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Abstract. We consider a simple model of charged microparticles trapped in an electrodynamic 
field and interacting according to Coulomb forces. We reveal a bifurcation of the stable 
equilibrium point depending on the system parameters. Mathematical modelling of charged 
particles localization in a linear electrodynamic trap was implemented and effective potential 
splitting was demonstrated. The obtained splitting of Coulomb crystal corresponds to the 
experimental results. 
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1. Introduction 

Nowadays the processes of phase transitions in Coulomb structures localized in linear 
quadrupole traps are actively studied. This interest is caused by the potential applicability of the 
system “linear trap + linear ion crystal” as an elementary basis for quantum computing. At the 
same time, the existence of a restriction on the number of ions in the crystal when it keeps the 
linear structure, causes significant difficulties in implementing the described system in practice 
[1, 2]. There is a relationship between phase transitions and the form of effective potential, but 
this relationship has not been properly explored. The physical principle of splitting the effective 
potential and Coulomb crystal can be considered on the example of solving the three-dimensional 
localization problem. 

One of the ion localization problems in three-dimensional space is the localization in a field of 
a linear ion trap with end cape electrodes. We consider a linear quadrupole trap field separately 
from the field of end cape electrodes, the potential energy of a charged ion 𝑞 takes a form [3]: 

𝑈 𝑥,𝑦, 𝑧 𝑞 𝑈   𝑉 cos Ω𝑡𝑟 𝑥 − 𝑦 , (1)

where 𝑞  is an ion charge, 𝑉  is an amplitude of AC voltage applied to power “cylindrical” 
electrodes, 𝑈  is an amplitude of DC voltage applied to power “cylindrical” electrodes, 𝑟 − 
radius of the trap. 

The potential energy does not depend on the axial coordinate 𝑧 which describe the position of 
a localized particle along the power electrodes. Thus, movement along 𝑧 axis is unlimited, and we 
cannot talk about stable localization along this axis. To limit a motion of trapped object and border 
the localization area of the trap, end cape electrodes with constant positive potential are used [4, 5]. 
Fact that the end cape electrodes field has a minor effect on the localization process is usually 
taken as an axiom. However, this assertion is true only when the end cape electrodes voltage is 
much lower than the voltage at the power electrodes.  

To describe the case of comparable voltages on end cape and power electrodes let us consider 
the following model: the point particle with a charge 𝑞 is attached by a spring of stiffness 𝐾 to 
the 𝑧 axis, and the spring base can move along the axis 𝑧 freely (Fig. 1.) At a distance of 𝐿 from 
the center of coordinates there are located two 𝑄 point charges. Determine stable equilibrium 
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points of the 𝑞 charge in the present model. 

 
Fig. 1. Localization process of +q charge in field of linear and Coulomb forces 

2. Analytical model 

Defining the equilibrium points in the system consisting of two point charges 𝑄 located on 
the 𝑧 axis and a charged particle 𝑞 which attached by a spring to the 𝑧 axis. The full particle 
potential energy will take a form: 

𝑈 𝑧,𝑦 𝐾𝑦2 𝑘𝑞𝑄𝑧 − 𝐿 𝑦 𝑘𝑞𝑄𝑧 𝐿 𝑦 . (2)

To simplify the Eq. (2) we use the dimensionless coordinates 𝑦 𝑦/𝐿, �̃� 𝑧/𝐿, 𝜏 𝑡 𝐾/𝑚 , 
as well as the parameter 𝐶 𝑘𝑄𝑞/2𝐿 𝐾. The equations of motion of particle are given by: 𝑑 �̃�𝑑𝜏 𝐶 �̃� − 1�̃� − 1 𝑦 𝐶 �̃� 1�̃� 1 𝑦 , (3)𝑑 𝑦𝑑𝜏 −𝑦 𝐶 𝑦�̃� − 1 𝑦 𝐶 𝑦�̃� 1 𝑦 . (4)

Equating the accelerations in the received equations to zero and find the potential minimum as 
pairs of ratios �̃�,𝑦 . Considering that 𝐶  0, the solution of Eqs. (3-4) takes a following form: 

�̃�,𝑦 ⎩⎪⎨
⎪⎧ 0, 2𝐶 − 13𝐶 / ,     𝐶 12 ,

0,0 , 0 𝐶 12 .                  (5)

Thus, when value 𝐶 is less than 1/2, the only stable equilibrium point is near the coordinate’s 
origin (0, 0). With increasing parameter 𝐶 (𝐶   1/2 is the bifurcation point), a splitting of the 
stable position is observed. In this case, depending on the initial conditions, the point charge 𝑞 
is localized in one of the two new equilibrium positions with the coordinate 0, 2𝐶 − 1 /3𝐶 /  respectively. 

The proposed model explains the potential splitting effect. Now let’s return to the localization 
in the linear ion trap Eq. (1). To describe the localization of a charged particle in a potential Eq. (1), 
it is often used the formalism of a time-independent effective potential. The equivalent effective 
potential in a quadrupole trap [6, 7] takes the form of: 

Ф 𝑥,𝑦 𝑞𝑈𝑟 𝑥 − 𝑦 𝑞 𝑉𝑚Ω 𝑟 𝑥 𝑦 , (6)

where 𝑚 is the mass of an ion. 
This effective potential Eq. (6) describes the oscillations in the harmonic oscillator in 

accordance with the proposed model. Field of the end cape electrodes can be represented as a 
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potential distribution around two flat electrodes of round shape, located at a distance 𝐿 from the 
geometric center of the trap. Such field is a function of 𝐿, 𝑟 ,𝑅, where 𝐿 and 𝑟  are the length and 
radius of the end cape electrodes, 𝑅 = 𝑥 + 𝑦  [8]. 

The shape of the potential around flat end cape electrodes is much more complex than the 
shape of the point charge +𝑄 considered in the model. From the considered model we can notice 
the following concept: the field of the power electrodes makes no impact on axially particles 
movement along the trap, while the field of the end cape electrodes effects on axial and radial 
movement. This makes it possible to draw a parallel with the experiment. The full potential energy 
of a charged particle +𝑞, considering the effective potential formalism and the effect of the end 
cape electrodes, will take the form of: 

𝑈 𝑥,𝑦, 𝑧 = 𝑞𝑈𝑟 𝑥 − 𝑦 + 𝑞 𝑉𝑚Ω 𝑟 𝑥 + 𝑦 + 𝑞𝑈 𝑥,𝑦, 𝑧 + 𝑞𝑈 𝑥,𝑦, 𝑧 , (7)

where 𝑈 , 𝑈  are voltages on the end cape electrodes. 

3. Results and discussion 

As in the case with two charges +𝑄 ≫ 𝑞, with large value of DC voltage 𝑈±  on the end cape 
electrodes, splitting of the effective potential Eq. (7) is possible. Let us consider the section of 
equipotential surfaces of effective potential for a specific particle. The section of equipotential 
surfaces depends on the ratio of amplitudes of DC and AC voltage applied to the power electrodes, 
as well as the amplitudes of DC voltage on the locking electrodes. 

 
a) 𝑈± ≪ 𝑉, 𝑈 = 0 

 
b) 𝑈± ≈ 𝑉, 𝑈 = 0.1 V 

Fig. 2. Section of equipotential surfaces for potential energy 𝑈 𝑥, 𝑦, 𝑧  

Mathematical modeling of the effective potential gives an opportunity to observe the process 
of splitting the stability region in half as a result of increasing the potential of the end cap 
electrodes. At low value on the end cape electrodes 𝑈± , the transition from cylindrical to elliptical 
surfaces is observed. Elliptical surface is characterizing stable movement in three-dimensional 
space (Fig. 2(a)). With increase of voltage on end cape electrodes 𝑈± , we observe a splitting of 
stable equilibrium point. In the three-dimensional case, equipotential surfaces take double-well 
form (𝑈 ≠ 0).  

The observed transition in the form of the effective potential from a single-linked region 
(Fig. 2(a)) to two non-linked regions (Fig. 2(b)) corresponds to the Coulomb crystal splitting 
shown in [9]. In addition, in work [6] the formation of the additional equilibrium point with 
increasing voltage amplitude on the end cape electrodes is observed. The model proposed in this 
work describes the discovered splitting effect of effective potential at a ratio of amplitude of 
voltage on the end cape and power electrodes as 3:1. The displacement of the bifurcation point is 
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caused by the trap geometry. 

4. Conclusions 

In this paper a simple model of ion localization was considered and mathematical modeling of 
the bifurcation process of stable equilibrium position was implemented. Thus, the model 
considered corresponds to the real localization of microparticles in electrodynamic traps. The 
considered model predicts the effect of splitting the Coulomb crystal in a quadrupole trap. This 
model of bifurcation of stable equilibrium position can be used to describe phase transitions in 
Coulomb crystals. 
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