶ), 𝐹்ଶ = 𝐹′்ଶ = 𝑘்ଶ(𝑢ଶ − 𝑢) + 𝑐்ଶ(𝑢ሶ ଶ − 𝑢ሶ ), 𝐹ଵ = 𝑠ଵ𝐹തଵ = 𝑠ଵሾ𝑘ଵ(𝑢ଵ − 𝑢ଵ) + 𝑐ଵ(𝑢ሶ ଵ − 𝑢ሶ ଵ)ሿ, 𝐹ଶ = 𝑠ଶ𝐹തଶ = 𝑠ଶሾ𝑘ଶ(𝑢ଶ − 𝑢ଶ) + 𝑐ଶ(𝑢ሶ ଶ − 𝑢ሶ ଶ)ሿ. (5)

Vertical displacements 𝑢, 𝑢, 𝑢ଵ, 𝑢ଶ in Eq. (5) can be calculated as: 𝑢 = 𝑢 + 𝑎ଵ𝜑,       𝑢 = 𝑢 − 𝑎ଶ𝜑,       𝑢ଵ = 𝑤ଵ + 𝑟ଵ,        𝑢ଶ = 𝑤ଶ + 𝑟ଶ, (6)

where 𝑤ଵ = 𝑤(𝑥, 𝑡)||௫ୀ௫ವభ, 𝑤ଶ = 𝑤(𝑥, 𝑡)||௫ୀ௫ವమ are vertical displacements at points 𝐷ଵ and 
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𝐷ଶ of the beam which represents the deformed road. 
Substituting Eq. (6) into Eq. (5) one can get the expressions of resultant forces in suspension 

and wheel spring-damper couples: 𝐹்ଵ = 𝐹′்ଵ = 𝑘்ଵሾ𝑢ଵ − (𝑢 + 𝑎ଵ𝜑)ሿ + 𝑐்ଵሾ𝑢ሶ ଵ − (𝑢ሶ  + 𝑎ଵ𝜑ሶ )ሿ, 𝐹்ଶ = 𝐹′்ଶ = 𝑘்ଶሾ𝑢ଶ − (𝑢 − 𝑎ଶ𝜑)ሿ + 𝑐்ଶሾ𝑢ሶ ଶ − (𝑢ሶ  − 𝑎ଶ𝜑ሶ )ሿ, 𝐹ଵ = 𝑠ଵሾ𝑘ଵ(𝑤ଵ + 𝑟ଵ − 𝑢ଵ) + 𝑐ଵ(𝑤ሶ ଵ + 𝑟ሶଵ − 𝑢ሶ ଵ)ሿ, 𝐹ଶ = 𝑠ଶሾ𝑘ଶ(𝑤ଶ + 𝑟ଶ − 𝑢ଶ) + 𝑐ଶ(𝑤ሶ ଶ + 𝑟ሶଶ − 𝑢ሶ ଶ)ሿ. (7)

2.5. Differential equations of motion of the mechanical system 

2.5.1. Differential equations of motion of the vehicle 

By writing the dynamic equations of three masses in Fig. 3 then using the Eq. (7) of forces and 
taking some needed arrangements, we can get the differential equations of motion of the vehicle 
as follows: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚𝑢ሷ  + (𝑐்ଵ + 𝑐்ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝜑ሶ ୠ − 𝑐்ଵ𝑢ሶ ଵ − 𝑐்ଶ𝑢ሶ ଶ      +(𝑘்ଵ + 𝑘்ଶ)𝑢 + (𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝜑 − 𝑘்ଵ𝑢ଵ − 𝑘்ଶ𝑢ଶ = −𝑚𝑔,𝐽𝜑ሷ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵଶ + 𝑐்ଶ𝑎ଶଶ)𝜑ሶ  − 𝑐்ଵ𝑎ଵ𝑢ሶ ଵ + 𝑐்ଶ𝑎ଶ𝑢ሶ ଶ      +(𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝑢 + (𝑘்ଵ𝑎ଵଶ + 𝑘்ଶ𝑎ଶଶ)𝜑 − 𝑘்ଵ𝑎ଵ𝑢ଵ + 𝑘்ଶ𝑎ଶ𝑢ଶ = 0,𝑚ଵ𝑢ሷ ଵ − 𝑐்ଵ𝑢ሶ  − 𝑐்ଵ𝑎ଵ𝜑ሶ  + (𝑐்ଵ + 𝑠ଵ𝑐ଵ)𝑢ሶ ଵ − 𝑘்ଵ𝑢 − 𝑘்ଵ𝑎ଵ𝜑      +(𝑘்ଵ + 𝑠ଵ𝑘ଵ)𝑢ଵ = −𝑚ଵ𝑔 + 𝑠ଵሾ𝑘ଵ(𝑤ଵ + 𝑟ଵ) + 𝑐ଵ(𝑤ሶ ଵ + 𝑟ሶଵ)ሿ,𝑚ଶ𝑢ሷ ଶ − 𝑐்ଶ𝑢ሶ  + 𝑐்ଶ𝑎ଶ𝜑ሶ  + (𝑐்ଶ + 𝑠ଶ𝑐ଶ)𝑢ሶ ଶ − 𝑘்ଶ𝑢 + 𝑘்ଶ𝑎ଶ𝜑      +(𝑘்ଶ + 𝑠ଶ𝑘ଶ)𝑢ଶ = −𝑚ଶ𝑔 + 𝑠ଶሾ𝑘ଶ(𝑤ଶ + 𝑟ଶ) + 𝑐ଶ(𝑤ሶ ଶ + 𝑟ሶଶ)ሿ.

 (8)

2.5.2. Differential equation of motion of the deformed road 

As presented above, the deformed road is modeled as homogeneous elastic beam that lies on 
Kelvin’s visco-elastic ground. Additionally, the beam is simply supported at the two ends has the 
length of 𝐿 , the rectangular cross-section with the width 𝑏  and the height ℎ . Vertical 
displacement of the beam is a function of the 𝑥-coordinate and time 𝑡, ie. 𝑤 = 𝑤(𝑥, 𝑡). 

By considering the equilibrium of a typical beam element, we can obtain the differential 
equation of motion of the beam which represents the deformed road as follows [16]: 

𝜌ℎ 𝜕ଶ𝑤(𝑥, 𝑡)𝜕𝑡ଶ + 𝑐ௌ 𝜕𝑤(𝑥, 𝑡)𝜕𝑡 + 𝑘ௌ𝑤(𝑥, 𝑡) + 𝐸𝐼𝑏 𝜕ସ𝑤(𝑥, 𝑡)𝜕𝑥ସ + 𝑝(𝑥, 𝑡) = −𝜌ℎ𝑔. (9)

In Eq. (9), 𝜌 and 𝐸 – mass density and Young’s module of beam material; 𝐼 – bending inertial 
moment of beam cross-section ( 𝐼 = 𝑏ℎଷ 12⁄ ); 𝑔  – gravitational acceleration and 𝑝(𝑥, 𝑡)  – 
function of pressure distribution in the contact areas. Function 𝑝(𝑥, 𝑡) is assumed unchanged in 𝑦-direction and exists in wheel-beam contact areas only. 

Solution 𝑤 = 𝑤(𝑥, 𝑡) of Eq. (9) should be satisfied the boundary conditions: 𝑤(𝑥, 𝑡)||௫ୀ = 𝑤(𝑥, 𝑡)||௫ୀ = 0. (10)

The differential equations of motion of the vehicle-road coupled system are the combination 
of four ordinary differential Eq. (8) and partial differential Eq. (9). 
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2.6. Simpler particular cases of the differential equations of motion 

2.6.1. The case of ignoring road deformation 

In case the road deformation is ignored, we have 𝑤(𝑥, 𝑡) = 0 for all 𝑥 and 𝑡. Moreover, it can 
be assumed that 𝑘ௌ = 𝑐ௌ = ∞ and Eq. (9) becomes an identity. The differential equations of 
motion of the vehicle-road coupled system reduce to those of the vehicle only and have the form 
as follows: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚𝑢ሷ  + (𝑐்ଵ + 𝑐்ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝜑ሶ  − 𝑐்ଵ𝑢ሶ ଵ − 𝑐்ଶ𝑢ሶ ଶ       +(𝑘்ଵ + 𝑘்ଶ)𝑢 + (𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝜑 − 𝑘்ଵ𝑢ଵ − 𝑘்ଶ𝑢ଶ = −𝑚𝑔,𝐽𝜑ሷ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵଶ + 𝑐்ଶ𝑎ଶଶ)𝜑ሶ  − 𝑐்ଵ𝑎ଵ𝑢ሶ ଵ + 𝑐்ଶ𝑎ଶ𝑢ሶ ଶ       +(𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝑢 + (𝑘்ଵ𝑎ଵଶ + 𝑘்ଶ𝑎ଶଶ)𝜑 − 𝑘்ଵ𝑎ଵ𝑢ଵ + 𝑘்ଶ𝑎ଶ𝑢ଶ = 0,𝑚ଵ𝑢ሷ ଵ − 𝑐்ଵ𝑢ሶ  − 𝑐்ଵ𝑎ଵ𝜑ሶ  + (𝑐்ଵ + 𝑠ଵ𝑐ଵ)𝑢ሶ ଵ − 𝑘்ଵ𝑢 − 𝑘்ଵ𝑎ଵ𝜑       +(𝑘்ଵ + 𝑠ଵ𝑘ଵ)𝑢ଵ = −𝑚ଵ𝑔 + 𝑠ଵ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ),𝑚ଶ𝑢ሷ ଶ − 𝑐்ଶ𝑢ሶ  + 𝑐்ଶ𝑎ଶ𝜑ሶ  + (𝑐்ଶ + 𝑠ଶ𝑐ଶ)𝑢ሶ ଶ − 𝑘்ଶ𝑢 + 𝑘்ଶ𝑎ଶ𝜑       +(𝑘்ଶ + 𝑠ଶ𝑘ଶ)𝑢ଶ = −𝑚ଶ𝑔 + 𝑠ଶ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ).

 (11)

2.6.2. The case of disregarding the loss of contact 

If the wheels are assumed to lie in the consistent contact state with the road surface, we have 𝑠ଵ = 𝑠ଶ = 1 at every point of time. In this case, Eq. (9) is still used with no change and the 
differential equations of motion of the vehicle can be deduced from Eq. (8) by setting  𝑠ଵ = 𝑠ଶ = 1: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚𝑢ሷ  + (𝑐்ଵ + 𝑐்ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝜑ሶ  − 𝑐்ଵ𝑢ሶ ଵ − 𝑐்ଶ𝑢ሶ ଶ      +(𝑘்ଵ + 𝑘்ଶ)𝑢 + (𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝜑 − 𝑘்ଵ𝑢ଵ − 𝑘்ଶ𝑢ଶ = −𝑚𝑔,𝐽𝜑ሷ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵଶ + 𝑐்ଶ𝑎ଶଶ)𝜑ሶ  − 𝑐்ଵ𝑎ଵ𝑢ሶ ଵ + 𝑐்ଶ𝑎ଶ𝑢ሶ ଶ      +(𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝑢 + (𝑘்ଵ𝑎ଵଶ + 𝑘்ଶ𝑎ଶଶ)𝜑 − 𝑘்ଵ𝑎ଵ𝑢ଵ + 𝑘்ଶ𝑎ଶ𝑢ଶ = 0,𝑚ଵ𝑢ሷ ଵ − 𝑐்ଵ𝑢ሶ  − 𝑐்ଵ𝑎ଵ𝜑ሶ  + (𝑐்ଵ + 𝑐ଵ)𝑢ሶ ଵ − 𝑘்ଵ𝑢 − 𝑘்ଵ𝑎ଵ𝜑 + (𝑘்ଵ + 𝑘ଵ)𝑢ଵ      = −𝑚ଵ𝑔 + ሾ𝑘ଵ(𝑤ଵ + 𝑟ଵ) + 𝑐ଵ(𝑤ሶ ଵ + 𝑟ሶଵ)ሿ,𝑚ଶ𝑢ሷ ଶ − 𝑐்ଶ𝑢ሶ  + 𝑐்ଶ𝑎ଶ𝜑ሶ  + (𝑐்ଶ + 𝑐ଶ)𝑢ሶ ଶ − 𝑘்ଶ𝑢 + 𝑘்ଶ𝑎ଶ𝜑 + (𝑘்ଶ + 𝑘ଶ)𝑢ଶ      = −𝑚ଶ𝑔 + ሾ𝑘ଶ(𝑤ଶ + 𝑟ଶ) + 𝑐ଶ(𝑤ሶ ଶ + 𝑟ሶଶ)ሿ.

 (12)

2.6.3. The case of ignoring both the road deformation and the loss of contact 

If both the road deformation and the loss of contact are ignored, the differential equations of 
motion of the vehicle-road coupled system reduce to those of the vehicle in which 𝑠ଵ = 𝑠ଶ = 1 
and 𝑤ଵ = 𝑤ଶ = 𝑤ሶ ଵ = 𝑤ሶ ଶ = 0: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑚𝑢ሷ  + (𝑐்ଵ + 𝑐்ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝜑ሶ  − 𝑐்ଵ𝑢ሶ ଵ − 𝑐்ଶ𝑢ሶ ଶ       +(𝑘்ଵ + 𝑘்ଶ)𝑢 + (𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝜑 − 𝑘்ଵ𝑢ଵ − 𝑘்ଶ𝑢ଶ = −𝑚𝑔,𝐽𝜑ሷ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵଶ + 𝑐்ଶ𝑎ଶଶ)𝜑ሶ  − 𝑐்ଵ𝑎ଵ𝑢ሶ ଵ + 𝑐்ଶ𝑎ଶ𝑢ሶ ଶ       +(𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝑢 + (𝑘்ଵ𝑎ଵଶ + 𝑘்ଶ𝑎ଶଶ)𝜑 − 𝑘்ଵ𝑎ଵ𝑢ଵ + 𝑘்ଶ𝑎ଶ𝑢ଶ = 0,𝑚ଵ𝑢ሷ ଵ − 𝑐்ଵ𝑢ሶ  − 𝑐்ଵ𝑎ଵ𝜑ሶ  + (𝑐்ଵ + 𝑐ଵ)𝑢ሶ ଵ − 𝑘்ଵ𝑢 − 𝑘்ଵ𝑎ଵ𝜑 + (𝑘்ଵ + 𝑘ଵ)𝑢ଵ       = −𝑚ଵ𝑔 + (𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ),𝑚ଶ𝑢ሷ ଶ − 𝑐்ଶ𝑢ሶ  + 𝑐்ଶ𝑎ଶ𝜑ሶ  + (𝑐்ଶ + 𝑐ଶ)𝑢ሶ ଶ − 𝑘்ଶ𝑢 + 𝑘்ଶ𝑎ଶ𝜑 + (𝑘்ଶ + 𝑘ଶ)𝑢ଶ       = −𝑚ଶ𝑔 + (𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ).

 (13)
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2.7. Transforming the differential equations of motion into a system of all ODEs 

Because of the presence of partial differential Eq. (9), the differential equations of motion of 
the mechanical system cannot be able to solve. In order to obtain the functions which reflect 
vibrations of the automobile and the road, the Bubnov-Galerkin’s method is applied here to 
transform the original differential equations of motion into a system of all ordinary differential 
equations (ODEs) of time variable only. These ODEs are called as the transformed differential 
equations of motion which can be solved numerically, for instance. 

A procedure for reaching the purpose is given as follows: 
1) Approximating the displacement expression of the beam as a series of functions which 

satisfy the boundary conditions Eq. (10) as: 

𝑤(𝑥, 𝑡) = 𝑇(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே
ୀଵ , (14)

where 𝑇(𝑡) are time functions to be found and 𝑁 is the number of terms in the series used. 
Note that functions sin (ଶିଵ)గ௫  are linearly independent and have the orthogonality: 

න sin (2𝑙 − 1)𝜋𝑥𝐿 sin (2𝑙′ − 1)𝜋𝑥𝐿 𝑑𝑥
 = ൜0,   𝑙 ≠ 𝑙ᇱ,𝐿 2⁄ ,     𝑙 = 𝑙ᇱ. (15)

2) Substituting the expression of 𝑤(𝑥, 𝑡)  according to Eq. (14) into Eq. (9) to obtain its 
derivative equation which can be written as: 

𝜌ℎ𝑇ሷ(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே
ୀଵ + 𝑐ௌ𝑇ሶ(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே

ୀଵ + 𝑘ௌ𝑇(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே
ୀଵ       +𝐸𝐼𝑏𝑇(𝑡) (2𝑙 − 1)ସ𝜋ସ𝐿ସ sin (2𝑙 − 1)𝜋𝑥𝐿ே

ୀଵ + 𝑝(𝑥, 𝑡) = −𝜌𝑔ℎ.  (16)

3) Accepting the expression of 𝑝(𝑥, 𝑡) as 𝑝(𝑥, 𝑡) = �̅�(𝑡)𝑈(𝑥) (variable separation method). 
Concretely, 𝑝(𝑥, 𝑡) = �̅�ଵ(𝑡)𝑈ଵ(𝑥) in the contact area of front wheel and 𝑝(𝑥, 𝑡) = �̅�ଶ(𝑡)𝑈ଶ(𝑥) in 
the contact area of rear wheel where �̅�(𝑡) (𝑗 = 1, 2) are time functions to be found, and 𝑈(𝑥) are 
the 𝑥-variable functions whose expressions are chosen according to the assumption of pressure 
distribution on the contact areas. Four types of pressure distribution proposed by the authors of 
this paper are presented in [16]: 

– Even (constant, or rectangle) distribution: 𝑈(𝑥) = 1(∀𝑥). 
– Parabolic distribution: 𝑈(𝑥) = 1 − (2𝑥 𝑑)ଶ⁄ . 
– Cosine distribution: 𝑈(𝑥) = cos(𝜋𝑥 𝑑)⁄ . 
– Squared cosine distribution: 𝑈(𝑥) = cosଶ(𝜋𝑥 𝑑)⁄ = 0.5[1 + cos(2𝜋𝑥 𝑑)]⁄ . 
4) Consecutively taking 𝑘 = 1, 2,..., 𝑁 and multiplying both sides of Eq. (16) by sin (ଶିଵ)గ௫ , 

then integrating two sides of the obtained equation with respect to 𝑥-variable from 0 to 𝐿 (over 
the length of the beam), noting the orthogonality Eq. (15), one can get a system of 𝑁 ordinary 
differential equations of the form: 
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𝜌ℎ𝑇ሷ(𝑡) + 𝑐ௌ𝑇ሶ(𝑡) + ቈ𝑘ௌ + 𝐸𝐼𝑏 (2𝑘 − 1)ସ𝜋ସ𝐿ସ  𝑇(𝑡) + 2𝐼ଵ𝐿 �̅�ଵ(𝑡) + 2𝐼ଶ𝐿 �̅�ଶ(𝑡)= − 4𝜌𝑔ℎ(2𝑘 − 1)𝜋, (17)

where: 

𝐼ଵ = න 𝑈ଵ(𝑥)sin (2𝑘 − 1)𝜋𝑥𝐿 𝑑𝑥௫ವభା.ହௗభ
௫ವభି,ହௗభ , 

𝐼ଶ = න 𝑈ଶ(𝑥)sin (2𝑘 − 1)𝜋𝑥𝐿 𝑑𝑥௫ವమା.ହௗమ
௫ವమି.ହௗమ . (18)

5) Expressing functions �̅�(𝑡) (𝑗 = 1, 2) in Eq. (17) in terms of the unknown functions of time 
which consist of the vehicle generalized coordinates 𝑢 , 𝜑 , 𝑢ଵ , 𝑢ଶ  and functions 𝑇(𝑡) ,  𝑙 = 1, 2, ..., 𝑁. To reach the purpose, we use the equilibrium equations presented before: 𝐹 = 𝑅 ,      (𝑗 = 1, 2), (19)

where 𝐹 is the resultant force of the 𝑗-th wheel spring-damper couple (the contact force of the  𝑗-th wheel) and 𝑅 is the road reaction force at this wheel. 
Using the expression of 𝑤(𝑥, 𝑡)  in Eq. (14), we determine the vertical displacements of 

expected contact points 𝐷 (𝑗 = 1, 2) as: 

⎩⎪⎨
⎪⎧𝑤 = 𝑤(𝑥, 𝑡)||௫ୀ௫ವೕ = 𝑇(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே

ୀଵ = 𝜒()𝑇(𝑡),ே
ୀଵ𝑤ሶ  = 𝜕𝑤(𝑥, 𝑡)𝜕𝑡 ||௫ୀ௫ವೕ = 𝑇ሶ(𝑡)sin (2𝑙 − 1)𝜋𝑥𝐿ே

ୀଵ = 𝜒()𝑇ሶ(𝑡)ே
ୀଵ , (20)

where: 

𝜒() = sin (2𝑙 − 1)𝜋𝑥𝐿 ,       𝑙 =  1, … ,𝑁,     𝑗 =  1, 2. (21)

The expressions of 𝐹 can be then obtained by putting Eq. (20) into the two last equations in 
Eq. (7) as: 

𝐹 = 𝑠 𝑘 ൭𝜒()𝑇(𝑡)ே
ୀଵ + 𝑟 − 𝑢൱ + 𝑐 ൭𝜒()𝑇ሶ(𝑡)ே

ୀଵ + 𝑟ሶ − 𝑢ሶ ൱൩, (𝑗 = 1,2). (22)

The reaction force 𝑅 can be determined by using the pressure distribution function: 

𝑅 = න𝑝(𝑥, 𝑡)𝑏𝑑𝑥ௗೕ = න �̅�(𝑡)𝑈(𝑥)𝑏𝑑𝑥.ହௗೕ
ି.ହௗೕ = �̅�(𝑡)𝐼𝑏,        (𝑗 = 1, 2), (23)



CONSIDERATION OF LONGITUDINAL VIBRATION OF AUTOMOBILES IN PLANAR MODEL WITH TAKING ROAD DEFORMATION AND LOSS OF CONTACT 
INTO ACCOUNT. HAM VU CONG, CUONG PHUNG MANH, DUNG TRAN QUANG 

1002 JOURNAL OF VIBROENGINEERING. JUNE 2021, VOLUME 23, ISSUE 4  

where: 

𝐼 = න 𝑈(𝑥)𝑑𝑥.ହௗೕ
ି.ହௗೕ ,   (𝑗 = 1, 2). (24)

Using Eq. (22), (23) and (19), we can deduce the expressions of �̅�(𝑡): 

�̅�(𝑡) = 𝑠𝐼𝑏 𝑘 ൭𝜒()𝑇(𝑡)ே
ୀଵ + 𝑟 − 𝑢൱ + 𝑐 ൭𝜒()𝑇ሶ(𝑡)ே

ୀଵ + 𝑟ሶ − 𝑢ሶ ൱൩, (𝑗 = 1, 2). (25)

6) Substituting the expressions of �̅�(𝑡) from Eq. (25) into Eq. (17) to obtain 𝑁  ordinary 
differential equations as: 

𝜌ℎ𝑇ሷ(𝑡) + 𝑐ௌ𝑇ሶ(𝑡) + ቈ𝑘ௌ + 𝐸𝐼(2𝑘 − 1)ସ𝜋ସ𝑏𝐿ସ  𝑇(𝑡) 
       + 2𝑠ଵ𝐼ଵ𝐼ଵ𝑏𝐿 𝑘ଵ ൭𝜒(ଵ)𝑇(𝑡)ே

ୀଵ + 𝑟ଵ − 𝑢ଵ൱ + 𝑐ଵ ൭𝜒(ଵ)𝑇ሶ(𝑡)ே
ୀଵ + 𝑟ሶଵ − 𝑢ሶ ଵ൱൩ 

       + 2𝑠ଶ𝐼ଶ𝐼ଶ𝑏𝐿 𝑘ଶ ൭𝜒(ଶ)𝑇(𝑡)ே
ୀଵ + 𝑟ଶ − 𝑢ଶ൱ + 𝑐ଶ ൭𝜒(ଶ)𝑇ሶ(𝑡)ே

ୀଵ + 𝑟ሶଶ − 𝑢ሶ ଶ൱൩         = − 4𝜌𝑔ℎ(2𝑘 − 1)𝜋 ,     (𝑘 = 1,2, … ,𝑁).  
(26)

By introducing the following notations: 

𝜇ଵ = 2𝑠ଵ𝐼ଵ𝐼ଵ𝑏𝐿 ,   𝜇ଶ = 2𝑠ଶ𝐼ଶ𝐼ଶ𝑏𝐿 ,   𝐻 = 𝑘ௌ + 𝐸𝐼(2𝑘 − 1)ସ𝜋ସ𝑏𝐿ସ , 𝛿 = ൜1,     𝑘 = 𝑙,0,     𝑘 ≠ 𝑙, (27)

where 𝛿 is the Cronecker’s operator, Eq. (26) can be rewritten as: 

𝜌ℎ𝑇ሷ(𝑡) − 𝜇ଵ𝑐ଵ𝑢ሶ ଵ − 𝜇ଶ𝑐ଶ𝑢ሶ ଶ + ൫𝛿𝑐ௌ + 𝜇ଵ𝑐ଵ𝜒(ଵ) + 𝜇ଶ𝑐ଶ𝜒(ଶ)൯𝑇ሶ(𝑡)ே
ୀଵ       −𝜇ଵ𝑘ଵ𝑢ଵ − 𝜇ଶ𝑘ଶ𝑢ଶ + ൫𝛿𝐻 + 𝜇ଵ𝑘ଵ𝜒(ଵ) + 𝜇ଶ𝑘ଶ𝜒(ଶ)൯𝑇(𝑡)ே

ୀଵ        = − 4𝜌𝑔ℎ(2𝑘 − 1)𝜋 − 𝜇ଵ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ) − 𝜇ଶ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ),        (𝑘 = 1,2, … ,𝑁).
 (28)

7) Using the Eq. (20) of 𝑤 and 𝑤ሶ , we can rewrite the differential equations of motion of 
the automobile Eq. (8) in the following forms: 
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⎩⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎧𝑚𝑢ሷ  + (𝑐்ଵ + 𝑐்ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝜑ሶ  − 𝑐்ଵ𝑢ሶ ଵ − 𝑐்ଶ𝑢ሶ ଶ    +(𝑘்ଵ + 𝑘்ଶ)𝑢 + (𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝜑 − 𝑘்ଵ𝑢ଵ − 𝑘்ଶ𝑢ଶ = −𝑚𝑔,𝐽𝜑ሷ  + (𝑐்ଵ𝑎ଵ − 𝑐்ଶ𝑎ଶ)𝑢ሶ  + (𝑐்ଵ𝑎ଵଶ + 𝑐்ଶ𝑎ଶଶ)𝜑ሶ  − 𝑐்ଵ𝑎ଵ𝑢ሶ ଵ + 𝑐்ଶ𝑎ଶ𝑢ሶ ଶ    +(𝑘்ଵ𝑎ଵ − 𝑘்ଶ𝑎ଶ)𝑢 + (𝑘்ଵ𝑎ଵଶ + 𝑘்ଶ𝑎ଶଶ)𝜑 − 𝑘்ଵ𝑎ଵ𝑢ଵ + 𝑘்ଶ𝑎ଶ𝑢ଶ = 0,𝑚ଵ𝑢ሷ ଵ − 𝑐்ଵ𝑢ሶ  − 𝑐்ଵ𝑎ଵ𝜑ሶ  + (𝑐்ଵ + 𝑠ଵ𝑐ଵ)𝑢ሶ ଵ − 𝑠ଵ𝑐ଵ𝜒(ଵ)𝑇ሶ(𝑡) − 𝑘்ଵ𝑢ே

ୀଵ    −𝑘்ଵ𝑎ଵ𝜑 + (𝑘்ଵ + 𝑠ଵ𝑘ଵ)𝑢ଵ − 𝑠ଵ𝑘ଵ𝜒(ଵ)𝑇(𝑡)ே
ୀଵ = −𝑚ଵ𝑔 + 𝑠ଵ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ),

𝑚ଶ𝑢ሷ ଶ − 𝑐்ଶ𝑢ሶ  + 𝑐்ଶ𝑎ଶ𝜑ሶ  + (𝑐்ଶ + 𝑠ଶ𝑐ଶ)𝑢ሶ ଶ − 𝑠ଶ𝑐ଶ𝜒(ଶ)𝑇ሶ(𝑡) − 𝑘்ଶ𝑢ே
ୀଵ    +𝑘்ଶ𝑎ଶ𝜑 + (𝑘்ଶ + 𝑠ଶ𝑘ଶ)𝑢ଶ − 𝑠ଶ𝑘ଶ𝜒(ଶ)𝑇(𝑡)ே

ୀଵ = −𝑚ଶ𝑔 + 𝑠ଶ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ).

 (29)

Now the original differential equations of motion of the vehicle-road coupled system with the 
presence of partial differential Eq. (9) have been transformed into a system of (4 + 𝑁) ordinary 
differential Eqs. (29) and (28). 

The transformed differential equations of motion Eqs. (29) and (28) can be written in matrix form 
as: [𝑀]�⃗� ሷ + [𝐶]�⃗� ሶ + [𝐾]�⃗� = �⃗�, (30)

where �⃗� – vector of generalized coordinates, �⃗�  – vector of excitation; [𝑀], [𝐶], [𝐾] – mass, 
damping and stiffness matrices, respectively. 

Concrete forms of the vectors and matrices mentioned above are determined as follows: 
– The vector of generalized coordinates has (4 + 𝑁) elements as: �⃗� = [𝑢(𝑡),𝜑(𝑡),𝑢ଵ(𝑡),𝑢ଶ(𝑡),𝑇ଵ(𝑡),𝑇ଶ(𝑡),𝑇ଷ(𝑡), … ,𝑇ே(𝑡)]். (31)

– The vector of excitation is expressed as: 

�⃗� =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ −𝑚𝑔0−𝑚ଵ𝑔 + 𝑠ଵ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ)−𝑚ଶ𝑔 + 𝑠ଶ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ)−4𝜌𝑔ℎ1𝜋 − 𝜇ଵଵ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ) − 𝜇ଶଵ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ)−4𝜌𝑔ℎ3𝜋 − 𝜇ଵଶ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ) − 𝜇ଶଶ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ)−4𝜌𝑔ℎ5𝜋 − 𝜇ଵଷ(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ) − 𝜇ଶଷ(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ)…− 4𝜌𝑔ℎ(2𝑁 − 1)𝜋 − 𝜇ଵே(𝑘ଵ𝑟ଵ + 𝑐ଵ𝑟ሶଵ) − 𝜇ଶே(𝑘ଶ𝑟ଶ + 𝑐ଶ𝑟ሶଶ)⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤
. (32)

– The mass matrix is a diagonal matrix as: 
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[𝑀] =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
𝑚 0 0 0 0 0 0 … 00 𝐽 0 0 0 0 0 … 00 0 𝑚ଵ 0 0 0 0 … 00 0 0 𝑚ଶ 0 0 0 … 00 0 0 0 𝜌ℎ 0 0 … 00 0 0 0 0 𝜌ℎ 0 … 00 0 0 0 0 0 𝜌ℎ … 0… … … … … … … … …0 0 0 0 0 0 0 … 𝜌ℎ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤. (33)

– The stiffness matrix [𝐾] has (4 + 𝑁) rows, each of which has (4 + 𝑁) elements as: [𝐾ଵ] = [𝑘்ଵ + 𝑘்ଶ,−𝑘்ଵ𝑎ଵ + 𝑘்ଶ𝑎ଶ,−𝑘்ଵ,−𝑘்ଶ, 0,0,0, … ,0], [𝐾ଶ] = [−𝑘்ଵ𝑎ଵ + 𝑘்ଶ𝑎ଶ ,𝑘்ଵ𝑎ଵଶ + 𝑘்ଶ𝑎ଶଶ,−𝑘்ଵ𝑎ଵ,𝑘்ଶ𝑎ଶ, 0,0,0, … ,0], [𝐾ଷ]= ൣ−𝑘்ଵ,−𝑘்ଵ𝑎ଵ,𝑘்ଵ + 𝑠ଵ𝑘ଵ, 0,−𝑠ଵ𝜒ଵ(ଵ)𝑘ଵ,−𝑠ଵ𝜒ଶ(ଵ)𝑘ଵ,−𝑠ଵ𝜒ଷ(ଵ)𝑘ଵ, … ,−𝑠ଵ𝜒ே(ଵ)𝑘ଵ൧, [𝐾ସ] = ൣ−𝑘்ଶ,𝑘்ଶ𝑎ଶ, 0, 𝑘்ଶ + 𝑠ଶ𝑘ଶ,−𝑠ଶ𝜒ଵ(ଶ)𝑘ଶ,−𝑠ଶ𝜒ଶ(ଶ)𝑘ଶ,−𝑠ଶ𝜒ଷ(ଶ)𝑘ଶ, … ,−𝑠ଶ𝜒ே(ଶ)𝑘ଶ൧, [𝐾ହ] = [0,0,−𝜇ଵଵ𝑘ଵ,−𝜇ଵଶ𝑘ଶ,𝐻ଵ + 𝜇ଵଵ𝑘ଵ𝜒ଵ(ଵ) + 𝜇ଵଶ𝑘ଶ𝜒ଵ(ଶ),𝜇ଵଵ𝑘ଵ𝜒ଶ(ଵ) + 𝜇ଵଶ𝑘ଶ𝜒ଶ(ଶ),       𝜇ଵଵ𝑘ଵ𝜒ଷ(ଵ) + 𝜇ଵଶ𝑘ଶ𝜒ଷ(ଶ), … ,𝜇ଵଵ𝑘ଵ𝜒ே(ଵ) + 𝜇ଵଶ𝑘ଶ𝜒ே(ଶ)], [𝐾] = [0,0,−𝜇ଶଵ𝑘ଵ,−𝜇ଶଶ𝑘ଶ,𝜇ଶଵ𝑘ଵ𝜒ଵ(ଵ) + 𝜇ଶଶ𝑘ଶ𝜒ଵ(ଶ),𝐻ଶ + 𝜇ଶଵ𝑘ଵ𝜒ଶ(ଵ) + 𝜇ଶଶ𝑘ଶ𝜒ଶ(ଶ),       𝜇ଶଵ𝑘ଵ𝜒ଷ(ଵ) + 𝜇ଶଶ𝑘ଶ𝜒ଷ(ଶ), … , 𝜇ଶଵ𝑘ଵ𝜒ே(ଵ) + 𝜇ଶଶ𝑘ଶ𝜒ே(ଶ)], [𝐾ସାே,] = [0,0,−𝜇ேଵ𝑘ଵ,−𝜇ேଶ𝑘ଶ,𝜇ேଵ𝑘ଵ𝜒ଵ(ଵ) + 𝜇ேଶ𝑘ଶ𝜒ଵ(ଶ),𝜇ேଵ𝑘ଵ𝜒ଶ(ଵ) + 𝜇ேଶ𝑘ଶ𝜒ଶ(ଶ)      𝜇ேଵ𝑘ଵ𝜒ଷ(ଵ) + 𝜇ேଶ𝑘ଶ𝜒ଷ(ଶ), … ,𝐻ே + 𝜇ேଵ𝑘ଵ𝜒ே(ଵ) + 𝜇ேଶ𝑘ଶ𝜒ே(ଶ)]. 
(34)

– The damping matrix [𝐶] has the form similar to that of the stiffness matrix. One can obtain 
matrix [𝐶] from matrix [𝐾] by replacing the notations ሼ𝐻, 𝑘்ଵ,𝑘்ଶ,𝑘ଵ,𝑘ଶሽ by the notations ሼ𝑐ௌ, 𝑐்ଵ, 𝑐்ଶ, 𝑐ଵ, 𝑐ଶሽ, respectively. 

2.8. Initial conditions 

The common form of initial conditions in problems on the vibration of automobile is that the 
vehicle is moving on a horizontal road with the surface completely smooth when entering a rough 
surface, and the initial time point (𝑡 = 0) is chosen so that the vehicle is still not entering or starts 
entering the rough road surface. At that point of time, vibration of the vehicle does not appear, 
thus the vectors of generalized velocities and accelerations are equal to zeros and the vector of 
generalized coordinates is equal to that of static displacements of the system: �⃗� ሷ ฮ௧ୀ = 𝑞ሬሬሬሬ⃗  ሷ = 0ሬ⃗ ,      �⃗�ሶ ฮ௧ୀ = 𝑞ሬሬሬሬ⃗ሶ = 0ሬ⃗ ,      �⃗�‖௧ୀ = �⃗�. (35)

The vector of static displacements �⃗�  can be determined by using data Eq. (35) into the 
transformed differential equations of motion Eq. (30) and deducing: [𝐾]�⃗� = �⃗� ⇒ �⃗� = [𝐾]ି ଵ�⃗�, (36)

where [𝐾], �⃗� – initial values of the stiffness matrix [𝐾] and the excitation vector �⃗�. 
In order to calculate the values of the elements of matrix [𝐾], we firstly make and solve the 

static equilibrium equations of the automobile to get the initial values of contact forces 𝐹() and 
reaction forces from road 𝑅() (𝑗 = 1, 2) as: 
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𝐹ଵ() = 𝑅ଵ() = ൬𝑚ଵ + 𝑚 𝑎ଶ𝑎ଵ + 𝑎ଶ൰𝑔,       𝐹ଶ() = 𝑅ଶ() = ൬𝑚ଶ + 𝑚 𝑎ଵ𝑎ଵ + 𝑎ଶ൰𝑔. (37)

The obtained values of two contact forces allow to calculate the initial values of static 
deformations of the springs which represent the two wheels Δ𝑧(), the lengths in 𝑥-direction of 
two contact areas 𝑑() as follows: 

Δ𝑧ଵ() = 𝐹ଵ() 𝑘ଵൗ ,   𝑑ଵ() = 2ට𝑟௪ଶ − (𝑟௪ − Δ𝑧ଵ())ଶ,Δ𝑧ଶ() = 𝐹ଶ() 𝑘ଶൗ ,   𝑑ଶ() = 2ට𝑟௪ଶ − (𝑟௪ − Δ𝑧ଶ())ଶ,      𝑗 = 1, 2.        (38)

Now we can calculate the initial values of the integrations in Eq. (24) and (18). 
Vector �⃗� can be obtained from vector �⃗� simply by assigning value zero to all quantities 𝑟ଵ, 𝑟ଶ, 𝑟ሶଵ and 𝑟ሶଶ. 

3. Some results from numerical computation 

This section presents some illustrating results obtained from numerical computation when the 
initial conditions mentioned in Section 2.8 are applied. The results we can directly obtain from the 
process of computation consist of the generalized coordinates, velocities, accelerations as 
functions of time as listed below: 𝑢(𝑡),𝜑(𝑡),𝑢ଵ(𝑡),𝑢ଶ(𝑡),𝑇ଵ(𝑡),𝑇ଶ(𝑡), … ,𝑇ே(𝑡), 𝑢ሶ (𝑡),𝜑ሶ (𝑡),𝑢ሶ ଵ(𝑡),𝑢ሶ ଶ(𝑡),𝑇ሶଵ(𝑡),𝑇ሶଶ(𝑡), … ,𝑇ሶே(𝑡), 𝑢ሷ (𝑡),𝜑ሷ (𝑡),𝑢ሷ ଵ(𝑡),𝑢ሷ ଶ(𝑡),𝑇ሷଵ(𝑡),𝑇ሷଶ(𝑡), … ,𝑇ሷே(𝑡). (39)

Basing on these results, one can additionally obtain the contact forces 𝐹(𝑡) (𝑗 = 1, 2) as time 
functions, the total time of contact loss in a given interval of computation time and fulfil other 
desired considerations. 

The input data used for numerical calculation are taken as follows: 
 – The values of vehicle parameters are those of automobile GAZ-66 [19]: 𝑎ଵ = 1.563 m,  𝑎ଶ =  1.737 m, 𝑟௪ =  0.45 m, 𝑏 =  0.25 m, 𝑚 =  2200 kg, 𝐽 =  2750 kg.m2, 𝑚ଵ =  660 kg, 𝑚ଶ =  580 kg, 𝑘்ଵ =  246000 N/m, 𝑘்ଶ =  196000 N/m, 𝑘ଵ = 𝑘ଶ =  800000 N/m,  𝑐்ଵ = 𝑐்ଶ = 1500 N.s/m, 𝑐ଵ = 𝑐ଶ = 62000 N.s/m. 
– The values of parameters concerned with the elastic beam and the Kelvin’s visco-elastic 

ground are referred to those in [11]: 𝐿 = 160 m, 𝑏 = 1.00m, ℎ = 0.30 m, 𝐸 = 6.998×109 N/m2, 𝜌 = 2373 kg/m3, 𝑘ௌ = 8×106 N/m2, 𝑐ௌ = 0.3×106 N.s/m2. 
– The used values of 𝑁 (𝑁 = 5) in series Eq. (14) is chosen from considering the convergence 

of calculation results while the values of geometrical parameters concerned with road surface are 
taken based on actual observations. The pressure distribution function applied is parabolic. 

The case under consideration which is presented below concerns with the road excitation as a 
single pulse in which the road profile is a half cycle of sinusoidal wave. This type of road profile 
is described in Fig. 4 where ℎா and 𝐿ா are respectively the height and length of the pulse. The 
values of ℎா and 𝐿ா are taken as ℎா = 0.12 m, 𝐿ா = 0.65 m. The distance 𝑥 in Fig. 4 is introduced 
for the generality of consideration and the clarity of graphs in time domain. The value of 𝑥 is 
calculated in accordance with a specified value of time (𝑡) and vehicle velocity (𝑉) by using the 
formula 𝑥 = 𝑉𝑡 (the value 𝑡 = 0.5 s is fixed in this paper). 
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Fig. 4. Geometrical description of a half cycle of sinusoidal wave 

Vibration of the vehicle will be considered in four different cases which involve the fact of 
taking road deformation (RD) and wheel separation (WS) into account or not. For ease of 
presentation, the four cases are denoted as follows: 

Case 1: Taking account of both road deformation and wheel separation. 
Case 2: Taking account of road deformation and ignoring wheel separation. 
Case 3: Ignoring road deformation and taking account of wheel separation. 
Case 4: Ignoring both road deformation and wheel separation. 

3.1. Comparison of the results obtained from four consideration cases. 

The plots in Fig. 5 and Fig. 6 present the changes in vertical displacement and acceleration of 
vehicle body while the plots in Fig. 7 and Fig. 8 respectively show the variation of contact forces 
at the front and the rear wheels with respect to time when the vehicle speed is taken as 20 km/h. 

It can be seen from the plot form show that: 
– Wheel separation really appear in the case of consideration. In Fig. 5, the plot of 𝑢(𝑡) has 

some pieces lying upper than zero level, and in Fig. 7 and Fig. 8, the plots of 𝐹ଵ(𝑡) and 𝐹ଶ(𝑡) in 
case 1 and case 3 have some flat pieces lying right on the abscissa. 

– The plots in two cases of taking wheel separation into account (case 1 and case 3) have 
evident differences both in comparison with each other and with the other two cases. 

– The differences in vertical displacements and accelerations between the two cases of 
disregarding wheel separation into account (case 2 and case 4) are not as significant as the 
differences in the same quantities between any other two cases. This means the effect of wheel 
separation on vehicle vibration is more significant than road deformation, and moreover, wheel 
separation makes the effect of road deformation become more significant at least in the situation 
of consideration. 

 
Fig. 5. The change in vertical displacement of vehicle body 
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Fig. 6. The change in vertical acceleration of vehicle body 

 
Fig. 7. Variation of contact force at the front wheel  

3.2. Effect of vehicle speed on response of the system 

Table 1 presents some numerical results which reflect the effect of vehicle speed (𝑉) on the 
root mean square values RMS(.) of vertical acceleration of vehicle body and contact forces at the 
two wheels; the maximum value of vertical displacement of vehicle body. The used values of 
vehicle speed are discretely taken from 0 to 35 km/h. The graphs which depict the mentioned 
results are describe in Fig. 9. The results also involve the four considered cases mentioned above. 
The first column correspond to the static state of the vehicle (𝑉 = 0). 

The plots in Fig. 9 show that: 
– There are significant differences between the two cases of taking wheel separation into 

account in comparison with the two cases of disregarding this phenomenon. Especially, the 
difference in results between the two cases of not taking the loss of contact into account is not as 
much as the differences between any other two cases. 
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– The increase in vehicle speed leads to the increase in the RMS values of contact forces in 
general. The fact may involve the transformation of kinematic energy into potential energy of 
deformable parts. 

– The effect of the increase in vehicle speed on the two other quantities (the RMS value of 
vertical acceleration and the maximum value of vertical displacement of vehicle body) does not 
follow an obvious trend. This may concerns the complexity in relations of geometrical parameters 
of the vehicle and the road profile and the velocity of movement. 

– The RMS values of contact forces in the two cases of taking wheel separation into account 
are less than the corresponding values of the other two cases. This is reasonable because in periods 
of losing contact at any wheel, the contact force is equal to zero. 

 
Fig. 8. Variation of contact force at the rear wheel 

Table 1. Effect of vehicle speed on RMS values of some typical quantities  
and the total time of losing contact 

Vehicle speed (V), [km/h] 0 5 10 15 20 25 30 35 

RMS (𝑢ሷ ), [m/s2] 

Case 1 0 4.0779 4.1048 3.6398 4.2111 4.7999 4.5314 4.1904 
Case 2 0 4.0779 4.5836 3.9364 3.3969 3.4797 2.9569 2.3620 
Case 3 0 4.1153 4.1521 3.8054 3.4496 3.8003 3.3325 2.6553 
Case 4 0 4.1153 4.6327 4.0155 3.4103 3.5263 3.0045 2.3996 

RMS (𝐹ଵ), [N] 

Case 1 17835 18869 19117 19514 20177 21056 21821 22654 
Case 2 17835 18869 19702 20301 21410 23123 25106 27101 
Case 3 17835 18889 19157 19560 20092 20971 21798 22542 
Case 4 17835 18889 19741 20373 21505 23280 25340 27427 

RMS (𝐹ଶ), [N] 

Case 1 15912 16882 17144 17526 18362 19241 19806 19338 
Case 2 15912 16882 17679 18170 19532 21107 23057 24977 
Case 3 15912 16904 17133 17373 18223 19009 19894 20623 
Case 4 15912 16904 17702 18234 19621 21254 23267 25266 

𝑧௫, [m] 

Case 1 –0.0721 0.0284 0.0213 0.0067 0.0328 0.0445 0.0451 0.0621 
Case 2 –0.0721 0.0284 0.0180 –0.0025 –0.0133 –0.0093 –0.0264 –0.0392 
Case 3 –0.0702 0.0302 0.0202 0.0056 0.0006 0.0066 –0.0010 –0.0236 
Case 4 –0.0702 0.0302 0.0201 –0.0004 –0.0121 –0.0069 –0.0238 –0.0372 
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Fig. 9. Effect of vehicle speed on RMS or maximum value  

of some parameters reflecting vibration of the vehicle 

4. Conclusions 

The article has made a longitudinal vibration model of a two-axle automobile where both road 
deformation and the loss of contact are taken into account. The automobile is modeled as a linear 
vibration system which has three masses and four degrees of freedom. The deformed road is 
modeled as an elastic beam which is simply supported at the two ends and lies on the Kelvin's 
visco-elastic ground. The model of wheel-road contact has taken account of wheel separation and 
the change in dimmension of the contact area if exists. The original differential equations of 
motion of the vehicle-road coupled system with a partial differential equation have been 
transformed into a system of all ordinary differential equations by applying the Bubnov-Galerkin’s 
method. An example of numerical computation has been fulfilled where the results of four 
different cases of formulation have been put in comparison and the effect of vehicle speed on 
vibration of the system has been considered. The obtained results proves the necessity of taking 
the loss of contact into account when considering vibration of vehicles. 
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