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Abstract. The goal of this work is association of several machine learning methods in a study of 
rotating machines with fluid-film bearings. A fitting method is applied to fit a non-linear reaction 
force in a bearing and solve a rotor dynamics problem. The solution in the form of a simulation 
model of a rotor machine has become a part of a control system based on reinforcement learning 
and the policy gradient method. Experimental part of the paper deals with a pattern recognition 
and fault diagnosis problem. All the methods are effective and accurate enough.  
Keywords: supervised learning, reinforcement learning, rotor dynamics, fault diagnosis, control. 

1. Introduction 

The main tool in modern machine learning is an artificial neural network (ANN) [1]. This work 
deals with applications of machine learning to rotating machines with fluid-film bearings. A rotor 
rotation is usually accompanied by lateral vibrations [2, 3]. Rotor trajectory contains information 
about the condition of the bearings and the rotor machine at a whole. Rotor dynamics modeling is 
a difficult task especially when the rotor has fluid-film bearings [2]. Hydrodynamic calculations 
are computationally expensive. Therefore, this part of the rotor dynamics problem can be 
implemented using ANNs [4]. Modern rotating machines can be equipped with a number of 
sensors. Analysis of their measurements can be automated using specialized ANNs. These ANNs 
implement logistic regression [1]. Both shallow learning and deep learning are used in pattern 
recognition. Deep convolutional neural networks are widely used in fault diagnosis [5, 6]. Deep 
learning is emerging in reinforcement learning and continuous control systems [7, 8]. 

This paper unites theoretical and experimental results achieved by the authors in applications 
of machine learning to simulation, diagnosis and control of rotating machines with fluid-film 
bearings. 

2. Shallow learning for rotor dynamics simulation and fault diagnosis  

The goal of supervised learning is to determine relationship between two sets: an input set 𝐗 
and a target set 𝐘. The difference between predictions 𝐇 and targets 𝐘 is minimized in training 
process. This error function is called a target function, a cost function, or a loss function. 

The scheme of a simple feed forward ANN called multilayer perceptron is represented in  
Fig. 1. The 𝑙-layer ANN has an input layer, 𝑙 − 2 hidden layers and an output layer. A feature of 
the network architecture is that each neuron of the previous layer transmits its signal to each 
neuron of the next layer [4]. 

Input data in the form of 𝑛ଵ numbers can be represented as a one-dimensional matrix. The 
input layer receives this matrix 𝐗 ൌ ቀ൫𝑥ሺଵሻ൯ቁ  ሺ𝑖 ൌ 1 …𝑛ଵ) and simply transmits it to the second 
layer with an additional unit element. The matrix 𝐀ሺଵሻ ൌ ൫ሺ1 𝐗ሻ൯ is the output of the first layer. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2020.21549&domain=pdf&date_stamp=2020-06-29
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In the second (hidden) layer data from the first layer is multiplied by the weights matrix Θ(ଵ) and 
added 𝐙(ଶ) = 𝐀(ଵ)Θ(ଵ). An activation function is applied to the result 𝐙(ଶ), and resulting matrix 
with additional unit element is the output of the second layer 𝐀(ଶ) = ቀ൫1 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(ଶ)൫𝐙(ଶ)൯൯ቁ . 
The same actions take place on an arbitrary 𝑘 − 1 hidden layer: 𝐙(ିଵ) = 𝐀(ିଶ)Θ(ିଶ),     𝐀(ିଵ) = ቀ൫1 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(ିଵ)൫𝐙(ିଵ)൯൯ቁ, (1)

where 𝐙(ିଵ) is matrix with results of multiplication by weights and adding in the current layer, 𝐀(ିଶ), 𝐀(ିଵ) are matrices of outputs in the previous and the current layers respectively, Θ(ିଶ) 
is the previous layer weights matrix, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(ିଵ) is an activation function. 

Similar calculations occur in the output layer. The result of the calculation in the output layer 
is the matrix of predictions 𝐇 = ൬ቀ𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛()൫𝐙()൯ቁ൰.  

The unknown weights matrices Θ()  are determined by minimizing the objective function 𝐽൫Θ()൯ ⇒ 𝑚𝑖𝑛. The type of objective function depends on the type of a given problem.  

 
Fig. 1. An 𝑙-layer feed forward neural network with 𝑛ଵ inputs and 𝑛 outputs 

2.1. Multi-dimensional mapping for rotor dynamics simulation  

A rigid unbalanced rotor with a gear coupling and a fluid-film bearing at the opposite tips is 
considered (see Fig. 2). The equations of the rotor’s motion can be represented as follows [3]: 

ቊ𝑚𝑑ଶ𝐗 𝑑𝑡ଶ⁄ = 𝐂 + 𝐁 + 𝐅,𝐽ௗ 𝑑ଶ𝚿 𝑑𝑡ଶ⁄ + 𝐽𝑑𝚿 𝑑𝑡⁄ = 𝐂 ∙ 𝐆𝐂 + 𝐁 ∙ 𝐆𝐁, (2)

where 𝑚 is rotor mass, 𝐗, 𝚿 are coordinates of the center of mass and angles of the rotor rotation 
respectively, 𝑡 is time, 𝐂, 𝐁 are reaction forces of the gear coupling and the bearing respectively, 𝐅 = 𝑚Δ𝜔ଶ ቈcos(𝜔𝑡 + 𝜑)sin(𝜔𝑡 + 𝜑)൨ is inertia force, 𝑚Δ is the rotor unbalance, 𝜑 is phase of unbalance, 𝐽, 𝐽ௗ are polar and diametral moments of inertia respectively, 𝐆𝐂, 𝐆𝐁 are radius-vectors to the 
coupling and to the bearing respectively.  

It is assumed that reaction forces are equivalent to springs and dampers: 𝐂 = 𝐂(𝐗,𝑑𝐗 𝑑𝑡⁄ ), 𝐁 = 𝐁(𝐗,𝑑𝐗 𝑑𝑡⁄ ). Also, it is assumed that reaction in a coupling is linear with given linear 
coefficients and reaction in a bearing is non-linear. Calculation of the bearing reaction is connected 
with solution of the Reynolds equation [2, 4]: 𝜕𝜕𝑥1 ቈℎ3𝜇 𝜕𝑝𝜕𝑥1 + 𝜕𝜕𝑥3 ቈℎ3𝜇 𝜕𝑝𝜕𝑥3 = 6 𝜕𝜕𝑥1 (𝑢1ℎ) − 12𝑢2, (3)
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where 𝑥𝑖 are coordinates connected with the thin oil film, 𝑝 = 𝑝(𝑥ଵ, 𝑥ଷ) is the unknown pressure 
function, ℎ = ℎ(𝑥ଵ) is the oil film thickness, 𝜇 is viscosity, 𝑢𝑗 = 𝑢𝑗(𝑥1) are the tangential and 
normal components of the journal surface velocity, where 𝑖 = 1, 2, 3, 𝑗 = 1,2. 

 
Fig. 2. Calculation schematic of a rotor-bearing test rig with a fluid-film bearing 

Given the pressure function, the components of reaction can be calculated by integration: 

𝐵ଵ = −න න 𝑝(𝑥ଵ, 𝑥ଷ) 𝑐𝑜𝑠(𝛼)𝑑𝑥ଵ𝑑𝑥ଷగ



 , 𝐵ଶ = −න න 𝑝(𝑥ଵ, 𝑥ଷ) 𝑠𝑖𝑛(𝛼)𝑑𝑥ଵ𝑑𝑥ଷగ



 , (4)

where 𝐿, 𝐷 are the bearing length and diameter respectively, 𝛼 = 2𝑥ଵ 𝐷⁄ . 
Approximation of Eq. (4) with the function 𝐁 = 𝐁(𝐗,𝐕 = 𝑑𝐗 𝑑𝑡⁄ ) of four arguments can be 

implemented by the ANN represented in Fig. 1. The input layer receives a matrix with components 
of rotors position and its velocity of lateral vibrations ൫(𝑋ଵ 𝑋ଶ 𝑉ଵ 𝑉ଶ)൯. The output of the 
ANN is the fluid-film reaction force ൫(𝐵ଵ 𝐵ଶ)൯. A 3-layer feed-forward ANN with sigmoid 

activation function 𝑎(ଶ) = 1 1 + 𝑒ି௭ೕ(మ)⁄  (𝑗 = 1, …𝑛ଶ) in the hidden layer and linear function in 
the output layer 𝐵 = ℎ = 𝑎(ଷ) = 𝑧(ଷ)  is used to solve multi-dimentional mapping problem. 
Forward propagation in the ANN includes following calculations: 𝐀(ଵ) = ൫(1 𝑋ଵ 𝑋ଶ 𝑉ଵ 𝑉ଶ)൯, 𝐙(ଶ) = 𝐀(ଵ)Θ(ଵ),       𝐀(ଶ) = ቀ൫1 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝐙(ଶ)൯൯ቁ , 𝐙(ଷ) = 𝐀(ଶ)Θ(ଶ),       𝐁 = 𝐇 = 𝐀(ଷ) = 𝐙(ଷ). (5)

The number of hidden neurons 𝑛ଶ is arbitrary. Network training takes place on a large number 
of samples, i.e. pairs of input ൫(𝑋ଵ 𝑋ଶ 𝑉ଵ 𝑉ଶ)൯ and output ൫(𝐵ଵ 𝐵ଶ)൯ matrices. In mapping 
problems, the cost function has the following form [1]: 

𝐽൫𝚯()൯ = 12𝑚൫ℎ() − 𝑦()൯ଶ
ୀଵ


ୀଵ + 𝜆2𝑚 ൫𝜃()൯ଶೖశభ

ୀଵ
ೖ
ୀଵ

ିଵ
ୀଵ ⇒ min, (6)

here 𝑚 is number of samples in a dataset, ℎ(), 𝑦() are predicted and target values of 𝑗-th output 
value calculated for the 𝑖-th sample, 𝑛, 𝑛 are the numbers of neurons in the 𝑘-th layer and in the 
output layer respectively, 𝜆 is a regularization parameter. 

In the training process the values of weights 𝚯()  and the regularization parameter 𝜆  are 
calculated. The network is trained with Levenberg-Marquardt backpropagation algorithm. The 
training process is implemented in one of the specialized programming environments [9, 10]. 
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2.2. Classification and pattern recognition tools for rotating machine diagnosis  

The main idea is the same: to determine relationship between inputs 𝐗 and targets 𝐘. The main 
difference is that the targets values are discrete and equal to 0 or 1, and predictions 𝐇 
approximated by logistic function has continuous values in the interval (0 1) [1]. 

Sensor measurements are recorded during the tests under various conditions of a rotating 
machine. Given conditions are needed to be recognized by ANNs. The data from different types 
of sensors can be normalized [1] and merged into an input matrix 𝐗. The number of classes in a 
target matrix 𝐘 is equal to the number of observed conditions of a rotating machine. A 3-layer 
feed-forward ANN with a sigmoid activation function in the hidden layer (see section 2.1) and a 

softmax function in the output layer ℎ = 𝑎(ଷ) = 𝑒௭ೕ(య) ∑ 𝑒௭(య)(యାଵ)ୀଵൗ  (𝑗 = 1, …𝑛ଷ) is used to solve 
pattern recognition problem. Forward propagation includes following calculations: 𝐀(ଵ) = ൫(1 𝐗)൯, 𝐙(ଶ) = 𝐀(ଵ)Θ(ଵ),       𝐀(ଶ) = ቀ൫1 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝐙(ଶ)൯൯ቁ , 𝐙(ଷ) = 𝐀(ଶ)Θ(ଶ),      𝐀(ଷ) = 𝐇 = ቀ൫1 𝑠𝑜𝑓𝑡𝑚𝑎𝑥൫𝐙(ଷ)൯൯ቁ. (7)

As for the previous ANNs architecture (see subsection 2.1) the number of hidden neurons 𝑛ଶ 
is arbitrary and training process needs a number of training samples. In pattern recognition 
problems, the cost function has the following form [1]: 

𝐽൫𝚯()൯ = −1𝑚 𝑦() 𝑙𝑛(ℎ())
ୀଵ


ୀଵ + 𝜆2𝑚  𝜃()ೖశభ

ୀଵ
ೖ
ୀଵ

ିଵ
ୀଵ ⇒ min. (8)

The network is trained with scaled conjugate gradient using functions of specialized 
programming environments [9, 10]. 

3. Deep reinforcement learning for rotating machine control 

The main objective of the control system under study is minimization of energy consumption. 
The fluid-film reaction and the friction torque in a bearing are non-linear functions depending on 
pressure distribution (see Eq. (3)). It is assumed that the rotor vibrations described with Eq. (2), 
the coupling reaction 𝐂 is linear and the bearing reaction 𝐁 is simulated by the ANN described in 
Subsection 2.1 (see Fig. 2). In terms of reinforcement learning the rotor-bearing simulation model 
is an envinonment and the control system is an agent. At each time step 𝑡 the agent receives 
feedback from the environment 𝐒௧ in form of a matrix of simulation results and takes an action 𝑎௧ 
in response in form of pressure supply or any other parameter of a fluid-film bearing. The main 
idea is to train agent after the event giving him higher reward 𝑟௧ for better actions. 

The deep deterministic policy gradient (DDPG) is used. The algorithm of DDPG agents is 
represented in [8]. At each time step the value function 𝑣௧ is calculated as follows [8]: 𝑣௧ = 𝑟௧ + 𝛾𝑞′(𝑆௧ାଵ,𝜇′(𝐒௧ାଵ|𝚯ఓ) , |𝚯), (9)

where 𝛾 is a discount factor, 𝑞′ is a 𝑞-function calculated by a target critic, 𝜇′ is a policy function 
of the action by a target agent, 𝚯ఓ, 𝚯 are unknown parameters of the actor and the critic ANNs 
respectively. 

The architectures of the networks will be represented in the next section of the paper. The 
unknown parameters are calculated by minimizing the loss function [8]: 
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𝐽(𝚯ఓ ,𝚯) = 1𝑚 ൫𝑣 − 𝑞(𝑺 ,𝑎|𝚯)൯ଶୀଵ ⇒ min. (10)

The networks are trained with stochastic gradient descent method using functions of 
specialized programming environments [9, 10]. 

4. Simulation and experimental results 

The first series of simulation tests was performed with a model of the test rig based on  
Eqs. (2-4). A set of rotor trajectories was calculated. Then the ANN described by Eqs. (5-6) was 
trained and tested in comparison with a known linear model characterized by the spring and 
damper matrices [4]. The results demonstrated that the rotor dynamics simulation program with 
the ANN module allows calculation rotor trajectory two times faster than a real time process. It 
was demonstrated also that the ANN allows simulation of non-linear transient processes with 
variable rotor speed and high vibrations [4]. 

The second series of tests was performed using the test rig with a multi-sensor measurement 
system. Two displacement sensors measured the rotor vibrations, three vibroaccelerometers 
measured the rotor and the electromotor housings vibroaccelerations, a microphone measured the 
operating rotor machine noise. Inside the bearing the pressure sensor measured pressure supply 
and the contact resistance sensor measured the fluid-film thickness. Six conditions of the test rig 
were studied, including the normal condition, the conditions with loosened bolts and the rotor 
unbalance condition. The general classification problem for six classes recognition and the 
simplified classification problem for two classes recognition (normal or abnormal) were solved. 
Several random samples of two classes dataset with 800 data points each are shown in Fig. 3  

 
Fig. 3. Random samples of two classes dataset with normalized measurements  

results from the microphone and from one of the vibroaccelerometers 

Then the ANN described by Eqs. (7-8) was trained and tested to solve the classification 
problems. The accuracy of the two classes and the six classes recognition were up to 80 % and 
90 % respectively. It should be noted, that the accuracy of the two classes classification by experts 
was up to 70 %. The value of accuracy means that classification process was close to random.  

The third series of the tests was simulation. The rotor dynamics simulation model became an 
environment observed and controlled by an agent. The agent model was based on the DDPG 
algorithm (see section 2.3). The ANNs architectures are shown in Fig. 4.  

 
a) 

 
b) 

Fig. 4. The DDPG networks architectures: a) the actor network and b) the critic network [2] 
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The agent controlled the bearing clearance size ℎ (see Eq. (3)) directly, and indirectly the 
pressure distribution and the reaction forces in the bearing. The goal of the control system was 
minimization of power loss due to friction and vibration in the bearing. The ANNs were trained 
and tested. The results demonstrated decreasing the power loss up to 17 % by the DDPG agent. 

5. Conclusions 

Suggested tools of rotor dynamics simulation, condition classification and control based on 
artificial neural networks allow development of predictive modeling systems, fault diagnosis and 
control of energy efficient operation to design intellectual rotating machines. All the developed 
systems can be combined in one device. The following study is connected with design of the 
device which will be able to combine multiple functions of predictive modeling, fault diagnosis 
and control in interaction with a rotating machine. 
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